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Abstract: The seismic data inversion from observations contaminated by spurious measures (outliers)
remains a significant challenge for the industrial and scientific communities. This difficulty is due to
slow processing work to mitigate the influence of the outliers. In this work, we introduce a robust
formulation to mitigate the influence of spurious measurements in the seismic inversion process. In
this regard, we put forth an outlier-resistant seismic inversion methodology for model estimation
based on the deformed Jackson Gaussian distribution. To demonstrate the effectiveness of our
proposal, we investigated a classic geophysical data-inverse problem in three different scenarios:
(i) in the first one, we analyzed the sensitivity of the seismic inversion to incorrect seismic sources;
(ii) in the second one, we considered a dataset polluted by Gaussian errors with different noise
intensities; and (iii) in the last one we considered a dataset contaminated by many outliers. The
results reveal that the deformed Jackson Gaussian outperforms the classical approach, which is based
on the standard Gaussian distribution.

Keywords: Jackson statistics; inverse problems; robust inference; post-stack seismic inversion;
deformed Gaussian distribution

1. Introduction

Subsoil characterization is a topic of great economic and scientific interest, since many
of its physical properties can be related to exploitable resources, such as hydrocarbons and
gold [1]. In this regard, seismic inversion plays a fundamental role through the determi-
nation of quantitative models composed of physical properties that can not be directly
observed [2]. Although direct measurements of subsurface physical properties are possible,
they usually are costly, and coverage is much smaller than the area of interest. On the other
hand, indirect measurements are cheaper and cover wider areas [3].

Inversion processes are required whenever the model’s parameters are inferred from
indirect measurements. In the forward model, we calculate the output based on the input
with a forward operator that maps each input to a single output [4]. In the inverse modeling,
we try to map the output of the forward operator to its input. In ideal conditions, this would
be obtained by the forward operator inversion, hence the name. However, in practice, this
is not possible due to several factors that transform the operator inversion in an ill-posed
problem [5]. For example, if we deal with a limited amount of data, there will be infinite
models that generate the same output. The same problem occurs when the observed data
posses any uncertainties.
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There are many inversion methods which mitigate these problems. Here they will be
classified into two groups: probabilistic and deterministic. Probabilistic methods try to
retrieve all the possible solutions from the inversion problem and assign probability scores
based on how likely they are. Consequently, this approach to the inversion results is an
ensemble of parameters models. An example of such methods is the Bayesian inversion,
which takes a prior parameter distribution, based on external knowledge, and infers
the model parameters’ likelihoods based on the forward operator. On the other hand,
deterministic methods return a single model for each set of data. The most common
deterministic methods search the model parameters which minimize a so-called cost
function of the discrepancies between the observed and modeled data (the residuals).
An example of a deterministic method is the least square minimization, which minimizes
the square of residuals.

There is a connection between the cost function minimization and probabilistic inver-
sion based on the forward operators. The model obtained by minimizing a cost function is
the most probable model of some likelihood function. Therefore, likelihood functions can
be used to construct cost functions that present desirable properties. If the observations
are formed in a way that the uncertainties are independent and identically distributed
(i.i.d.), by a standard Gaussian likelihood [3], the maximum likelihood inversion will be
equivalent to a least-squares residual minimization [4]. However, although complex sys-
tems that obey Gaussian statistics are quite common in nature, a wide variety of problems
exhibit non-Gaussian behaviors, and therefore, the conventional approach which estimates
physical parameters may result in biased model estimations [6]. In this way, non-Gaussian
criteria are important for a more robust inversion process [7].

In order to mitigate the effect of non-Gaussian errors, several robust formulations have
been proposed in the literature. Among them, we may mention the criteria based on heavy-
tailed probability functions, such as Student’s t and Cauchy–Lorentz distributions [8,9];
hybrid functions [10–12]; and generalized probability distributions, such as the deformed
Gaussian distributions in the context of Rényi [13–15], Tsallis [16–19], and Kaniadakis
statistics [20–22]. Very recently, a connection between Jackson, Tsallis, and Hausdorff
approaches in the context of generalized statistical mechanics was proposed [23]. Motivated
by this, a question that naturally arises is: may a deformed Jackson q-Gaussian be a better
approach to mitigate the effect of non-Gaussian errors?

In this work, we consider a classic seismic inverse problem named post-stack inversion
(PSI) [24], in which the main goal is the inference of the acoustic impedance (model param-
eters) from the stacked seismic signal [25]. We reformulate the PSI based on the assumption
that the residuals are i.i.d. according to a deformed Jackson q-Gaussian probability distri-
bution [26] in the context of Jackson statistics [23]. The deformed Jackson q-statistics are
based on the one-parameter generalization of the exponential function known as deformed
Jackson q-exponential. In this way, we employ the q-exponential function of the Jackson
framework proposed in [27,28] to derive a robust cost function. In order to introduce the
PSI based on the deformed Jackson q-Gaussian distribution (q-PSI), we organized the paper
as follows. In Section 2, we formulate the q-PSI from a probabilistic maximum-likelihood
viewpoint, in which the classic PSI is a particular case. Section 3 is devoted to describe like-
lihood based on the deformed Jackson q-statistics. In Section 4, we present the numerical
simulations to test the robustness of our proposal in a realistic geological model widely
used in geophysics. Finally, in Section 5, we discuss the advantages and disadvantages of
the q-PSI for overcoming outliers in measured data.

2. Post-Stack Seismic Inversion

In a seismic survey, a set of receivers are spread on the surface and along wellbores.
A source emits a pulse which is reflected and then recorded by those receivers. This primary
signal contains many undesirable features, such as secondary reflections. The seismic signal
is then processed to mitigate some undesirable effects, enhance the principal reflection,
and remove the secondary ones. After some data manipulations, migration, and stacking,
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we finally have the so-called post-stack signal, which consists of individual independent
seismic traces dobs

j (t), for each seismic receiver j. Here we will consider a 2D survey,
for which j = 0, 1, . . . , L receivers are spread in a line, each one separated by a fixed
distance ∆x.

In the Robinson convolution model, the post-stack seismic trace dj(t) is related to the
seismic reflectivity rj(t) by a convolution with a source wavelet w(t), which mathematically
can be expressed as [24]

dj(t) =
1
2

∫ ∞

−∞
w(τ)rj(t− τ)dτ. (1)

The seismic reflectivity can be calculated directly from the acoustic impedance zi(t) by
using rj(t) = [zj(t + δτ)− zj(t)]/[zj(t + δτ) + zj(t)], where δτ is a small time step. A good
approximation can be obtained from [25]

rj(t) =
1
2

d
dt
{ln
[
zj(t)

]
}. (2)

Since logarithm is an invertible function, we can invert mj(t) = lnzj(t) and recover the
impedance by zj(t) = exp[mj(t)].

In practice, physical parameters are measured in discrete time intervals ∆t; conse-
quently, the observed signal is defined only for the times dobs

j (i∆t) = dobs
ij . Due to this

limitation, we will consider only the discrete logarithmic seismic impedance, written as
a matrix m ∈ Rn×L. As a consequence, we can discretize the seismic impedance forward
operator as

d = WDm, (3)

where d ∈ R(n+m−2)×L is the modeled signal and W ∈ R(n+m−2)×(n−1) is the wavelet
convolution matrix defined as

W =



w1 0 . . . 0
... w1

... 0

wm
...

. . . 0

0 wm
... s1

...
...

. . .
...

0 . . . . . . wm


. (4)

Additionally, {w1, · · · , wm} ∈ Rm is the discretized seismic wavelet and D ∈ R(n−1)×n is
the first-order differential operator, given by

D =
1
2


−1 1 0 . . . 0
0 −1 1 . . . 0
...

...
. . . . . . 0

0 . . . . . . −1 1

. (5)

Finally, for the residuals ∆d ∈ R(n+m−2)×L, the discrepancy between the modeled and
observed data is expressed as ∆d = dobs − d(m).

3. Likelihood Based on Jackson Statistics

In the classic approach, PSI assumes that the residuals r and d are independent and
identically distributed (i.i.d.) by a standard Gaussian likelihood LG(m) expressed as [3]

LG(m) = ∏
i,j

1√
2π

exp

[
− 1

2

(
dobs

ij − dij(m)
)2
]

. (6)
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In the present work, we assume that the residuals obey a q-Gaussian likelihood, based on
the Jackson statistics, instead of the usual Gaussian distribution. In order to construct the
q-Gaussian, we consider Jackson’s q-exponential [27–29]

ex
q =

∞

∑
n=0

xn

[n]q!
, (7)

and the q-analogue function, which satisfy the property exp(x) exp(−x) = 1, so that
ex

q E−x
q = 1 [26]

Ex
q =

∞

∑
n=0

q
n(n−1)

2
xn

[n]q!
with ex

1 = exp(x), (8)

where q is a real number between 0 and 1 and [n]q is the so-called q-basic number defined
as [27–31]

[n]q =
qn − 1
q− 1

with [n]1 = n. (9)

In this way, the q-Gaussian distribution is defined as [26]

pq(x) = e−x
q E−x

q =
1

Zq

∞

∑
n=0

(−1)nqn(n+1)

(1 + q)n[n]q!
x2n, (10)

where 1/Zq is the normalization constant:

Zq = 2
√

1− q
∞

∑
n=0

qnE
q2(n+1)

q−1

q2 . (11)

Figure 1 shows the graphical representation of the q-Gaussian distribution Equation (10)
for some q-values, in which the standard Gaussian distribution (q → 1.0) is depicted by
the black curve. We notice that the standard normal distribution gives high probability
to residuals tightly distributed around zero (see the black curve in Figure 1). In contrast,
our proposal residuals far away from zero receive increased probability as the parameter
q decreases (see, for instance, the green curve in Figure 1), which is the characteristic of
robust statistical estimators [6]. It is worth emphasizing that the q-value indicates how
deviated the behavior of the probabilistic error distribution is from Gaussian behavior,
where q→ 1 indicates that the inversion process assumes Gaussian errors, and 0 < q < 1
indicates that the errors do not obey Gaussian statistics, but rather a behavior far from a
Gaussian distribution in the q→ 0 limit-case.

Figure 1. Probability plots of the q-Gaussian distribution Equation (10) for typical q-values, in which
the black curve represents the standard Gaussian distribution (q→ 1.0).
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Considering that the residuals are i.i.d. by Equation (10), the probability that a model
m is the soil model is given by the likelihood Lq(m), expressed as

Lq(m) = ∏
i,j

pq

(
dobs

ij − dij(m)
)

. (12)

It is worth emphasizing that the most probable model can be recovered by searching
the model which maximizes the likelihood. As mentioned before, instead of finding the
maximum of the likelihood, we can construct a cost function whose minimum coincides
with the likelihood maximum, and find this minimum instead. In this way, we can construct
a function that is easier to work numerically, which is given by

φq(m) = − ln
[
Lq(m)

]
= −∑

i,j
ln

[
∞

∑
n=0

(−1)nqn(n+1)

(1 + q)n[n]q!

(
dobs

ij − dij(m)
)2n
]
+ β(q), (13)

where β(q) is a constant that depends only on q. Since a logarithm is a monotonic func-
tion, its application does not shift the likelihood maxima and minima. Additionally, the
logarithm is a bijective function which ensures that no minimum is fused or split. The max-
imum of likelihood Lq(m) is equal to the minimum of the cost function φq(m). Therefore,
the most probably model m̃ can be expressed as the following optimization problem:

m̃ = argmin
m

φq(m). (14)

We notice that in the q → 1 classic limit case, the q-cost function, φq, retrieves the classic
cost function, which is based on the Gaussian distribution.

4. Numerical Results

In order to demonstrate the robustness of our proposal, we consider a portion of
the 2D Marmousi model [32,33]. Marmousi is a realistic geological model based on the
Kwanza Basin (Angola) [34] which is largely used for testing new seismic imaging method-
ologies [35–37]. The area of study consists of water, gas, and oil sand channels, in addition
to many reflectors and several geological strata, as depicted in Figure 2a. For the numer-
ical simulations, we considered the seismic source to be a Ricker wavelet [38,39], with a
peak frequency of 25 Hz, in all numerical experiments. The Ricker wavelet amplitude w
according to time t is given by [38,39]

w(t) =
(

1− 2π2µ2
pt2
)

exp
(
−π2µ2

pt2
)

, (15)

with µp being the peak frequency.
In order to perform the seismic inversion, we used the conjugate gradient (CG) algo-

rithm [40,41], which iteratively updated the model’s parameters m according to

mk+1 = mk + αkhk(mk), (16)

for k = 0, 1, 2, . . . , Niter. Here, Niter denotes the maximum number of iterations, α is the
step-length, and h(m) is the so-called search direction [41]. In this work we considered the
acoustic impedance model shown in Figure 2b as the initial model m0. The step-length and
the search direction at the k-th iteration were computed by [42,43]

αk = γ
||mk||2
||hk||2

(17)
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and

hk =

{
g0 , i f k = 0

gk + ζkhk−1, f or k = 1, 2, . . . , Niter,
(18)

where γ is a scaling factor, hk = hk(mk), ||.||2 is the Euclidean norm (or l2-norm), g =
∇mφQ(m) is the gradient of the cost function, and ζ is given by [43]

ζk =
gT

k
(
gk − gk−1

)
gT

k−1gk−1
. (19)

It is worth mentioning that in the numerical experiments, we set up Niter = 30 and γ = 0.05,
as suggested by [42].

(a) (b)

Figure 2. (a) The 2D Marmousi acoustic impedance model considered as the true model. (b) The initial model employed in
the seismic inversion.

4.1. Sensitivity to the Source Signature

In practice, the source signature is unknown, and therefore, it is estimated from the
seismic data, which introduces inaccuracies to the source wavelet. Consequently, inversion
methods must be somewhat resilient when the forward modeled data are computed with an
inaccurate seismic source. In this section, we present a numerical experiment for analyzing
the sensitivity of our proposal to incorrect estimated sources. We used a noise-free dataset
simulated by employing a 25 Hz Ricker wavelet as the true seismic signature (see the solid
black curve in Figure 3).

In the seismic inversion process, we considered four distinct situations regarding the
modeled seismic source. In the first one, we considered that the source signature was
perfectly estimated, and in the last three, incorrect sources were used in the PSI. In particular,
we considered the incorrect source signatures depicted in Figure 3. Incorrect source I
(dashed blue line in Figure 3) was a modified version of the Ricker wavelet, as suggested
in [44]; its amplitude w1(t) was associated with Equation (15) through the following
relationship: w1(t) = w(t)exp(5t). Incorrect source II (dotted red line in Figure 3) was
constructed from the derivative of incorrect source I, w2(t) ∝ dw1(t)

dt , and incorrect source III
(solid green line in Figure 3) was a real-valued Morlet wavelet: w3(t) = exp(−t2/2)cos(5t).
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Figure 3. Source signatures used in this work. The solid black line represents the true seismic source
(25 Hz Ricker wavelet). The dashed blue line, dotted red line, and solid green line represent the three
incorrect source wavelets, respectively.

Figures 4–7 show the PSI results for the four cases mentioned above. Through a
visual inspection of Figure 4, we can see that if the modeled seismic source was correct,
the PSI generated satisfactory results which are very close to the expected result (see
Figure 2a), except in the q = 0.001 case, where some vertical artifacts can be observed in the
reconstructed model (Figure 4h). Regarding the PSI results obtained using incorrect source
I (Figure 5), we notice that the reconstructed models are similar to the case of the correct
source (Figure 4). However, our proposal provided models with greater resolution than the
conventional approach, especially for the q = 0.01 case (Figure 5g). In the case of incorrect
source II, the conventional approach failed to reconstruct the acoustic impedance model
(Figure 6a). In contrast, the accuracy of the PSI results based on our proposal is dependent
on the q-value. Indeed, as the q-value decreased (which means a greater deviation from a
Gaussian behavior), the reconstructed model became more reliable (see, for instance, panels
(f) and (g) of Figure 6). Finally, if the modeled seismic source was too far from the ideal,
which was the case in incorrect source III, both approaches failed completely, although our
proposal generated models that resemble the true model, as depicted in Figure 7.

Figure 8 shows a comparison between the vertical profiles of the central region
(Distance = 1 km) from the true model (black line), initial model (gray line), models
reconstructed with the conventional approach (red line), and our proposal with q = 0.60
(blue line) and q = 0.01 (green line) for the four cases studied in this section. We notice
that if the seismic source was correct or only a small disturbance was considered (incorrect
source I), the resulting reconstructed acoustic impedance profiles were similar to the true
profile (black line) regardless of the methodology used, as depicted in Figure 8a,b. However,
if the source estimate was inaccurate, for instance, for incorrect source II, the conventional
approach tended to fail (see the red line in Figure 8c). In contrast, our proposal was less
sensitive to an error in the modeled seismic source (see blue and green lines in Figure 8c).
Finally, if the modeled seismic signature had a very different shape from the true source,
both approaches tended to fail.

Furthermore, it is important to notice the vertical fringes in the models reconstructed
with our proposal for the q = 0.001 case, as shown in panel h of Figures 4–7. This was
due to the behavior of the q-cost function (Equation (13)) in the q → 0 limit-case, which
tends to be constant. In fact, in the q→ 0 case, the optimization process was trapped in a
local minimum, and the reconstructed models tended to assume the lower limit value of
the model, generating blue fringes as depicted in Figure 9 for cases q = 10−3, 10−4, 10−5,
and 10−6.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Models reconstructed for the correct source case using the PSI based on the (a) conventional approach (q→ 1) or
our proposal with: (b) q = 0.9, (c) q = 0.6, (d) q = 0.4, (e) q = 0.3, (f) q = 0.1, (g) q = 0.01, or (h) q = 0.001.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Models reconstructed for the incorrect source I case by using the PSI based on the (a) conventional approach
(q→ 1) or our proposal with: (b) q = 0.9, (c) q = 0.6, (d) q = 0.4, (e) q = 0.3, (f) q = 0.1, (g) q = 0.01, or (h) q = 0.001.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Models reconstructed for the incorrect source II case by using the PSI based on the (a) conventional approach
(q→ 1) or our proposal with: (b) q = 0.9, (c) q = 0.6, (d) q = 0.4, (e) q = 0.3, (f) q = 0.1, (g) q = 0.01, or (h) q = 0.001.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Models reconstructed for the incorrect source III case by using the PSI based on the (a) conventional approach
(q→ 1) or our proposal with: (b) q = 0.9, (c) q = 0.6, (d) q = 0.4, (e) q = 0.3, (f) q = 0.1, (g) q = 0.01, or (h) q = 0.001.
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(a) (b) (c) (d)

Figure 8. Vertical profiles of the true model (black curve), initial model (gray curve), and reconstructed models for the
correct source in panel (a) and incorrect sources I, II, and III in panels (b–d), respectively. In this figure, we depict the central
vertical well at Distance = 1.0 km.

(a) (b) (c) (d)

Figure 9. Model reconstructed for the correct source case by using the PSI based on our proposal with: (a) q = 10−3, (b)
q = 10−4, (c) q = 10−5, and (d) q = 10−6.

4.2. Sensitivity to Gaussian Noise

In this section, to demonstrate how the deformed Jackson Gaussian improves the
seismic inversion robustness, we consider datasets polluted by Gaussian noise. In par-
ticular, we consider four noisy-circumstances regarding the signal-to-noise ratio (SNR):
(i) SNR = 5 dB; (ii) SNR = 10 dB; (iii) SNR = 20 dB; and (iv) SNR = 30 dB. The SNR is
defined as the ratio between the power of the noiseless waveform and the power of noise
superimposed on the seismic data. In other words, the larger the SNR value, the smaller
the Gaussian noise amplitude. Figure 10 shows an example of a waveform contaminated
by Gaussian noise, with the different SNRs used in the present work being the black and
red curves of the seismic data with and without noise, respectively.

The PSI results using the conventional approach (q→ 1) or our proposal with q = 0.9,
0.75, 0.6, 0.4, 0.3, 0.1, and 0.01 are illustrated in Figures 11–14 for the cases SNR = 5, 10, 20,
and 30 dB, respectively. From a visual inspection, it is remarkable that the reconstructed
models are very similar. Indeed, the differences among the PSI results are not easily
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noticeable and can only be observed from error measures. Hence, we considered two
measures to quantitatively compare the reconstructed models with the true model: first,
we computed the normalized root-mean-square (NRMS):

NRMS =

[
∑n

i=1
(
mtrue

i −minv
i
)2

∑n
i=1
(
mtrue

i
)2

]1/2

, (20)

where mtrue corresponds to the true model and minv is the inversion result. It is worth
noting that an NRMS value close to zero means little error. The second measure used was
the well-known Pearson’s coefficient (R) [45], which is a similarity measure. It is worth
remembering thata Pearson’s coefficient score varies between 0 and 1, with being 0 a perfect
“uncorrelation” and 1 being a perfect correlation between two samples. The measures for
the four Gaussian noise scenarios are summarized in Table 1.

Table 1. Main statistics of the PSI results from datasets contaminated by Gaussian noise with different SNRs.

Strategy
SNR = 5 dB SNR = 10 dB SNR = 20 dB SNR = 30 dB

NRMS R NRMS R NRMS R NRMS R

Conventional PSI (q→ 1.0) 0.6144 0.4342 0.3678 0.7587 0.1889 0.9290 0.1019 0.9789
Our proposal (q = 0.90) 0.4784 0.6287 0.2779 0.8528 0.1589 0.9486 0.1004 0.9791
Our proposal (q = 0.75) 0.4662 0.6435 0.2788 0.8520 0.1588 0.9487 0.1003 0.9791
Our proposal (q = 0.60) 0.4068 0.7077 0.2787 0.8520 0.1586 0.9488 0.1003 0.9792
Our proposal (q = 0.40) 0.3594 0.7542 0.2770 0.8536 0.1588 0.9487 0.1004 0.9791
Our proposal (q = 0.30) 0.3162 0.8013 0.2746 0.8549 0.1591 0.9485 0.1004 0.9791
Our proposal (q = 0.10) 0.3176 0.7957 0.2666 0.8623 0.1589 0.9486 0.1003 0.9791
Our proposal (q = 0.01) 0.2947 0.8234 0.2566 0.8698 0.1590 0.9486 0.1004 0.9791

(a) (b)

(c) (d)

Figure 10. The black curves represent the observed data (waveforms) of the 51st seismic source (Distance = 1km) contam-
inated by Gaussian noise with (a) SNR = 5 dB, (b) SNR = 10 dB, (c) SNR = 20 dB, and (d) SNR = 30 dB. The red curves
represent the noiseless waveforms.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. Models reconstructed for the Gaussian noise case, with SNR = 5 dB, by using a PSI based on the (a) conventional
approach (q → 1) or our proposal with: (b) q = 0.9, (c) q = 0.75, (d) q = 0.6, (e) q = 0.4, (f) q = 0.3, (g) q = 0.1,
or (h) q = 0.01.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Model reconstructed for the Gaussian noise case, with SNR = 10 dB, by using the PSI based on the (a) conventional
approach (q→ 1) or our proposal with: (b) q = 0.9, (c) q = 0.75, (d) q = 0.6, (e) q = 0.4, (f) q = 0.3, (g) q = 0.1, or (h) q = 0.01.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. Model reconstructed for the Gaussian noise case, with SNR = 20 dB, by using the PSI based on the (a) conventional
approach (q→ 1) or our proposal with: (b) q = 0.9, (c) q = 0.75, (d) q = 0.6, (e) q = 0.4, (f) q = 0.3, (g) q = 0.1, or (h) q = 0.01.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 14. Model reconstructed for the Gaussian noise case, with SNR = 30 dB, by using the PSI based on the (a) conventional
approach (q→ 1) or our proposal with: (b) q = 0.9, (c) q = 0.75, (d) q = 0.6, (e) q = 0.4, (f) q = 0.3, (g) q = 0.1, or (h) q = 0.01.

Figures 15 and 16 show comparisons between the vertical profiles of the central
region (Distance = 1 km) and a leftmost region (Distance = 180 m) from the true model
(black line), initial model (gray line), and models reconstructed with the conventional
approach (red line) or our proposal with q = 0.60 (blue line) or q = 0.01 (green line) for
the four Gaussian noise cases presented in this section. We notice that for a low SNR,
for instance, in the SNR = 5 dB and SNR = 10 dB cases, the acoustic impedance profiles
reconstructed by the conventional approach are very oscillatory (see red curves in panels
(a) and (b) of Figures 15 and 16) and do not match with the true model (black curves in
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Figures 15 and 16). It is worth noting that the oscillatory behavior is also verified by the
models resulting from our proposal. However, compared with the conventional approach,
the profiles reconstructed by employing our proposal (see blue and green curves in panels
(a) and (b) of Figures 15 and 16) match those of the true model better. When the Gaussian
noise was relatively weaker, that is, for the cases of high SNR, both approaches generated
similar models (see panels (c) and (d) of Figures 15 and 16), especially for the vertical
profiles generated by our approach. The green and blue curves of those are superimposed
in panels (c) and (d) of Figures 15 and 16.

4.3. Sensitivity to Erratic Data (Outliers)

Now, let us verify how the q-cost function improves the PSI robustness in relation to
non-Gaussian noise, which was represented in this work by erratic measures (outliers).
We used seismic data contaminated by background noise and a set of outliers represented
by spikes. In the simulations, the background noise consisted of Gaussian noise with
a SNR of 30dB, and the number of spikes was variable for each case. In the first case,
we added spikes to 0.5% (%Spike = 0.5) of the observed samples, randomly selected
from a uniform distribution. For each selected point, the spike noise was calculated by
making dobs

i = [dobs
i ]GaussianNoise + α × β with α ∈ [−2; 2] and β, following a standard

normal distribution. In the second case, 1.5% of the data were contaminated by spikes
(%Spike = 1.5), and so on, until %Spike = 79.5 (%Spike = 79.5), in regular intervals of
1%, totaling 80 different scenarios. For each scenario, we performed 100 inversions by
considering the range 0.01 ≤ q ≤ 1, totaling 8000 numerical experiments. Figures 17 and 18
show examples of waveforms contaminated by Gaussian noise and spikes with the different
%Spike values, in which the black and red curves represent the seismic data with and
without spiky-noise, respectively.

(a) (b) (c) (d)

Figure 15. Vertical profiles of the true model (black curve), initial model (gray curve), and reconstructed models for the
Gaussian noise case with (a) SNR = 5 dB, (b) SNR = 10 dB, (c) SNR = 20 dB, or (d) SNR = 30 dB. In this figure, we depict
the central vertical well at Distance = 1.0 km.
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(a) (b) (c) (d)

Figure 16. Vertical profiles of the true model (black curve), initial model (gray curve), and reconstructed models for the
Gaussian noise case with (a) SNR = 5 dB, (b) SNR = 10 dB, (c) SNR = 20 dB, or (d) SNR = 30 dB. In this figure, we depict
the central vertical well at Distance = 180 m.

(a) (b)

(c) (d)

Figure 17. The black curves represent the observed data (waveforms) of the 51st seismic source (Distance = 1 km) contami-
nated by Gaussian noise and spiky-noise with (a) %Spike = 0.5, (b) %Spike = 10, (c) %Spike = 20, or (d) %Spike = 50. The
red curves represent the noiseless waveforms.
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(a) (b)

(c) (d)

Figure 18. The black curves represent the observed data (waveforms) of the 10th seismic source (Distance = 180 m) contam-
inated by Gaussian noise and spiky-noise with (a) %Spike = 0.5, (b) %Spike = 10, (c) %Spike = 20, or (d) %Spike = 50. The
red curves represent the noiseless waveforms.

The conventional PSI result for the case %Spike = 0.5 is shown in Figure 19a. As ex-
pected, a handful of outliers was sufficient to render the conventional approach inap-
propriate, as seen through the many artifacts in the estimated model. In contrast, our
proposal was efficient to mitigate the effects of the outliers regardless of the q-values used,
as depicted in Figure 19b–h.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 19. Model reconstructed for the %Spikes = 0.5 case by using the PSI based on the (a) conventional approach (q→ 1)
or our proposal with: (b) q = 0.90, (c) q = 0.75, (d) q = 0.60, (e) q = 0.40, (f) q = 0.30, (g) q = 0.10, or (h) q = 0.01.
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In the cases in which the seismic dataset was heavily contaminated by spikes, the con-
ventional approach totally failed, as illustrated in panel a of Figures 20–22 for the cases
%Spike = 10, 20, and 50, respectively. Indeed, conventional PSI was unable to identify
any geological strata associated with the acoustic impedance contrast present in the true
model (see Figure 2a). In this regard, we noticed that the conventional framework de-
teriorated the reconstructed models in comparison to the initial model (see Figure 2b).
Regarding the q-PSI, we noticed that even when the observation was highly-contaminated
by spikes, the reconstructed models exhibited the main geological features of the true
model, especially as the q-value decreased, as depicted in panels (b)–(h) of Figures 20–22.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 20. Model reconstructed for the %Spikes = 10 case by using the PSI based on the (a) conventional approach (q→ 1)
or our proposal with: (b) q = 0.90, (c) q = 0.75, (d) q = 0.60, (e) q = 0.40, (f) q = 0.30, (g) q = 0.10, or (h) q = 0.01.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 21. Model reconstructed for the %Spikes = 20 case by using the PSI based on the (a) conventional approach (q→ 1)
or our proposal with: (b) q = 0.90, (c) q = 0.75, (d) q = 0.60, (e) q = 0.40, (f) q = 0.30, (g) q = 0.10, or (h) q = 0.01.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 22. Model reconstructed for the %Spikes = 50 case by using the PSI based on the (a) conventional approach (q→ 1)
or our proposal with: (b) q = 0.90, (c) q = 0.75, (d) q = 0.60, (e) q = 0.40, (f) q = 0.30, (g) q = 0.10, or (h) q = 0.01.

Figures 23 and 24 show comparisons between the vertical profiles of the central
region (Distance = 1 km) and a leftmost region (Distance = 180 m) from the true model
(black line); initial model (gray line); and models reconstructed with the conventional
approach (red line) and our proposal with q = 0.60 (blue line) or q = 0.01 (green line) for
the %Spike = 10, 20, and 50 cases. In these figures, the red curves refer to the acoustic
impedance profiles estimated using the conventional approach, in which the dissimilarity
with the true model (black curve) is remarkable. In contrast, our proposal proved to be
efficient at mitigating the effects of the outliers in the seismic dataset, especially for the
q = 0.1 case, as depicted by the green curves in Figures 23 and 24.

(a) (b) (c) (d)

Figure 23. Vertical profiles of the true model (black curve), initial model (gray curve), and reconstructed models for the
spiky-noise cases with (a) %Spikes = 0.5, (b) %Spikes = 10, (c) %Spikes = 20, and (d) %Spikes = 50. In this figure, we
depict the central vertical well at Distance = 1.0 km.
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(a) (b) (c) (d)

Figure 24. Vertical profiles of the true model (black curve), initial model (gray curve), and reconstructed models for the
spiky-noise cases with (a) %Spikes = 0.5, (b) %Spikes = 10, (c) %Spikes = 20, and (d) %Spikes = 50. In this figure, we
depict the central vertical well at Distance = 180 m.

From a quantitative viewpoint, let us analyze the quality of the q-PSI results. First, we
compute the correlation strength R between the reconstructed models and the true model
through Pearson’s R correlation coefficient [45]. The Pearson’s R values for the numerical
experiments are summarized in the heatmap shown in Figure 25, where the red colors
indicate greater correlation between the reconstructed and the true model, and the blue
indicates minor correlation. As a visual guide, we also added a white curve separating
the heatmap into two regions, the upper region for which R ≤ 0.8 and the lower region
for which R > 0.8. We notice that as the number of spikes increases, the best results are
associated with the lowest q-values. Since spikes are non-Gaussian errors, as the amount of
spikes is increased, the deviation of the Gaussian behavior is also increased, which hinders
the parameter recovery with the conventional approach. Even though a better performance
of the q-PSI inversion could be expected, it still impressive that high values of R were
obtained even with a large amount of spike noise such as 79.5%.

Figure 25. A heatmap as a graphical representation of Pearson’s R for the numerical experiments
carried out in this work, in which the white curve indicates the R = 0.8 case.
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5. Final Remarks

In this work, we introduced a new cost function to mitigate spurious measurements’
influences on the seismic inversion process. In particular, we considered a classical geophys-
ical inverse problem named post-stack inversion (PSI), for which we applied the approach
proposed here, the so-called q-PSI, which uses deformed Jackson q-statistics. With a realis-
tic geological model, the numerical experiments demonstrated that our proposal makes
the seismic data-inversion process more robust by outperforming the classical approach,
especially in the case of uncertainties in the modeled seismic source and in the presence of
outliers. When Gaussian noise was considered, the performance of our proposal was very
similar to that of the classical approach, although the quantitative indicators of error and
similarity showed slight superiority by our proposal (see Table 1).

The results of the simulations show that the seismic inversion based on q-statistics
is a robust methodology for very noisy datasets. In addition, it is worth mentioning
that the q-PSI provides better estimations of model parameters without an additional
computational cost compared to the conventional approach. The results also reveal that
the optimum q-value is at the limit q→ 0.01. In future, we intend to study the sensitivity
of our proposed model to multiple reflections (both internal and associated with the free
surface), the frequency content of seismic datasets, and the initial model.

We remark that q-PSI approach for data with outliers provided better results than the
conventional PSI approach. Therefore, q-PSI approach may be a helpful tool in exploration
geophysics and a wide variety of other inverse problems for which it is desirable to reduce
the heavy-processing of the observed data.

Author Contributions: Conceptualization, S.A.S., S.L.E.F.d.S., R.F.d.S., A.A.M., J.M.d.A. and C.G.B.;
methodology, S.A.S., S.L.E.F.d.S., R.F.d.S., A.A.M., J.M.d.A. and C.G.B.; software, S.L.E.F.d.S.; valida-
tion, S.A.S., S.L.E.F.d.S. and R.F.d.S.; formal analysis, S.A.S., S.L.E.F.d.S., R.F.d.S., A.A.M., J.M.d.A.
and C.G.B.; investigation, S.A.S., S.L.E.F.d.S., R.F.d.S., A.A.M., J.M.d.A. and C.G.B.; writing—original
draft preparation, S.A.S., S.L.E.F.d.S., R.F.d.S., A.A.M., J.M.d.A. and C.G.B.; visualization, S.A.S.,
S.L.E.F.d.S., R.F.d.S., A.A.M., J.M.d.A. and C.G.B.; supervision, J.M.d.A. and C.G.B.; writing—review
and editing, S.A.S., S.L.E.F.d.S., R.F.d.S., A.A.M., J.M.d.A. and C.G.B. All authors have read and
agreed to the published version of the manuscript.

Funding: This study was financed in part by Petrobras.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: S.A.S., C.G.B. and J.M.d.A. gratefully acknowledge support from Petrobras
through the project “Statistical physics inversion for multi-parameters in reservoir characterisation” at the
Federal University of Rio Grande do Norte. J.M.d.A. thanks Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq)—grant number 313431/2018-3. All authors thank G.M.V. for critical
reading of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

PSI post-stack inversion
CG conjugate gradient
NRMS normalized root mean square

References
1. King, P. Physics boosts oil production. Phys. World 1997, 10, 33. [CrossRef]
2. Yilmaz, Ö. Seismic Data Analysis: Processing, Inversion and Interpretation of Seismic Data; Society of Exploration Geophysicists (SEG):

Tulsa, OK, USA, 2001.

http://doi.org/10.1088/2058-7058/10/8/26


Entropy 2021, 23, 1081 21 of 22

3. Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation; Society for Industrial and Applied Mathematics
(SIAM): University City, PA, USA, 2005.

4. Menke, W. Geophysical Data Analysis: Discrete Inverse Theory; Academic Press: New York, NY, USA, 2012.
5. Hadamard, J. Sur les problèmes aux dérivés partielles et leur signification physique. Princet. Univ. Bull. 1902, 13, 49.
6. Claerbout, J.F.; Muir, F. Robust modeling with erratic data. Geophysics 1973, 38, 826. [CrossRef]
7. Constable, C.G. Parameter estimation in non-Gaussian noise. Geophys. J. Int. 1988, 94, 131. [CrossRef]
8. Aravkin, A.Y.; Friedlander, M.P.; Herrmann, F.J.; van Leeuwen, T. Robust inversion, dimensionality reduction and randomized

sampling. Math. Program. 2012, 134, 101. [CrossRef]
9. Ubaidillah, A.; Notodiputro, K.A.; Kurnia, A.; Fitrianto, A.; Mangku, I.W. A robustness study of student-t distributions in

regression models with application to infant birth weight data in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2017, 58, 012013.
[CrossRef]

10. Guitton, A.; Symes, W.W. Robust inversion of seismic data using the Huber norm. Geophysics 2003, 68, 1310. [CrossRef]
11. Bube, K.P.; Langan, R.T. Hybrid l1/l2 minimization with applications to tomography. Geophysics 1997, 62, 1183. [CrossRef]
12. Da Silva, S.L.E.F.; Carvalho, P.T.C.; da Costa, C.A.N.; de Araújo, J.M.; Corso, G. Misfit Function for Full Waveform Inversion

Based on Shannon Entropy for Deeper Velocity Model Updates. In Proceedings of the SEG International Exposition and Annual
Meeting, San Antonio, TX, USA, 15–20 September 2019; p. 1556. Available online: https://library.seg.org/doi/abs/10.1190/
segam2019-3214969.1 (accessed on 1 July 2021).

13. Johnson, O.; Vignat, C. Some results concerning maximum Rényi entropy distributions. Ann. Inst. Henri Poincaré (B) Probab. Stat.
2007, 43, 339. [CrossRef]

14. Tanaka, H.-A.; Nakagawa, M.; Oohama, Y. A direct link between Rényi–Tsallis entropy and H’́older’s inequality—Yet another
proof of Rényi–Tsallis entropy maximization. Entropy 2019, 21, 549. [CrossRef] [PubMed]

15. Da Silva, S.L.E.F.; dos Santos Lima, G.Z.; de Araújo, J.M.; Corso, G. Extensive and non-extensive statistics in seismic inversion.
Phys. A 2021, 563, 125496. [CrossRef]

16. Da Silva, S.L.; Da Costa, C.A.; Carvalho, P.; Araújo, J.; Lucena, L.; Corso, G. An Objective Function Based on q-Gaussian
Distribution for Full-Waveform Inversion. In Proceedings of the EAGE 2020 Annual Conference & Exhibition, Online, 8–11
December 2020; pp. 1–5.

17. De Lima, I.P.; da Silva, S.L.E.F.; Corso, G.; de Araújo, J.M. Tsallis entropy, likelihood, and the robust seismic inversion. Entropy
2020, 22, 464. [CrossRef]

18. Da Silva, S.L.E.F.; da Costa, C.A.N.; Carvalho, P.T.C.; de Araújo, J.M.; Lucena, L.S.; Corso, G. Robust full-waveform inversion
using q-statistics. Phys. A 2020, 548, 124473. [CrossRef]

19. De Lima, J.V.T.; da Silva, S.L.E.F.; de Araújo, J.M.; Corso, G.; dos Santos Lima, G.Z. Nonextensive statistical mechanics for robust
physical parameter estimation: The role of entropic index. Eur. Phys. J. Plus 2021, 136, 269. [CrossRef]

20. Wada, T.; Suyari, H. κ-generalization of Gauss’ law of error. Phys. Lett. A 2006, 348, 89. [CrossRef]
21. Da Silva, S.L.E.F.; Carvalho, P.T.C.; de Araújo, J.M.; Corso, G. Full-waveform inversion based on Kaniadakis statistics. Phys. Rev.

E 2020, 101, 053311. [CrossRef] [PubMed]
22. Da Silva, S.L.E.F.; dos Santos Lima, G.Z.; Volpe, E.V.; de Araújo, J.M.; Corso, G. Robust approaches for inverse problems based on

Tsallis and Kaniadakis generalised statistics. Eur. Phys. J. Plus 2021, 136, 518. [CrossRef]
23. Marinho, A.A.; Viswanathan, G.M.; Brito, F.A.; Bezerra, C.G. The connection between Jackson and Hausdorff derivatives in the

context of generalized statistical mechanics. arXiv 2020, arXiv:2006.00378.
24. Russell, B.; Hampson, D. Comparison of poststack seismic inversion methods. In SEG Technical Program Expanded Abstracts;

Society of Exploration Geophysicists: Tulsa, OK, USA, 1991; pp. 876–878.
25. Sen, M.K. Seismic Inversion; Society of Petroleum Engineers (SPE): Richardson, TX, USA, 2006.
26. Díaz, R.; Pariguan, E. On the gaussian q-distribution. J. Math. Anal. Appl. 2009, 358, 1–9. [CrossRef]
27. Jackson, F.H. q-difference equations. Am. J. Math. 1910, 32, 305. [CrossRef]
28. Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1909, 46, 253. [CrossRef]
29. Bonatsos, D.; Daskaloyannis, C. Quantum groups and their applications in nuclear physics. Prog. Part. Nucl. Phys. 1999, 43, 537.

[CrossRef]
30. Brito, F.; Marinho, A.A. q-deformed landau diamagnetism problem embedded in d-dimensions. Phys. A 2011, 390, 2497.

[CrossRef]
31. Marinho, A.A.; Costa, N.P.; Pereira, L.F.C.; Brito, F.A.; Chesman, C. Thermoelectric properties of BiSbTe alloy nanofilms produced

by dc sputtering: Experiments and modeling. J. Mater Sci. 2020, 55, 2429. [CrossRef]
32. Martin, G.; Wiley, R.; Marfurt, K. Marmousi2: An elastic upgrade for Marmousi. Lead. Edge 2006, 25, 156. [CrossRef]
33. Versteeg, R. The Marmousi experience: Velocity model determination on a synthetic complex data set. Lead. Edge 1994, 13, 927.

[CrossRef]
34. Cramez, C.; Jackson, M. Superposed deformation straddling the continental-oceanic transition in deep-water Angola. Mar. Pet.

Geol. 2000, 17, 1095. [CrossRef]
35. Yao, G.; da Silva, N.V.; Wu, D. An effective absorbing layer for the boundary condition in acoustic seismic wave simulation. J.

Geophys. Eng. 2018, 15, 495. [CrossRef]

http://dx.doi.org/10.1190/1.1440378
http://dx.doi.org/10.1111/j.1365-246X.1988.tb03433.x
http://dx.doi.org/10.1007/s10107-012-0571-6
http://dx.doi.org/10.1088/1755-1315/58/1/012013
http://dx.doi.org/10.1190/1.1598124
http://dx.doi.org/10.1190/1.1444219
https://library.seg.org/doi/abs/10.1190/segam2019-3214969.1
https://library.seg.org/doi/abs/10.1190/segam2019-3214969.1
http://dx.doi.org/10.1016/j.anihpb.2006.05.001
http://dx.doi.org/10.3390/e21060549
http://www.ncbi.nlm.nih.gov/pubmed/33267263
http://dx.doi.org/10.1016/j.physa.2020.125496
http://dx.doi.org/10.3390/e22040464
http://dx.doi.org/10.1016/j.physa.2020.124473
http://dx.doi.org/10.1140/epjp/s13360-021-01274-6
http://dx.doi.org/10.1016/j.physleta.2005.08.086
http://dx.doi.org/10.1103/PhysRevE.101.053311
http://www.ncbi.nlm.nih.gov/pubmed/32575242
http://dx.doi.org/10.1140/epjp/s13360-021-01521-w
http://dx.doi.org/10.1016/j.jmaa.2009.04.046
http://dx.doi.org/10.2307/2370183
http://dx.doi.org/10.1017/S0080456800002751
http://dx.doi.org/10.1016/S0146-6410(99)00100-3
http://dx.doi.org/10.1016/j.physa.2011.03.003
http://dx.doi.org/10.1007/s10853-019-04188-y
http://dx.doi.org/10.1190/1.2172306
http://dx.doi.org/10.1190/1.1437051
http://dx.doi.org/10.1016/S0264-8172(00)00053-2
http://dx.doi.org/10.1088/1742-2140/aaa4da


Entropy 2021, 23, 1081 22 of 22

36. Freitas Silva, F.W.; da Silva, S.L.E.F.; Henriques, M.V.C.; Corso, G. Using fish lateral line sensing to improve seismic acquisition
and processing. PLoS ONE 2019, 14, e0213847. [CrossRef]

37. da Silva, S.L.E.F.; Carvalho, P.T.C.; da Costa, C.A.N.; de Araújo, J.M.; Corso, G. An objective function for full-waveform inversion
based on frequency-dependent offset-preconditioning. PLoS ONE 2020, 15, e0240999. [CrossRef]

38. Ricker, N. Further developments in the wavelet theory of seismogram structure. Bull. Seismol. Am. 1943, 33, 197. [CrossRef]
39. Ricker, N. Wavelet functions and their polynomials. Geophysics 1944, 9, 314. [CrossRef]
40. Press, W.H. Numerical Recipes in FORTRAN 90; Cambridge University Press: Cambridge, UK, 1996.
41. Nocedal, J.; Wright, S.J. Numerical Optimization; Springer: New York, NY, USA, 2006.
42. Köhn, D. Time Domain 2D Elastic Full Waveform Tomography. Ph.D. Thesis, Christian-Albrechts Universität Kiel, Kiel,

Germany, 2011.
43. Vigh, D.; Starr, E. 3D prestack plane-wave, full-waveform inversion. Geophysics 2008, 73, VE135–VE144. [CrossRef]
44. Gómez, L.; Pestana, R.C. Full-waveform inversion using alternative objective functions in the presence of noise and uncertainties

of source signature. In Proceedings of the 15th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de
Janeiro, Brazil, 31 July–3 August 2017; pp. 296–301.

45. Pearson, K. Mathematical contributions to the theory of evolution. III. Regression, heredity, and panmixia, Philosophical
Transactions of the Royal Society of London. Series A. Contain. Pap. Math. Phys. Character 1896, 187, 253

http://dx.doi.org/10.1371/journal.pone.0213847
http://dx.doi.org/10.1371/journal.pone.0240999
http://dx.doi.org/10.1785/BSSA0330030197
http://dx.doi.org/10.1190/1.1445082
http://dx.doi.org/10.1190/1.2952623

	Introduction
	Post-Stack Seismic Inversion
	Likelihood Based on Jackson Statistics
	Numerical Results 
	Sensitivity to the Source Signature
	Sensitivity to Gaussian Noise
	Sensitivity to Erratic Data (Outliers)

	Final Remarks
	References

