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Abstract: Ordinal patterns classifying real vectors according to the order relations between their
components are an interesting basic concept for determining the complexity of a measure-preserving
dynamical system. In particular, as shown by C. Bandt, G. Keller and B. Pompe, the permutation
entropy based on the probability distributions of such patterns is equal to Kolmogorov–Sinai entropy
in simple one-dimensional systems. The general reason for this is that, roughly speaking, the system
of ordinal patterns obtained for a real-valued “measuring arrangement” has high potential for
separating orbits. Starting from a slightly different approach of A. Antoniouk, K. Keller and S.
Maksymenko, we discuss the generalizations of ordinal patterns providing enough separation to
determine the Kolmogorov–Sinai entropy. For defining these generalized ordinal patterns, the idea is
to substitute the basic binary relation ≤ on the real numbers by another binary relation. Generalizing
the former results of I. Stolz and K. Keller, we establish conditions that the binary relation and the
dynamical system have to fulfill so that the obtained generalized ordinal patterns can be used for
estimating the Kolmogorov–Sinai entropy.

Keywords: ordinal patterns; measure-preserving dynamical system; Kolmogorov–Sinai entropy;
permutation entropy; ergodic theory

1. Introduction

In 2002, Bandt and Pompe introduced so-called permutation entropy [1]. This entropy
has been established in non-linear dynamical system theory and time series analysis,
including applications in many fields from biomedicine to econophysics (compare with
Zanin et al. [2]). It is a crucial point that permutation entropy is theoretically justified by
asymptotic results relating it to Kolmogorov–Sinai entropy (KS entropy, also called metric
entropy) which is the central complexity measure for dynamical systems. The important
relationship of permutation entropy and KS entropy was first observed and mathematically
founded for piece-wise monotone dynamical systems by Bandt et al. [3].

The (empirical) concept of permutation entropy is based upon analyzing the distri-
bution of ordinal patterns in a time series or the underlying system. In this paper, we
concentrate on a measure-preserving dynamical system (Ω, A , µ, T), i.e., a probability space
(Ω, A , µ) equipped with a measurable map T : Ω→ Ω satisfying µ(T−1(A)) = µ(A) for
all A ∈ A .

Given a random variable X : Ω→ R, in this paper, an ordinal pattern of length n ∈ N
with respect to X is considered as a subset of the state space Ω. It is indicated by a
permutation π = (π0, π1, . . . , πn−1) of {0, 1, . . . , n− 1} and defined by

Pπ := {ω ∈ Ω | X(Tπ0(ω)) ≤ X(Tπ1(ω)) ≤ . . . ≤ X(Tπn−1(ω))}. (1)

(Usually, ordinal patterns are defined in the range of X, i.e., for the vectors (X(T(ω)),
X(T1(ω)), . . . , X(Tn−1(ω)))). The collection of ordinal patterns:

OP(n) := {Pπ | π is a permutation of length n}

is a partition of Ω.
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In the rest of this section, we assume that X preserves enough information about
the given system in a certain sense. This is particularly the case if Ω is contained in R
and X is the identity map. A precise general description of the assumption is given when
presenting the results of this paper. It was shown in [4] that, under not too restrictive further
conditions, the probability distribution on the partitions OP(n) for n ∈ N can be used for
determining the KS entropy of the given system. The reason is that, roughly speaking,
under these conditions, OP(n) is able to separate the orbits of the system if n→ ∞.

In order to address the problem that this paper is concerned with, we give a description
of ordinal patterns being slightly different from the above. One can determine to which
ordinal pattern Pπ of length n a point ω belongs to if, for all (s, t) in:

En = {(s, t) ∈ N2
0 | 0 ≤ s < t ≤ n− 1}, (2)

one knows whether X(Ts(ω)) ≤ X(Tt(ω)) holds true or not. In other words, there exists a
set A ⊆ En such that:

Pπ =
⋂

(s,t)∈A

{ω ∈ Ω | (X(Ts(ω)), X(Tt(ω))) ∈ R}

∩
⋂

(s,t)∈En\A

{ω ∈ Ω | (X(Ts(ω)), X(Tt(ω))) ∈ R2 \ R}, (3)

where:
R := {(x, y) ∈ R2 | x > y}. (4)

The above set contains all the points ω ∈ Ω that satisfy X(Ts(ω)) > X(Tt(ω)) for (s, t) ∈ A
and X(Ts(ω)) ≤ X(Tt(ω)) for (s, t) ∈ En \ A. Note that, given some arbitrary A ⊆ En, the
set on the right hand side of (3) can be empty. In the case that it is non-empty, it coincides
with some ordinal pattern Pπ of length n.

While Equation (3) might be a bit more abstract than (1), it shows a way to generalize
the concept of ordinal patterns on the basis of replacing the set R in (4) by some arbitrary
Borel subset R of R2, also to investigate why ordinal patterns are so successful.

Definition 1. We call a non-empty Borel subset R of R2 discriminating relation.

The figures given in this paper show different discriminating relations R. In each
case, only the part of R contained in [0, 1[2 is presented. Note that in the case that X maps
Ω into [0, 1[, the restriction of R itself to this part would not change anything. Figure 1a
illustrates R as given in (4), again only on [0, 1[2. In the case of such an R, note that
tan(π(X− 1/2)) mapping [0, 1[ into [−∞, ∞[ would not make a difference to a given X for
our considerations, since order relations and associated partitions are preserved.

Given some discriminating relation, generalized ordinal patterns of length n with respect
to X are given as the non-empty sets defined by the right hand side of (3) for some
A ⊆ En. Obviously, they also form a partition of Ω. The question that arises is what a
discriminating relation R should look like, such that those generalized ordinal patterns
inhibit the same nice properties the original ordinal patterns had. More precisely, we ask
the following question:
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(d) R = Rcircles as defined in (17)
Figure 1. This figure illustrates some special discriminating relations R (striped areas) considered in
Section 4. Only the part of R contained in [0, 1[2 is shown (compare the corresponding remarks in
Section 4).

Main Question. Under what conditions on a discriminating relation R the partitions given by the
generalized ordinal patterns determine the KS entropy of a dynamical system?

Why is this determination of entropy, which is precisely described by formula (10)
in Theorem 1 interesting? For answering this question, interpret X as an observable, ω
as the initial state of the given system and X(ω), X(T(ω)), X(T2(ω)), X(T3(ω)), . . . as the
measured values at times 0, 1, 2, 3, . . .. Determining (generalized) ordinal patterns on the
basis of those values is a symbolization, where a symbol obtained is the (generalized)
ordinal pattern containing ω. Generally, symbolization means a coarse-graining of the
state space underlying a system, where each point is assigned one of finitely many given
symbols. Instead of considering the precise development of the system, one is interested in
the change of symbols in the course of time, justifying the naming of the method symbolic
dynamics. Note that a symbolization is equivalent to partitioning the state space into
classes of states (with the same symbol).

The reason for obtaining the full entropy from the (generalized) ordinal patterns is,
roughly speaking, that the symbol system obtained has high potential for separating orbits.
Such kinds of successful symbolizations are important, for example, in big data analysis,
see, e.g., Smith et al. [5].
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The above question was first considered in [6], where the authors basically showed
that sets of the form:

R = {(x, y) ∈ R2 | g(x) ≥ y}

lead to generalized ordinal patterns that, under some conditions, can be used to determine
the entropy if g : R→ R is measurable and one-to-one. Such an R is shown in Figure 1b
and will be discussed in Section 4 as well as another R illustrated in Figure 1.

In this paper, we consider general sets R ⊆ R2 that cannot necessarily be described by
functions and inequalities and establish some conditions under which the entropy can be
determined using those sets. As in [6], the discussion also includes a generalization of the
sets En given by (2) and is conducted in a multidimensional framework. In particular, the
results give insights as to why the basic ordinal approach and generalizations are working.

It is instructive to discuss the partition of R2 into R and R2 \ R from the viewpoint of
symbolic dynamics. In contrast to classical symbolization approaches with symbolizing
only in the range of single “measurements” x, the symbolization of pairs (x, y) via the
partition {R,R2 \ R} also regards some kind of link between x and y if R lies “diagonal” in
a certain sense. We will discuss this constellation, which explains the success of ordinal
patterns in a wider context, more precisely in Section 5.

A completely different constellation is given for the sets R shown in Figure 2. Here, R
is obtained as a half-plane from a “horizontal” division of R2. If, for example, Ω = [0, 1[,
A is the Borel σ-algebra and µ the Lebesgue measure on Ω, and if T is the tent map on Ω,
meaning that:

T(ω) =

{
2ω if 0 ≤ ω < 1

2 ,
2− 2ω if 1

2 ≤ ω < 1,
(5)

and X is the identity map, then the location of the horizontal cut is substantial.

1

1

0
x

1
2

y

(a) R = {(x, y) ∈ R2 | x ≤ 1/2}

1

1

0
x

1
2

y

(b) R = {(x, y) ∈ R2 | x ≤ 2/3}
Figure 2. “Non-diagonal” discriminating relations.

On the one hand, R = {(x, y) ∈ R2 | x ≤ 2/3} (Figure 2b) does not discriminate
enough to obtain the KS entropy of the given system, and on the other hand, there is
enough discrimination by R = {(x, y) ∈ R2 | x ≤ 1/2} (Figure 2a) due to the fact
that {[0, 1

2 [, [
1
2 , 1[} is a generating partition for T. In the situation considered, there is no

additional information given by the measurements (x, y) relative to measurement x, hence
R provides nothing more than a classical symbolization. For a detailed discussion of these
facts, see [6].

The rest of this paper is organized as follows. Section 2 provides the notions and
concepts being necessary for formulating the main statement of this paper in Section 3. This
statement is rather abstract and general and has to be considered in relation to some special
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cases discussed in Section 4 and making our ideas and findings transparent. Section 5 is
devoted to the proof of our main statement.

2. Preliminaries

Throughout this paper, (Ω, A , µ, T) will be a measure-preserving dynamical system.

2.1. Some Notions

We will write B = B(R) or B(Rd) for the Borel σ-algebra on R or Rd; d ∈ N,
respectively. Given a random variable X : Ω → R, by µX we denote the push-forward
measure of µ with regard to X, i.e., µX(A) := µ(X−1(A)) for all A ∈ B(R). The measure
µX × µX = µ2

X is the product measure, i.e., µ2
X(A× B) = µX(A)µX(B) for all A, B ∈ B(R).

For some Borel set R ∈ B(R2), we define the function f R
X : R→ [0, 1] by

f R
X (x) := µ({ω ∈ Ω | (x, X(ω)) ∈ R}). (6)

If it is clear from the context which set R ∈ B(R2) is considered, we simply write fX
instead of f R

X . The function fX can be represented as the integral:

fX(x) =
∫

1R(x, y)dµX(y).

Since 1R is integrable with regard to µ2
X , fX is integrable and therefore, also measurable by

Fubini’s Theorem.
The complement R2 \ R of a set R ⊆ R2 will be denoted by Rc. The notation ∂R will

be used for the boundary of a set R, i.e., the closure of R without its interior.

2.2. Entropy

The Shannon entropy of a finite partition P ⊂ A of Ω is defined as

H(P) := − ∑
P∈P

µ(P) log(µ(P)).

The refinement of two partitions P ,Q ⊂ A of Ω is given by

P ∨Q := {P ∩Q 6= ∅ | P ∈ P , Q ∈ Q}.

For a finite collection of partitions Pi ⊂ A , i ∈ {1, 2, . . . , n} of Ω, one analogously defines:

n∨
i=1

Pi :=

{
n⋂

i=1

Pi 6= ∅ | Pi ∈ Pi for all i ∈ {1, 2, . . . , n}
}

.

The entropy rate of a finite partition P ⊂ A of Ω is defined as

h(T,P) := lim
n→∞

1
n

H

(
n−1∨
t=0

T−t(P)
)

,

where T−t(P) = {T−t(P) | P ∈ P}. For the existence of the limit in the formula, see,
e.g., [7]. We are interested in determining the Kolmogorov–Sinai entropy of a system, which
is defined as

h(T) := sup
P

h(T,P),

where the supremum is taken over all finite partitions of Ω in A .
Note that the Kolmogorov–Sinai entropy serves as the central complexity measure for

dynamical systems and can be considered as a reference for other complexity measures,
including in data analysis. Roughly speaking, it measures the mean information obtained
by each iteration step. Since the Kolmogorov–Sinai entropy is the supremum of the entropy
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rates of all finite partitions, its determination and its estimation in a practical context are
not easy and it is of some interest to find natural finite partitions for which the entropy rate
is near the Kolmogorov–Sinai entropy. This is also a motivation for considering ordinal
patterns and its generalization in this paper.

2.3. σ-Algebras

Given a family of sets Ai ∈ A , i ∈ I, by σ(Ai | i ∈ I) we denote the smallest σ-algebra
containing all sets Ai. Analogously, for a family of partitions Pi ⊂ A , i ∈ I of Ω, we
define σ(Pi | i ∈ I) as the smallest σ-algebra containing all partitions Pi as subsets. Given
d-dimensional random vectors (Yi,1, Yi,2, . . . , Yi,d) : Ω→ Rd, i ∈ I, we define:

σ((Yi,1, Yi,2, . . . , Yi,d) | i ∈ I) := σ((Yi,1, Yi,2, . . . , Yi,d)
−1(B) | i ∈ I, B ∈ B(Rd))

as the smallest σ-algebra containing all preimages of Borel sets. When comparing two
σ-algebras A1, A2 ⊆ A , we ignore sets with measure 0, i.e., we write:

A1 ⊆µ A2

if for all A1 ∈ A1 there exists an A2 ∈ A2 with µ((A1 \ A2) ∪ (A2 \ A1)) = 0. In this sense,
A1 =µ A2 means that A1 ⊆µ A2 and A2 ⊆µ A1.

3. The Main Statement

Recall that a measure-preserving dynamical system (Ω, A , µ, T) is ergodic if for each
B ∈ A with T−1(B) = B it holds µ(B) ∈ {0, 1}, meaning that the system does not divide
into proper parts.

Referring to Section 1, we give some preparation for stating our main result. Recall that
for defining (generalized) ordinal patterns it was basic to know whether
(X(Ts(ω)), X(Ts(ω))) ∈ R or (X(Ts(ω)), X(Ts(ω))) ∈ R2 \ R for ω ∈ Ω and a random
variable X on Ω, where “time” pairs (s, t) were taken from the sets En (see (2)). In order to
also allow reducing the number of necessary “comparisons”, we relax the definition of the
sets En leading to the following concept.

Definition 2. We call a sequence (En)n∈N with E1 ⊆ E2 ⊆ E3 ⊆ . . . ⊆ N2
0 timing, if En

contains finitely many elements and if there exists a sequence (an)n∈N ∈ NN
0 with:

lim sup
N→∞

#{n ∈ {1, 2, . . . , N} | (an, an + n) ∈ ⋃∞
k=1 Ek}

N
= 1. (7)

Formula (7) roughly says that nearly each “temporal” distance is available for “com-
parisons”. It guarantees that enough time-pairs are considered to not have any loss of
information contained in the “thinned out” generalized ordinal patterns relative to the
“full” generalized ordinal patterns.

Remark 1. In the first paper on generalized ordinal patterns ([6]), a timing (En)n∈N was differently
defined: the authors of that paper called a sequence of finite sets E1 ⊆ E2 ⊆ E3 ⊆ . . . ⊆ N2

0 timing,
if there exists an increasing sequence (an)n∈N such that for all n ∈ N:

(i) En ⊆ {a0, a1, . . . , an}2,
(ii) for all s ∈ {a0, a1, . . . , an}, there exists a t ∈ {a0, a1, . . . , an} with s 6= t and (s, t) ∈ En,

(iii) (id, Tn)−1(Ri) ⊆µ σ
(∨

(s,t)∈Ek
(Ts, Tt)−1(Ri) | k ∈ N

)
for all i ∈ {1, 2,

. . . , d}
hold true. Note that the last condition does not only depend on the timing (En)n∈N but also on T
and X = (X1, X2, . . . , Xd). Instead of those three conditions, we instead simply require that almost
all differences can be found in the timing.
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Given a random vector (X1, X2, . . . , Xd) and R ∈ B(R2), we define the partition:

Ri := (Xi, Xi)
−1({R, Rc}) = {(Xi, Xi)

−1(R), (Xi, Xi)
−1(Rc)}

for all i ∈ {1, 2, . . . , d}, which is equal to:

Ri = {{(ω1, ω2) ∈ Ω2 | (Xi(ω1), Xi(ω2)) ∈ R},
{(ω1, ω2) ∈ Ω2 | (Xi(ω1), Xi(ω2)) /∈ R}}.

Then, for En as given in (2) the partition
∨
(s,t)∈Ek

(Ts, Tt)−1(Ri) is no more than
the partition of generalized ordinal patterns with respect to Xi defined in Section 1 and∨d

i=1
∨
(s,t)∈Ek

(Ts, Tt)−1(Ri) can be considered as the partition of generalized ordinal pat-
terns with respect to (X1, X2, . . . , Xd).

The proof of the following main theorem of the paper is given in Section 5.

Theorem 1. Let (Ω, A , µ, T) be an ergodic measure-preserving dynamical system,
X = (X1, X2, . . . , Xd) : Ω → Rd be a random vector, R ∈ B(R2) be a discriminating rela-
tion and (En)n∈N be a timing. Assume that the following conditions are valid:

There exists a countable set C ⊆ R2 with:

µ2
Xi
(∂R \ C) = 0 for all i ∈ {1, 2, . . . , d}. (8)

There exists a random variable Y : Ω→ R with:

#Y(Ω) < ∞ and A =µ σ
(
( f R

Xi
◦ Xi ◦ Tt, Y) | t ∈ N0, i ∈ {1, 2, . . . , d}

)
. (9)

Then:

h(T) = lim
k→∞

h

T,
d∨

i=1

∨
(s,t)∈Ek

(Ts, Tt)−1(Ri)

. (10)

holds true.

At first glance, conditions (8) and (9), being sufficient for (10), are looking very special.
The considerations in the following section will, however, elucidate their role and show
that they are relatively general. Roughly speaking, (8) says that the distribution of pairs
of “independent measurements” with respect to Xi is discrete on the boundary of R.
Condition (9) is an orbit separation condition based on the involved “measurements” and
the functions f R

Xi
. In general:

A ⊇µ σ
(
( f R

Xi
◦ Xi ◦ Tt, Y) | t ∈ N0, i ∈ {1, 2, . . . , d}

)
holds true because all functions involved in (9) are A measurable. Therefore, (9) is equiva-
lent to

A ⊆µ σ
(
( f R

Xi
◦ Xi ◦ Tt, Y) | t ∈ N0, i ∈ {1, 2, . . . , d}

)
The inclusion of the random variable Y provides some further separation and allows the

above inclusion to hold true for a wider class of dynamical systems than, for example, the
ones considered in [6]. In the case that Y is constant, it can also be omitted. In theory, Y
should be chosen to take different values on those sets on which f R

Xi
◦Xi ◦ Tt takes the same

values for i ∈ {1, 2, . . . , d} and t ∈ N0. In practice, the fact that such a random variable Y
exists is sufficient and Y does not need to be explicitly specified. An example is given in
Section 4.5.
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4. Special Cases

In the following, we discuss some special situations where the assumptions of
Theorem 1, i.e., (8) and (9), are satisfied. Lemma 2 provides an easy-to-check condition, that
of when (8) holds true. It is more difficult to see, when the condition (9) is satisfied. Roughly
speaking, this condition is fulfilled if X = (X1, X2, . . . , Xd) together with Y can uniquely
describe the outcomes of the whole dynamical system and applying fXi to the results of X
is, in some sense, “reversible” for all i ∈ {1, 2, . . . , d}. In other words, X = (X1, X2, . . . , Xd)
together with Y preserve the information of the system and there is no information loss for
the symbolization. The first means that:

A =µ σ
(
(Xi ◦ Tt, Y) | t ∈ N0, i ∈ {1, 2, . . . , d}

)
,

which obviously follows from

A =µ σ
(
( f R

Xi
◦ Xi ◦ Tt, Y) | t ∈ N0, i ∈ {1, 2, . . . , d}

)
.

To describe the range of outcomes of the random variables X on a probability space
(Ω, A , µ), we will use its cumulative distribution functions FX : R→ [0, 1] defined by

FX(x) := µX(]−∞, x]).

When applying the cumulative distribution functions FX to the outcomes X of a
system, we do not lose any essential information about the system, according to the
following lemma. This lemma is a simple modification of Lemma A.3 in [6].

Lemma 1. Let (Ω, A , µ) be a probability space, X : Ω→ R be a random variable and g : R→ R
be a B −B measurable function which maps Borel sets to Borel sets and satisfies the following
property:

For all x ∈ R it holds µ(X−1(g−1(g(]−∞, x])) \ ]−∞, x])) = 0 (11)

Then, σ(g ◦ X) =µ σ(X). In particular, σ(g ◦ X) =µ σ(X) if g = FX or g is injective on X(Ω).

Condition (11) in the above Lemma is a slightly weaker condition on g than injec-
tivity. If g is injective, then g−1(g(] − ∞, x])) =] − ∞, x] will hold true for all x ∈ R
and condition (11) will be satisfied. More general, condition (11) can still be true if g is
not necessarily injective but if all sets on which g is not injective, which are given by
X−1(g−1(g(]−∞, x])) \ ]−∞, x]) for all x ∈ R, have measure 0. For example, this is true
if g is equal to the cumulative distribution function.

4.1. On the Boundary of R

The condition (8) in Theorem 1, that the boundary of R apart from countably many
points has measure 0, holds true for all “simple” sets R. In the following lemma, we specify
what we mean by “simple”.

Lemma 2. Let (Ω, A , µ) be a probability space, (X1, X2, . . . , Xd) be a random vector and R ∈
B(R2). If, for all i ∈ {1, 2, . . . , d}:

∂R ∩ ({x} ×R) is countable for µXi -almost all x ∈ R
or ∂R ∩ (R× {y}) is countable for µXi -almost all y ∈ R,

then R satisfies (8), i.e., there exists a countable set C ⊆ R2 with:

µ2
Xi
(∂R \ C) = 0 for all i ∈ {1, 2, . . . , d}.
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Proof. Consider the sets:
Ai := {x ∈ R | µXi ({x}) > 0}

for i ∈ {1, 2, . . . , d}, which, obviously, are countable. Set:

C :=
d⋃

i=1

Ai × Ai.

Let i ∈ {1, 2, . . . , d}. If {y ∈ R | (x, y) ∈ ∂R} is countable for µXi -almost all x ∈ R, Fubini’s
theorem implies:

µ2
Xi
(∂R \ C) =

∫ ∫
1∂R\C(x, y)dµXi (y)dµXi (x)

=
∫

µXi ({y ∈ R | (x, y) ∈ ∂R \ C})dµXi (x)

=
∫

∑
y∈R:

(x,y)∈∂R\C

µXi ({y})dµXi (x)

=
∫

0 dµXi (x) = 0.

Analogously, one can show the same if {x ∈ R | (x, y) ∈ ∂R} is countable for µXi -almost
all y ∈ R.

Remark 2. The patterns visualized in Figure 1 could also be defined on the whole real axis instead
of a bounded interval by, for example, applying the transformation ϕ(x) = tan(π(x − 1/2)).
Then, R̃ = (ϕ× ϕ)(R) is a pattern defined on R2 if R is defined on [0, 1[2.

In the following three subsections, Y is assumed to be constant, and hence can be
omitted.

4.2. Basic Ordinal Patterns

If:
R = {(x, y) ∈ R2 | x ≥ y}

(see Figure 1a), then f R
Xi

is just the distribution function of µXi , i.e., f R
Xi

= FXi . Since
∂R ∩ {x} ×R = {(x, x)} is finite for all x ∈ R, (8) holds true by Lemma 2. According to
Lemma 1, one has:

σ(Xi ◦ Tt) ⊆µ σ(FXi ◦ Xi ◦ Tt) (12)

for all t ∈ N0 and i = 1, 2, . . . , n. Therefore:

A =µ σ
(
( f R

Xi
◦ Xi ◦ Tt) | t ∈ N0, i ∈ {1, 2, . . . , d}

)
= σ

(
(FXi ◦ Xi ◦ Tt) | t ∈ N0, i ∈ {1, 2, . . . , d}

)
(13)

is equivalent to:
A =µ σ

(
(Xi ◦ Tt) | t ∈ N0, i ∈ {1, 2, . . . , d}

)
. (14)

By Theorem 1, for ergodic systems, condition (14) implies (10). A more general statement
also includes a large class of non-ergodic systems which was shown in [4]. Condition (14)
is, for example, satisfied if Ω ∈ B(Rd) and Xi is the projection on the i-th coordinate
for all i ∈ {1, 2, . . . , d}, or if Ω is a compact Hausdorff space and X = (X1, X2, . . . , Xd) is
injective and continuous. One can also use Taken’s theorem to argue that the set of maps
X : Ω→ Rd that satisfy (14) is large in a certain topological sense. For both, see Keller [8].
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4.3. Patterns Defined by “Injective” Functions

Let X = (X1, X2, . . . , Xd) be a random vector and consider now:

R = {(x, y) ∈ R | g(x) ≥ y} (15)

for a B −B measurable function g : R → R (see Figure 1b). Since ∂R ∩ ({x} × R) =
{(x, g(x))} is finite for all x ∈ R, (8) holds true by Lemma 2. Moreover, one easily sees that
f R
Xi

= FXi ◦ g.
Now, suppose that:

σ(FXi ) ⊆ σ(FXi ◦ g) (16)

holds true for all i ∈ {1, 2, . . . , d}. This directly yields:

σ(FXi ◦ Xi ◦ Tt) ⊆ σ(FXi ◦ g ◦ Xi ◦ Tt)

for all i ∈ {1, 2, . . . , d} and t ∈ N. Remember that σ(Xi ◦ Tt) ⊆µ σ(FXi ◦ Xi ◦ Tt) holds true
according to Lemma 1. Thus, (14) and (16) imply (10). When considering basic ordinal
patterns in Section 4.2, we stated some conditions under which (14) holds true. It remains
to consider when (16) is satisfied.

Assume that g maps Borel sets to Borel sets and is injective. This implies:

σ(g ◦ Xi ◦ Tt) = σ(Xi ◦ Tt)

for all t ∈ N0 and i ∈ {1, 2, . . . , d}. Now, suppose that:

A = σ
(

FXi ◦ Xi ◦ Tt | t ∈ N0, i ∈ {1, 2, . . . , d}
)
.

holds true. This would then imply (16). However, the above equation only holds true
µ-almost surely (see (13)). This can be a problem when applying the function g because
there could exist sets B ∈ B with µXi (B) = 0 but µXi (g(B)) > 0. Additionally, we therefore
need to require that µXi (g−1(B)) = 0 implies µXi (B) = 0 for all B ∈ B.

Theorem 1 then provides the following statement:

Corollary 1. Let (Ω, A , µ, T) be an ergodic measure-preserving dynamical system,
X = (X1, X2, . . . , Xd) : Ω → Rd be a random vector and (En)n∈N be a timing. Let further
g : R → R be a B −B measurable function which maps Borel sets to Borel sets, is injective on
Xi(Ω) and satisfies µXi (g−1(B)) = 0 ⇒ µXi (B) = 0 for all B ∈ B and i ∈ {1, 2, . . . , d}. Let
R = {(x, y) ∈ R2 | g(x) ≥ y}.

Then, (14) implies (10). Moreover, (10) holds true if Ω ∈ B(Rd) and Xi is the projec-
tion on the i-th coordinate for all i ∈ {1, 2, . . . , d} or if Ω is a compact Hausdorff space and
X = (X1, X2, . . . , Xd) is injective and continuous.

Note that the statements in Corollary 1, in principle, were shown in [6]. The case of
basic ordinal patterns is included by g(x) = x for all x ∈ R.

4.4. Patterns Defined by “Surjective” Functions

Swapping coordinates in (15) yields the set:

R = {(x, y) ∈ R | x < g(y)}

(see Figure 1c) with (8) following from Lemma 2 and with:

f R
Xi
(x) = µ({ω ∈ Ω | (x, Xi(ω)) ∈ R}) = µ({ω ∈ Ω | x < g(Xi(ω))})

= µ({ω ∈ Ω | g(Xi(ω)) ∈ ]x, ∞[}) = 1− Fg◦Xi (x).
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Corollary 2. Let (Ω, A , µ, T) be an ergodic measure-preserving dynamical system,
X = (X1, X2, . . . , Xd) : Ω → Rd be a random vector and (En)n∈N be a timing. Let further
g : R → R be a B −B measurable function and let R = {(x, y) ∈ R2 | x < g(y)}. Then, the
following holds:

(i) If Fg◦Xi is injective on Xi(Ω) for i ∈ {1, 2, . . . , d}, (14) implies (10).
(ii) If Ω ∈ B(Rd) and Xi is the projection on the i-th coordinate for all i ∈ {1, 2, . . . , d} or if Ω is

a compact Hausdorff space and X = (X1, X2, . . . , Xd) is injective and continuous, if further
µ(U) > 0 for every non-empty open set U ⊆ Ω, g is continuous and Xi(Ω) ⊆ g(Xi(Ω)),
then (10) is valid in each of the following two cases:

(1) For each i ∈ {1, 2, . . . , d} and all x1, x2 ∈ Xi(Ω) with x1 < x2, there exists some
y ∈ Xi(Ω) with x1 < y < x2,

(2) Ω is connected.

Proof. (i): If the above assumptions are satisfied and Fg◦Xi is injective on Xi(Ω) for all
i ∈ {1, 2, . . . , d}, then by Lemma 1 it holds that σ(Xi ◦ Tt) ⊆µ σ(Fg◦Xi ◦ Xi ◦ Tt) for all
t ∈ N0 and i ∈ {1, 2, . . . , d}. This implies (9), hence, by Theorem 1 the statement (10).

(ii): Given the assumptions of (ii), we have to show that Fg◦Xi is injective on Xi(Ω)
for all i ∈ {1, 2, . . . , d}. If Ω is connected, then (1) is obviously satisfied. We can thus start
from (1). Take x1, x2 ∈ Xi(Ω) with x1 < x2. Then, g−1(]x1, x2[) is non-empty and because
g ◦ Xi is continuous, X−1

i (g−1(]x1, x2])) contains a non-empty open set. This implies that
Fg◦Xi (x1) < Fg◦Xi (x2). because every non-empty open set was assumed to have a strictly
positive measure.

Notice that, unlike in (15), it is not necessary that g is one-to-one.

4.5. Piecewise Patterns

The previous subsection illustrates that (9) is fulfilled if, roughly speaking,
(X1, X2, . . . , Xd) preserves all information and if f R

Xi
is a µXi almost surely invertible func-

tion for all i ∈ {1, 2, . . . , d}. The finite-valued random variable Y in (9) can be used to
weaken the condition of invertibility in the sense that only piecewise invertibility is needed
where the different pieces are induced by the random variable Y.

For Ω = [0, 1[ and an absolutely continuous measure µ, one could, for example, con-
sider:

Rcircles = {(x, y) ∈ Ω2 | ‖(kx mod 1, ky mod 1)− (0.5, 0.5)‖2 ≤ 0.5} (17)

for any k ∈ N, as shown for k = 5 in Figure 1d. The set R satisfies condition (9) with
Y(ω) = i for ω ∈ [(i− 1)/(2k), i/(2k)[ and i ∈ {1, 2, . . . , 2k}. The set R is a pattern with k2

circles of diameter 1/k distributed in [0, 1]2 on a square grid.

4.6. A Remark on the Work of Amigó et al.

Consider the discriminating relation:

Rk = {(x, y) ∈ R2 | dk · xe ≥ dk · ye}

shown in Figure 3 for k ∈ N. Assume for simplicity that the dynamical system is defined
on Ω = [0, 1[ and that X is the identity map id. It is easy to see that:

σ

(
n∨

t=0
T−t(Pk) | n ∈ N

)
=µ σ

(
f Rk
id ◦ Tt | t ∈ N0

)
holds true, where Pk := {[(i− 1)/k, i/k[}k

i=1. Therefore, (9) in Theorem 1 holds true if Pk
is a generating partition.
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Figure 3. Rk := {(x, y) ∈ R2 | bk · xc ≥ bk · yc} for k = 8 (left side) and k = 16 (right side), only
shown in [0.1]2

Additionally, one could consider the quantity:

lim
k→∞

lim inf
n→∞

1
n

H

(
n−1∨
s=0

n−1∨
t=s+1

(Ts, Tt)−1({Rk,R2 \ Rk})
)

(18)

which was introduced by Amigó et. al. [9]. They used finite-valued random variables
to quantize the dynamical system into k parts and considered the ordinal patterns of the
quantized systems while we directly apply the quantization to the discriminating relation.
Both approaches only differ in their notation. They showed in their paper that the limit
in (18) is equal to the Kolmogorov–Sinai entropy.

5. Proof of the Main Statement

We first recall some definitions and statements related to partitions and the conditional
entropy. For two partitions P ,Q ⊂ A of Ω, the conditional entropy is defined as

H(P|Q) := H(P ∨Q)− H(Q).

Roughly speaking, the conditional entropy H(P|Q) describes how much uncertainty is
left in the outcomes described by the sets given in P if one already has information about
the outcomes described by the sets given in Q. For example, if P = Q, then H(P|Q) = 0.
However, if P and Q are independent, meaning that µ(P ∩Q) = µ(P) · µ(Q) for all P ∈ P
and Q ∈ Q, and H(P|Q) = H(Q).

Without explicitly referencing them, we will use the following properties of the
conditional entropy:

(i) H(T−1(P)|T−1(Q)) = H(P|Q),
(ii) H(

∨n
i=1 Pi|Q) ≤ ∑n

i=1 H(Pi|Q),
(iii) H(P|Q1 ∨Q2) ≤ H(P|Q1).

See, for examples, [7] for proofs.
A sequence of partitions (Pi)i∈N in A of Ω is said to be generating (the σ-algebra A ),

if σ(Pi) ⊆ σ(Pi+1) for all i ∈ N and:

σ(Pi | i ∈ N) =µ A

holds true. As a consequence of this property:

lim
n→∞

H(P | Pn) = 0 (19)
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holds true for all partitions P ⊂ A of Ω. Using the properties of the conditional entropy
implies:

h(T) = lim
n→∞

h(T,Pn).

For N ∈ N:

UN =
{[

(i− 1)/2N , i/2N
[
| i ∈ {1, 2, . . . , 2N − 1}

}
∪
{[

(2N − 1)/2N , 1
]}

will denote the partition of [0, 1] in 2N equally sized intervals.
We start the proof of Theorem 1 with two basic lemmata.

Lemma 3. Let (Ω, A , µ, T) be a measure-preserving dynamical system, X = (X1, X2, . . . , Xd)
be a random vector and Y be a random variable satisfying (9). Then, there exists some constant
c ∈ R with:

h(Tm) ≤ lim
N→∞

h

(
Tm,

d∨
i=1

m−1∨
t=0

T−t
(

X−1
i

(
f−1
Xi

(UN)
)))

+ c.

for all m ∈ N.

Proof. Fix m ∈ N. Set:
M :=

{
Y−1(y) | y ∈ Y(Ω)

}
Since Y was assumed to attain only a finite number of different values, M is a finite
partition of Ω. Because the Borel σ-algebra of [0, 1] is generated by the partitions UN and
due to (9), we have:

A =µ σ
(
( fXi ◦ Xi ◦ Tt, Y) | t ∈ N0, i ∈ {1, 2, . . . , d}

)
= σ

(
T−t

(
X−1

i

(
f−1
Xi

(UN)
))
∨M | N ∈ N, t ∈ N0, i ∈ {1, 2, . . . , d}

)
.

Thus, for any ε > 0 and any finite partition P ⊂ A of Ω, there exists an Nε ∈ N and a
tε ∈ N with:

h(Tm,P) ≤ h

(
Tm,

d∨
i=1

tε−1∨
t=0

T−t
(

X−1
i

(
f−1
Xi

(UN)
))
∨M

)
+ ε

≤ h

(
Tm,

d∨
i=1

tε−1∨
t=0

T−t
(

X−1
i

(
f−1
Xi

(UN)
)))

+ h(Tm,M) + ε

≤ h

(
Tm,

d∨
i=1

tε−1∨
t=0

T−t
(

X−1
i

(
f−1
Xi

(UN)
)))

+ H(M) + ε

≤ h

(
Tm,

d∨
i=1

m−1∨
t=0

T−t
(

X−1
i

(
f−1
Xi

(UN)
)))

+ H(M) + ε

for all N ≥ Nε. Hence:

h(Tm,P) ≤ lim
N→∞

h

(
Tm,

d∨
i=1

m−1∨
t=0

T−t
(

X−1
i

(
f−1
Xi

(UN)
)))

+ H(M) + ε

for any ε > 0, which implies:

h(Tm) = sup
P

h(Tm,P)

≤ lim
N→∞

h

(
Tm,

d∨
i=1

m−1∨
t=0

T−t
(

X−1
i

(
f−1
Xi

(UN)
)))

+ H(M).
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Lemma 4. Let (Ω, A , µ) be a probability space, X : Ω → R be a random variable and A, B ∈
B(R2). Then: ∫ ∣∣∣ f A

X − f B
X

∣∣∣dµX ≤ µ2
X(A4B)

holds true.

Proof. For all x ∈ R:

µ({ω ∈ Ω | (x, X(ω)) ∈ A∆B})
= µ({ω ∈ Ω | (x, X(ω)) ∈ A \ B}) + µ({ω ∈ Ω | (x, X(ω)) ∈ B \ A})
≥ µ({ω ∈ Ω | (x, X(ω)) ∈ A \ B})
≥ µ({ω ∈ Ω | (x, X(ω)) ∈ A})− µ({ω ∈ Ω | (x, X(ω)) ∈ B})
= f A

X (x)− f B
X(x)

holds true. Analogously, one can show:

µ({ω ∈ Ω | (x, X(ω)) ∈ A∆B}) ≥ f B
X(x)− f A

X (x).

This implies:
µ({ω ∈ Ω | (x, X(ω)) ∈ A∆B}) ≥

∣∣∣ f A
X (x)− f B

X(x)
∣∣∣

and, by Fubini’s theorem:∫ ∣∣∣ f A
X − f B

X

∣∣∣dµX(x)

≤
∫

µ({ω ∈ Ω | (x, X(ω)) ∈ A∆B})dµX(x)

=
∫ ∫

1{ω∈Ω|(x,X(ω))∈A∆B}(ω
′)dµ(ω′)dµX(x)

=
∫ ∫

1{y∈R|(x,y)∈A∆B}(y
′)dµX(y′)dµX(x)

=
∫
R2

1A∆B(x, y′)dµ2
X(x, y′)

= µ2
X(A∆B).

Therefore, in particular, the above lemma implies that, if (Rj)j∈N is a sequence of sets

in B(R2) with limj→∞ µ2
X(Rj4R) = 0, then f

Rj
X converges to f R

X in L1 for j→ ∞.
Given R ⊆ R2 and a random variable X : Ω → R, consider the function f R

X,n :
Ω×R→ [0, 1] with:

f R
X,n(x, ω) :=

1
n

#{t ∈ {1, 2, . . . , n} | (x, X(Tt(ω))) ∈ R}.

We want to show that f R
X,n(x, ω) converges to f R

X (x) for all x ∈ R and µ-almost all ω ∈ Ω.
If f R

X,n(x, ω) is monotone in x for all ω ∈ Ω and n ∈ N, this can be shown relatively easily
using the pointwise ergodic theorem and the monotonicity of the considered functions.
Monotonicity is guaranteed, if x1 ≤ x2 implies:

{y ∈ R | (x1, y) ∈ R} ⊆ {y ∈ R | (x2, y) ∈ R}.

For example, if R = {(x, y) ∈ R2 | x > y}, the above implication holds true. For this
special case, a proof of the statement in Lemma 5 can be found in [4].

However, we are interested in general sets R ∈ B(R2) and therefore, cannot use the
monotonicity. Therefore, we have to prove this statement differently.
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Lemma 5. Let (Ω, A , µ, T) be an ergodic measure-preserving dynamical system,
X = (X1, X2, . . . , Xd) be a random vector and R ∈ B(R2) satisfy (8). Then, for all i ∈
{1, 2, . . . , d}, there exist sets Ω̃ ∈ A and B ∈ B(R) with µ(Ω̃) = µXi (B) = 1 satisfying:

lim
n→∞

f R
Xi ,n(x, ω) = f R

Xi
(x)

for all ω ∈ Ω̃ and x ∈ B.

Proof. Fix i ∈ {1, 2, . . . , d}. According to (8), there exists a countable set
C = {(ak, bk) | k ∈ N} with:

µ2
Xi
(∂R \ C) = 0.

By the pointwise ergodic theorem (see, e.g., [10]), for all j, k ∈ N, there exists Ω∗j,k ∈ A with
µ(Ω∗j,k) = 1 and:

lim
n→∞

f {(ak ,bk)}
Xi ,n

(aj, ω) = f {(ak ,bk)}
Xi

(aj)

for all ω ∈ Ω∗j,k. It is easy to see that:

f {(ak ,bk)}
Xi ,n

(x, ω) = 0 = f {(ak ,bk)}
Xi

(x)

holds true for all n ∈ N and ω ∈ Ω if x 6= ak. Hence:

lim
n→∞

f {(ak ,bk)}
Xi ,n

(x, ω) = f {(ak ,bk)}
Xi

(x) (20)

for all x ∈ R and ω ∈ ⋂∞
j=1 Ω∗j,k. Using Fatou’s lemma and the fact that C is countable

implies:

lim inf
n→∞

f R∩C
Xi ,n (x, ω) = lim inf

n→∞ ∑
k∈N:

(ak ,bk)∈R

f {(ak ,bk)}
Xi ,n

(x, ω)

≥ ∑
k∈N:

(ak ,bk)∈R

lim inf
n→∞

f {(ak ,bk)}
Xi ,n

(x, ω)

(20)
= ∑

k∈N:
(ak ,bk)∈R

f {(ak ,bk)}
Xi

(x) = f R∩C
Xi

(x) (21)

for all x ∈ R and ω ∈ ⋂∞
j=1

⋂∞
k=1 Ω∗j,k. We will use this fact later.

Since R \ ∂R is open, there exists a countable collection of pairwise disjoint rectangles
Aj ⊆ R2 with:

R \ ∂R =
∞⋃

j=1

Aj. (22)

Take (xj, yj) ∈ Aj for all j ∈ N. Using the pointwise ergodic theorem, for all j ∈ N there
exists a set Ωj ∈ A with µ(Ωj) = 1 and:

lim
n→∞

f
Aj
Xi ,n

(xj, ω) = f
Aj
Xi
(xj) (23)

for all ω ∈ Ωj. Because Aj is a rectangle, for all ω ∈ Ω:

f
Aj
Xi ,n

(x, ω) = f
Aj
Xi ,n

(xj, ω)

and f
Aj
Xi
(x) = f

Aj
Xi
(xj)
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holds true for all x ∈ R with {x} ×R∩ Ai 6= ∅ and:

f
Aj
Xi ,n

(x, ω) = f
Aj
Xi
(x) = 0

holds true for all x ∈ R with R× {x} ∩ Ai = ∅. Together with (23), this implies:

lim
n→∞

f
Aj\C
Xi ,n

(x, ω) = f
Aj\C
Xi

(x) (24)

for all x ∈ R and ω ∈ Ωj.

Set RJ :=
⋃J

j=1 Aj. Lemma 4 provides:

lim
J→∞

∫ ∣∣∣ f RJ\C
Xi

(x)− f R\C
Xi

(x)
∣∣∣dµX(x)

= lim
J→∞

µ2
Xi
((RJ \ C)4(R \ C))

= lim
J→∞

µ2
Xi
((R \ C) \ (RJ \ C))

= lim
J→∞

µ2
Xi
(R \ (RJ ∪ C))

= lim
J→∞

µ2
Xi
(((R ∩ ∂R) ∪ (R \ ∂R)) \ (RJ ∪ C))

= lim
J→∞

µ2
Xi
((R ∩ ∂R) \ (RJ ∪ C)) + µ2

Xi
((R \ ∂R) \ (RJ ∪ C))

≤ lim
J→∞

µ2
Xi
(∂R \ C) + µ2

Xi
((R \ ∂R) \ RJ)

(8)
= lim

J→∞
µ2

Xi
((R \ ∂R) \ RJ)

(22)
= µ2

Xi
((R \ ∂R) \ (R \ ∂R)) = 0.

Therefore, there exists a set B1 with µXi (B1) = 1 and a sequence (Jk)k∈N with:

lim
k→∞

f
RJk
\C

Xi
(x) = f R\C

Xi
(x) (25)

for all x ∈ B1. Thus:

lim inf
n→∞

f R
Xi ,n(x, ω) ≥ lim inf

n→∞
f R∩C
Xi ,n (x, ω) + lim inf

n→∞
f R\C
Xi ,n

(x, ω)

(21)
≥ f R∩C

Xi
(x) + lim inf

n→∞
f

RJk
\C

Xi ,n
(x, ω)

≥ f R∩C
Xi

(x) + lim
k→∞

lim inf
n→∞

f
RJk
\C

Xi ,n
(x, ω)

= f R∩C
Xi

(x) + lim
k→∞

lim inf
n→∞

Jk

∑
j=1

f
Aj\C
Xi ,n

(x, ω)

≥ f R∩C
Xi

(x) + lim
k→∞

Jk

∑
j=1

lim inf
n→∞

f
Aj\C
Xi ,n

(x, ω)

(24)
= f R∩C

Xi
(x) + lim

k→∞

Jk

∑
j=1

f
Aj\C
Xi

(x)

= f R∩C
Xi

(x) + lim
k→∞

f
RJk
\C

Xi
(x)

(25)
= f R∩C

Xi
(x) + f R\C

Xi
(x)

= f R
Xi
(x)
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for all x ∈ B1 and ω ∈ Ω̃1 :=
⋂∞

j=1
⋂∞

k=1 Ωj ∩Ω∗j,k. Because Rc \ ∂R is open as well, one can

analogously show that there exist sets Ω̃2 ∈ A and B2 ∈ B(R) with µ(Ω̃2) = µXi (B2) = 1
and:

lim inf
n→∞

f Rc

Xi ,n(x, ω) ≥ f Rc

Xi
(x)

for all x ∈ B2 and ω ∈ Ω̃2. This implies:

lim sup
n→∞

f R
Xi ,n(x, ω) = 1− lim inf

n→∞
f Rc

Xi ,n(x, ω) ≤ 1− f Rc

Xi
(x) = f R

Xi
(x).

Hence:
f R
Xi
(x) ≤ lim inf

n→∞
f R
Xi ,n(x, ω) ≤ lim sup

n→∞
f R
Xi ,n(x, ω) ≤ f R

Xi
(x) (26)

for all x ∈ B := B1 ∩ B2 and ω ∈ Ω̃ := Ω̃1 ∩ Ω̃2.

Given a random vector (X1, X2, . . . , Xd) and R ∈ B(R2), we define the partition:

Ri := (Xi, Xi)
−1({R, Rc})

for all i ∈ {1, 2, . . . , d}, which is equal to:

Ri = {{(ω1, ω2) ∈ Ω2 | (Xi(ω1), Xi(ω2)) ∈ R},
{(ω1, ω2) ∈ Ω2 | (Xi(ω1), Xi(ω2)) /∈ R}}.

Lemma 1. Let (Ω, A , µ, T) be an ergodic measure-preserving dynamical system,
X = (X1, X2, . . . , Xd) : Ω → Rd be a random vector, (En)n∈N be a timing and R ∈ B(R2)
satisfying (8). Then, there exists a sequence (nk)k∈N ⊆ NN

0 with:

lim
k→∞

H

T−nk
(
( fXi ◦ Xi)

−1(UN)
)∣∣∣∣∣∣

nk∨
v=0

T−v

 ∨
(s,t)∈Ek

(Ts, Tt)−1(Ri)

 = 0

for all N ∈ N and i ∈ {1, 2, . . . , d}.

Proof. Because (En)n∈N is a timing, there exist a sequence (an)n∈N ∈ NN
0 with:

lim sup
N→∞

#{n ∈ {1, 2, . . . , N} | (an, an + n) ∈ ⋃∞
k=1 Ek}

N
= 1.

So one can find a strictly increasing sequence (Nn)n∈N ∈ NN with:

(aNn , aNn + Nn) ∈
∞⋃

k=1

Ek

for all n ∈ N and:
lim sup

n→∞

n
Nn

= 1. (27)

Now, fix i ∈ {1, 2, . . . , d}. According to Lemma 5, there exist sets Ω̃ ∈ A and B ∈ B(R)
with µ(Ω̃) = µXi (B) = 1 satisfying:

lim
n→∞

f R
Xi ,n(ω, x) = f R

Xi
(x)

for all ω ∈ Ω̃ and x ∈ B. Set
Ω0 := Ω̃ ∩ X−1

i (B).
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Consider the function φn : Ω→ [0, 1] with:

φn(ω) :=
1

Nn
#{t ∈ {N1, N2, . . . , Nn} | (Xi(Tt(ω)), Xi(ω)) ∈ R}.

Then:

f R
Xi
(Xi(ω))

= lim
n→∞

f R
Xi ,n(ω, Xi(ω))

= lim sup
n→∞

f R
Xi ,Nn

(ω, Xi(ω))

≥ lim sup
n→∞

φn(ω)

= lim sup
n→∞

[
f R
Xi ,Nn

(ω, Xi(ω))

− 1
Nn

#{t ∈ {1, 2, . . . , Nn} \ {N1, N2, . . . , Nn} | (Xi(Tt(ω)), Xi(ω)) ∈ R}
]

≥ lim sup
n→∞

[
f R
Xi ,Nn

(ω, Xi(ω))− 1
Nn

#{1, 2, . . . , Nn} \ {N1, N2, . . . , Nn}
]

= lim sup
n→∞

[
f R
Xi ,Nn

(ω, Xi(ω))− Nn − n
Nn

]
= lim

n→∞
f R
Xi ,Nn

(ω, Xi(ω))− 1 + lim sup
n→∞

n
Nn

(27)
= f R

Xi
(Xi(ω)) (28)

for all ω ∈ Ω0.
It is easy to see that:

σ(φn) ⊆ σ

(
k∨

t=1

(
id, TNt

)−1
(Ri) | k ∈ N

)

holds true for all n ∈ N. This implies (see for instance [11], Theorem 13.4 (i)):

σ
(

f R
Xi
◦ Xi

) (28)
=µ σ

(
lim sup

n→∞
φn

)
⊆ σ

(
k∨

t=1

(
id, TNt

)−1
(Ri) | k ∈ N

)
.

Therefore
∨k

t=1
(
id, TNt

)−1
(Ri) is a sequence of partitions generating σ

(
f R
Xi
◦ Xi

)
. By (19),

this implies:

lim
k→∞

H

(
( fXi ◦ Xi)

−1(UN)

∣∣∣∣∣ k∨
t=1

(
id, TNt

)−1
(Ri)

)
= 0 (29)

for all N ∈ N. Set:
nk := max

1≤n≤k
aNn .

Notice that:

σ

(
T−nk

(
k∨

t=1

(
id, TNt

)−1
(Ri)

))
⊆ σ

 nk∨
v=0

T−v

 ∨
(s,t)∈Ek

(Ts, Tt)−1(Ri)
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holds true for all k ∈ N. Consequently:

lim
k→∞

H

T−nk
(
( fXi ◦ Xi)

−1(UN)
)∣∣∣∣∣∣

nk∨
v=0

T−v

 ∨
(s,t)∈Ek

(Ts, Tt)−1(Ri)


≤ lim

k→∞
H

(
T−nk

(
( fXi ◦ Xi)

−1(UN)
)∣∣∣∣∣T−nk

(
k∨

t=1

(
id, TNt

)−1
(Ri)

))

= lim
k→∞

H

(
( fXi ◦ Xi)

−1(UN)

∣∣∣∣∣ k∨
t=1

(
id, TNt

)−1
(Ri)

)
(29)
= 0

for all N ∈ N.

We can now finalize the proof of Theorem 1.

Proof of Theorem 1. Let N ∈ N and m ∈ N. Set:

P i
N := X−1

i

(
f−1
Xi

(UN)
)

and:
Qi

k :=
∨

(s,t)∈Ek

(Ts, Tt)−1(Ri)

for all i ∈ {1, 2, . . . , d} and k ∈ N. According to Lemma 1, there exists a sequence (nk)k∈N ⊆
NN

0 with:

lim
k→∞

H

(
T−nk

(
P i

N

)∣∣∣∣∣
nk∨

v=0
T−v

(
Qi

k

))
= 0 (30)

for all i ∈ {1, 2, . . . , d}. We have:

lim
n→∞

1
n

H

(
d∨

i=1

nm−1∨
u=0

T−u
(
P i

N

)∣∣∣∣∣ d∨
i=1

nm−1∨
u=0

T−u
(
Qi

k

))

≤
d

∑
i=1

lim
n→∞

1
n

H

(
nm−1∨
u=0

T−u
(
P i

N

)∣∣∣∣∣nm−1∨
u=0

T−u
(
Qi

k

))

=
d

∑
i=1

lim
n→∞

1
n

H

(nm−1−nk∨
u=0

T−u
(

T−nk
(
P i

N

))∣∣∣∣∣
nm−1−nk∨

u=0
T−u

( nk∨
v=0

T−v
(
Qi

k

)))

≤
d

∑
i=1

lim
n→∞

1
n

nm−1−nk

∑
u=0

H

(
T−u

(
T−nk

(
P i

N

))∣∣∣∣∣
nk∨

v=0
T−v

(
Qi

k

))

=
d

∑
i=1

lim
n→∞

nm− 1− nk
n

H

(
T−nk

(
P i

N

)∣∣∣∣∣
nk∨

v=0
T−v

(
Qi

k

))

≤
d

∑
i=1

m · H
(

T−nk
(
P i

N

)∣∣∣∣∣
nk∨

v=0
T−v

(
Qi

k

))
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for all k, m, N ∈ N. This implies:

h

(
Tm,

d∨
i=1

m−1∨
u=0

T−u
(
P i

N

))
− lim

k→∞
h

(
Tm,

d∨
i=1

m−1∨
u=0

T−u
(
Qi

k

))

≤ lim
k→∞

lim
n→∞

1
n

H

(
d∨

i=1

nm−1∨
u=0

T−u
(
P i

N

)∣∣∣∣∣ d∨
i=1

nm−1∨
u=0

T−u
(
Qi

k

))

≤ lim
k→∞

d

∑
i=1

m · H
(

T−nk
(
P i

N

)∣∣∣∣∣
nk∨

v=0
T−v

(
Qi

k

)) (30)
= 0.

Using Lemma 3, we can conclude that there exists a constant c ∈ R with:

h(Tm) ≤ lim
k→∞

h

Tm,
d∨

i=1

m−1∨
u=0

T−u

 ∨
(s,t)∈Ek

(Ts, Tt)−1(Ri)

+ c

= lim
k→∞

m · h

T,
d∨

i=1

∨
(s,t)∈Ek

(Ts, Tt)−1(Ri)

+ c

for all m ∈ N. Thus:

h(T)− lim
k→∞

h

T,
d∨

i=1

∨
(s,t)∈Ek

(Ts, Tt)−1(Ri)


= lim

m→∞

1
m
· h(Tm)− lim

k→∞
h

T,
d∨

i=1

∨
(s,t)∈Ek

(Ts, Tt)−1(Ri)


≤ lim

m→∞

1
m
· c = 0,

which is equivalent to:

h(T) ≤ lim
k→∞

h

T,
d∨

i=1

∨
(s,t)∈Ek

(Ts, Tt)−1(Ri)

. (31)

On the other hand:

h(T) = sup
P

h(T, P) ≥ lim
k→∞

h

T,
d∨

i=1

∨
(s,t)∈Ek

(Ts, Tt)−1(Ri)

,

which, together with (31), finishes the proof.

6. Conclusions

We discussed a special “two-dimensional” approach to symbolic dynamics differing
from many usual approaches which was introduced in [6]. From the practical viewpoint,
the difference can be illustrated as follows: given the time-dependent measurements of a
real-valued quantity, a symbolization is not conducted for the measurements themselves
as in usual approaches, but for pairs of measurements at two different times. This means
that to each pair of possible measured values, a symbol from a finite symbol set is assigned.
Here, we only considered two symbols which lead to a partitioning of the two-dimensional
real space R2 into a set R and its complement R2 \ R. In usual approaches, partitions of R
are considered. (Advantages of the “two-dimensional” approach are described in [6]).
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The set R, called a discriminating relation, was considered as a basic building block
for constructing partitions of the state space of a given dynamical system, having time-
dependent measurements of finitely many quantities in mind. In addition to the discrim-
ination relation, the second central concept was the concept of a timing which roughly
describes which pairs of times are included in the symbolization process and guarantees
that there are not too few such pairs. The central question of the paper was that of under
which conditions on a discriminating relation R the partitions constructed from R deter-
mine the KS entropy of a measure-preserving dynamical system. With Theorem 1, we gave
a relatively general statement partially answering this question. Some specifications of the
theorem in Section 4 illustrate the nature of “successful” discriminating relations.

Although the statement of Theorem 1 appears relatively natural when looking at
the proofs a little closer, we do not expect that all cases where the K-S entropy can be
constructed based on a discriminating relation is covered by the statement; however, we
have no counterexample. The main tool used in the proofs of the results is the pointwise
ergodic theorem. It allows to establish a connection between the generalized ordinal
patterns and the shape of the discriminating relation.

The results of this paper, being on a rather abstract level, give some insights as to why
the idea of ordinal patterns is working well, as reported by several applied papers, with
extracting those advantageous features being more general than in the original ordinal
approach. Having many choices for a discriminating relation, for practical purposes such
as, for example, in a classification context, one needs methods and criteria for finding
good discrimination relations, adapted to given data and problems. This is an important
challenge for further research related to the given approach to symbolic dynamics. A
further aspect is to discuss the approach for partitioning the R2 into more than two pieces.
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