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Abstract: The inference of causal relations between observable phenomena is paramount across
scientific disciplines; however, the means for such enterprise without experimental manipulation
are limited. A commonly applied principle is that of the cause preceding and predicting the effect,
taking into account other circumstances. Intuitively, when the temporal order of events is reverted,
one would expect the cause and effect to apparently switch roles. This was previously demonstrated
in bivariate linear systems and used in design of improved causal inference scores, while such
behaviour in linear systems has been put in contrast with nonlinear chaotic systems where the
inferred causal direction appears unchanged under time reversal. The presented work explores
the conditions under which the causal reversal happens—either perfectly, approximately, or not at
all—using theoretical analysis, low-dimensional examples, and network simulations, focusing on the
simplified yet illustrative linear vector autoregressive process of order one. We start with a theoretical
analysis that demonstrates that a perfect coupling reversal under time reversal occurs only under
very specific conditions, followed up by constructing low-dimensional examples where indeed the
dominant causal direction is even conserved rather than reversed. Finally, simulations of random
as well as realistically motivated network coupling patterns from brain and climate show that level
of coupling reversal and conservation can be well predicted by asymmetry and anormality indices
introduced based on the theoretical analysis of the problem. The consequences for causal inference
are discussed.

Keywords: causality; time reversal; temporal symmetry; reversed time series; vector autoregressive
process; random networks; brain network; climate network

1. Introduction

The temporal symmetry of physical processes, as well as the common fundamental
lack of it, is among the most fascinating natural phenomena with deep theoretical conse-
quences. Its characterization has been the topic of statistical physics including intriguing
fundamental questions concerning quantum processes [1] as well as nonlinear time series
analysis methods capturing the nonlinear aspects of brain electrophysiology [2]. Interest-
ingly, it is intricately related to another fundamental concept used by humans to make
sense of the processes in their natural environment—that of causality, with the notion of
cause and effect as generalization of the naive observation that under (seemingly) equiva-
lent circumstances, performing (or not) an action is followed by different event scenarios.
While it is generally accepted that to uncover the causal principles ruling a given system
one would need to be able to probe the systems responses experimentally [3], a range of
methods were proposed that aim for estimation of the (network of) causal interactions just
from the observed time series.

One of the prominent ideas behind a wide family of these methods is the principle that
causality relates to predictability in that a variable can be considered causal with respect to
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another, if using the current state of the former improves the prediction of the latter [4].
To avoid false inference due to possible shared information in the past or due to other
variables, these other variables are in theory supposed to be also observed and used in both
of the compared prediction models; of course in practice there are limitations on available
observational data as well as estimability of the models that lead to the numerical methods
providing only estimates of causal structure. However, the general definition represents
an elegant and natural formalization of the intuitive understanding that the cause should
precede the effect and carry some information about it (i.e., be at least statistically, if not
deterministically related to the effect).

Notably, the relation between the two fundamental concepts of temporal symmetry
and causality has recently become thematized [5–10]. One of the interesting conjectures,
supported by observations from simulated processes, was that for linear processes, the
direction of causal interaction is reversed upon the reversal of the direction of time, while
it is conserved for nonlinear or chaotic time series [6,8]. The observation of causal direction
reversal upon time-reversal in linear systems was previously noted in multiple studies, and
previously used for construction of more robust causality scores [5,9,11], shown to poten-
tially fail under the influence of an unobserved latent variable [8] (which is an important
classical example of limitation of Granger causality and other time series analysis meth-
ods, which theoretically assume that all relevant variables are observed), and confirmed
for Granger causality while not observed for a novel Compression-Complexity Causality
measure [10].

In this work, we follow the observations in linear processes in more depth. In particu-
lar, we extend the analysis to multivariate systems, i.e., networks. For arbitrary network
size, we start by building upon an almost forgotten result of Anděl [12] and derive the
necessary and sufficient condition of causal structure reversal under time reversal for
autoregressive processes of order 1; in this simplified model it turns out the key property is
the normality of the causal interaction matrix, albeit for higher model orders the existence
of such simplified conditions remains an open problem. In the previously studied bivariate
case, we provide a simple analytic derivation illustrating that the causal structure reversal
almost never happens perfectly, but only approximately (apart from two rather trivial cases
with particular coupling symmetry), in line and further elucidating the previous reports of
observations of approximate albeit not exact causal reversal. We consequently show that
the minimal unidirectionally coupled network for which the exact causal structure reversal
appears has 3 subsystems, and document this by an example. We finally turn to real-world
data and simulation scenarios, studying the extent to which the causal structure reversal
appears in linear vector autoregressive order one approximation of a brain and climate net-
work under time reversal. The results show that already the linear approximations of both
brain and climate systems show imperfect causal structure reversal under time reversal,
while the extent to which this property is broken is closely predicted by deviation of the
coupling matrix from normality (rather than from pure symmetry of the matrix) in both
realizations of randomly connected networks as well as these more realistic connectivity
structure scenarios. Finally, we discuss the relevance of these findings in a wider context,
including how it problematizes the use of comparison with time-reversed version of a
given process for inference of causal structures.

2. Theoretical Analysis
2.1. Reversed Autoregressive Process

In 1972, Anděl [12] proved a theorem describing a relation between a vector autore-
gressive process and its reversed process. First, we define the stationary autoregressive
process and its reversed process according to his notation.

Definition 1 (Autoregressive process). Let {Yt}+∞
t=−∞ be a series of uncorrelated n-dimensional

random vectors such that E[Yt] = 0 and covariance matrix of vector Yt, Var[Yt] = I. Let
A0, . . . ,An be matrices from Rn,n such that:
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1. detA0 6= 0
2. An 6= 0

3. the equation det
(

∑
p
j=0 Ajλ

p−j
)
= 0 has all the roots smaller than 1 in absolute value

and let {Xt}+∞
t=−∞ be a series defined by the recurrent formula

p

∑
j=0

AjXt−j = Yt −∞ < t < +∞, (1)

or equivalently

Xt = −
p

∑
j=1

A−1
0 AjXt−j +A−1

0 Yt −∞ < t < +∞. (2)

Then {Xt} is n-dimensional autoregressive process of order p (which is stationary due to
conditions above) with the covariance function Rjk(t) = E[Xj

tX
k
0].

Please note that for an autoregressive process, the set of matrices Ai fully describes
the causal interactions in the system.

Definition 2 (Reversed process). We say that {Zt} is reversed (in time) with respect to an
autoregressive process {Xt}with covariance function Rjk(t), if {Zt} has the matrix of the covariance
functions (Rjk(−t))n

j,k=1.

Anděl [12] proved the following theorem.

Theorem 1. Let {Zt} be the n-dimensional autoregressive process defined as

Zt = −
p

∑
j=1

B−1
0 BjZt−j +B−1

0 Yt −∞ < t < +∞, (3)

The series {Zt} is reversed with respect to {Xt} if and only if its autoregressive matrices
satisfy following conditions:

1. detB0 6= 0
2. B1 6= 0

3. the equation det
(

∑
p
j=0 Bjλ

p−j
)
= 0 has all the roots smaller than 1 in absolute value

and

p−h

∑
k=0

A>h+kAk =
p−h

∑
k=0

B>k Bk+h 0 ≤ h ≤ p. (4)

From the theorem, we know that the relation between the original process and the
reversed process is given by p + 1 Equation (4). For simplicity, in the following we limit
the analysis to the simplest but most commonly treated case of a system with delayed
interactions with lag of one time step (p = 1) and with white noise, i.e., A−1

0 = I (there-
fore Xt = −A1Xt−1 + Yt). In this case, the causal structure is given by a single matrix
A := −A−1

0 A1 = −A1, which we shall further denote as the coupling matrix. Please note
that non-zero elements of this matrix correspond to pairs of variables between which there
is causal connection in the Granger sense, in particular, non-zero value of Aij indicates
non-zero input from Xj to Xi, i.e., causal effect in the direction from j to i.
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In this case the set of Equation (4) reduces to the following two matrix equations:

A>1 = B>0 B1 (5)

I+A>1 A1 = B>0 B0 +B>1 B1. (6)

We will derive the conditions under which the causality in the reversed process is
reversed to the causality in the original process, i.e., when the coupling matrix of the
reversed process B := −B−1

0 B1 is equal to the transpose of the coupling matrix of the
original process A.

Let us assume that A = B>; then A>1 = B−1
0 B1, i.e., B1 = B0A>1 . By substitution for

B1 to (5) and (6) we obtain:

A>1 = B>0 B0A>1 (7)

I+A>1 A1 = B>0 B0+A1B>0 B0A>1 = B>0 B0 +A1A>1 . (8)

Further, from Equation (8) we have that B>0 B0 = I+A>1 A1 −A1A>1 . By substituting
to Equation (7) we obtain

A>1 = (I+A>1 A1 −A1A>1 )A>1 , (9)

which further simplifies to:

0 = (A>1 A1 −A1A>1 )A>1 . (10)

Equation (10) thus constitutes a necessary condition for coupling matrix reversal. Please
note that under the reasonably general assumption that A (and therefore A>1 ) is regular,
the range of the operator A>1 is the full space Rn and thus Equation (10) holds only if
0 = A>1 A1 −A1A>1 , i.e., A1 is normal. On the other hand, any normal matrix A1 fulfils
Equation (10), and together with an arbitrary choice of a unitary matrix B0 and B1 = B0A>1
it fulfils the original equations Equations (5) and (6).

Overall, we proved that for VAR(1) process with normal coupling matrix A1 and
white noise (A0 = I), the coupling structure in the reversed process is exactly reversed
to coupling matrix of the original process. We also proved that for a regular matrix A1,
observation of the reversed coupling structure in the reversed process implies normality of
the coupling matrix A1. Therefore, under the assumption of regularity of A1, normality of
A1 is equivalent to the observation of reversed causality in the reversed process.

A specific subset of normal matrices are symmetric matrices. From the above results
concerning normal matrices, we thus learn that for symmetric matrices the causality of
time-reversed process is also reversed, which due to its symmetry means that it is invariant
(conserved) on time reversal of the time series (as the coupling matrix and its transpose are
identical). One may ask whether there is a broader family of coupling matrices for which
the coupling matrix of the original process and the reversed process is identical. Assuming
that A1 = B−1

0 B1, then B1 = B0A1 and from (5) and (6) follows:

A>1 = B>0 B0A1 (11)

I+A>1 A1 = B>0 B0+A>1 B>0 B0A1. (12)

Under assumption of the regularity of A1 then follows B>0 B0 = A>1 A
−1
1 and

I+A>1 A1 = A>1 A−1
1 +A>1 A>1 , (13)

from which we obtain the condition
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(
A1 −A−1

1

)
=
(
A1 −A−1

1

)>
. (14)

In conclusion, we found normality and symmetry of the coupling matrix as sufficient
conditions for reversal and conservation of the coupling under time-reversal, albeit in
principle these may not be necessary depending on the existence of other eligible solutions
for Equations (10) and (14)—we leave the characterization of the full set of solutions for
these matrix equations under the additional requirements of Definition 1 and Theorem 1 as
an open problem for further work, although based on preliminary analysis we conjecture
the solutions might in fact be equivalent with the normality and symmetry condition,
respectively.

2.2. Bivariate Case

Above, we discussed the conditions for the reversed process to have reversed, or
conserved causality for multivariate autoregressive processes (for simplicity limiting the
analysis to processes of order 1, with white noise). Let us analyze in more detail the
bivariate case, i.e., model of the systems with two elements X and Y.

The convention:

A = −A1 =

(
a b
c d

)
, (15)

leads after substitution to Equation (10) to the set of equations:

−ac2 + abc + b2d− bcd = 0,

−c3 + b2c− cd2 + acd + bd2 − abd = 0,

−b3 − a2b + bc2 + abd + a2c− acd = 0,

−b2d + bcd + ac2 − abc = 0,

(16)

which has two types of solutions:

A =

(
a b
b d

)
, and A =

(
a b
−b a

)
, (17)

in the sense that all solutions have this form and any matrix of this form is a solution. These
are specific cases of either a symmetric matrix (c = b) or a specific case of an off-diagonally
antisymmetric matrix (c = −b, d = a).

A particularly interesting case is that of unidirectional coupling, without loss of
generality one can focus on the case where Y affects X, but X does not affect Y. This model
is given by the matrix:

A =

(
a b
0 d

)
, (18)

where b 6= 0, while c = 0.
Please note that this is the canonical model of unidirectional causality in a linear sys-

tem, that was used to illustrate the conjecture that in a linear system (unlike in nonlinear, in
particular chaotic, systems), time-reversal leads to reversal of the direction of causality [6].

Clearly, this is a specific case of the bivariate system considered above, and due to the
condition b 6= 0, it is not among the solutions for Equation (10). Therefore we know that in
this model a perfect reversal of causal structure with time reversal does not occur, albeit the
main/stronger/dominant, direction of causality indeed typically reverts, as discussed by Paluš
et al. [6] for simple linear systems, while giving counterexamples for other, typically
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chaotic nonlinear systems. Please note that while Paluš et al. [6] discussed the coupling
direction reversal in context of specific causal indices, in particular the conditional mutual
information, the notion of comparing strength of causality in one and the other direction
between two variables of the system is used in practice, and under some assumptions
comparing the strength of some index of causality helps inference on causal direction
from observed data [5,11]. However, the use of the comparison of arbitrary causal indices
in both directions is not necessarily valid and might in principle provide different and
indeed wrong answers. For instance, one can conceive scenarios where stronger coupling
coefficient in the dynamical equations provides a weaker statistical significance due to
different temporal scales of the dynamics or signal complexity [13]. Additionally, the value
of the coupling coefficient can give a different result than of some causality index. We shall
get back to the topic of conservation of the dominant direction of causality in the Discussion
section, where we shall separately consider the values of the coupling coefficients, and of
the Granger causality indices.

Let us study the bivariate system with unidirectional coupling in more detail. As
shown earlier, in case that A is regular, perfect causal reversal occurs if and only if A is
normal. Even without relying on the provided solutions of the general conditions (16) one
can easily show that there is no normal matrix among regular matrices of type (18), i.e.,
among those that fulfill both a 6= 0 and d 6= 0. In particular, for the triangular coupling
matrix A, the condition of normality AA> = A>A rewrites as:(

a2 + b2 bd
bd d2

)
=

(
a2 ab
ab b2 + d2

)
(19)

and therefore a2 + b2 = a2 which is in contradiction with b 6= 0.
It is also illustrative to consider the singular cases. While perfect causal reversal does

not occur (unless in the trivial case of b = 0), in one of the cases at least the binary structure
of the causal links is reversed (albeit not the exact coefficients). There are only two options
such that −A1 is singular: a = 0 or d = 0.

If d = 0,

A =

(
a b
0 0

)
, (20)

which leads to (See Appendix A for detailed derivation):

B =

(
a 0

b(1−a2)
1+b2 0

)
. (21)

Please note that perfect causal reversal does not happen as b =
b(1−a2)

1+b2 only if a2 + b2 = 0,
which is in contradiction with the assumption b 6= 0.

If a = 0,

A =

(
0 b
0 d

)
, (22)

the reverse process has a coupling matrix

B =
1

1 + b2

(
b2d bd2

b d

)
. (23)

Here, the reverted process shows bidirectional coupling, and perfect causal reversal
happens again only in the trivial case of b = b

1+b2 , i.e., b = 0. See Appendix A for
detailed derivation.

As we showed that perfect causal reversal does not happen for unidirectionally
coupled bivariate AR(1) models with white noise, it is a natural question whether it can
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happen at all in such systems, and in which dimension. The answer is that the smallest
dimension in which a perfect causal reversal occurs in a nontrivial matrix is three. Consider
the example system with three elements with a normal coupling matrix A the structure of
which is depicted in Figure 1.

t-2 t-1 t

X

Y

Z

t+2 t+1 t

X

Y

Z
Figure 1. System with normal coupling matrix and its reversed system.

The binary structure of the coupling matrix of this system is:

S =

1 1 0
0 1 1
1 0 1

, (24)

and by rescaling it by a suitable coefficient s
λmax

, where λmax is the largest eigenvalue
(in absolute value) of the matrix S, and s ∈ (0, 1) is an optional parameter—in this case
s = 0.8—we assure stationarity of the corresponding AR process. A minimal example
of a unidirectionally coupled AR system exhibiting perfect coupling reversal upon time
reversal would thus be given by for instance:

A =

0.4 0.4 0
0 0.4 0.4

0.4 0 0.4

. (25)

As the matrix A is normal, the coupling matrix B of the reversed process is exactly the
transpose of A:

B =

0.4 0 0.4
0.4 0.4 0
0 0.4 0.4

. (26)

3. Numerical Simulations

In the previous section, we discussed the conditions under which the time reversed
process has reversed or conserved coupling matrix. In particular, we showed that the
sufficient (and under regularity even necessary condition) for the former is the normality
of the coupling matrix A1, while for the latter (conservation), the condition is given by
Equation (14); which is clearly fulfilled for any symmetric matrix A1.

In real-world systems, one might expect that the coupling matrix does not fulfill
the normality condition, and therefore even in linear auto-regressive systems, the causal
structure of the time-reversed process may thus not be exactly reversed. Indeed, already
the analysis of the bivariate case showed that strict reversal generally does not occur,
and unidirectionally coupled system might show as bidirectionally coupled after time
reversal; in fact this is the generic case in case the coupling source being autocorrelated
due to self-coupling. Therefore it is natural to ask to what extent does the reversed time
series causal structure differ from the exactly reversed in example real-world complex



Entropy 2021, 23, 1067 8 of 22

systems, and whether this deviation from coupling reversal is somehow related to (and
can be reasonably predicted from) the properties of the coupling matrix. In particular,
we conjecture that it might be well approximated by the quantitative deviation from the
normality condition that would enforce the exact coupling reversal.

3.1. Measures Introduction

In the following, we use numerical simulations to show that the level to which the
causality is reverted (conserved) on time reversal is indeed well predicted by the deviation
of the coupling matrix from normality (symmetry). In other words, that the difference
between the matrices A and B> strongly depends on the level (a)normality of A, and
likewise the difference between A and B depends on the (a)symmetry of A. To this end, we
will first formally introduce indices of anormality and asymmetry. Please note that these
indices are intended to characterize these particular properties of the matrix itself, rather
than provide some information concerning the existence of specific causal links (so they are
not to be confused with various causality indices used in causal inference). In particular, the
analyses below suggest that the indices of deviation of the coupling matrix from symmetry
and normality correlate substantially with the level of causal reversal/conservation, and
can thus provide a proxy for whether causal reversal/conservation can be expected in
particular (type of) causal structure. Despite their theoretical usefulness for understanding
of the causal reversal/conservation behaviour, their practical application might be of
course limited by the fact that many real-world systems are not well approximated by a
VAR(1) process.

For a square matrix A we define the symmetric part of the matrix As =
1
2
(
A+A>

)
and the anti-symmetric part Aa = 1

2
(
A−A>

)
. The deviation from symmetry is then

defined as ||Aa ||
||As || , where || · || is some matrix norm. In this approach, for a symmetric matrix

the value of the deviation from symmetry is equal to zero and for an antisymmetric it tends
to infinity, and that for non-negative matrices it is normalized into the [0, 1] interval.

In this paper, we use the Frobenius norm which is for a square matrix A ∈ Rn,n

defined as

||A||F =

(
n

∑
i=1

n

∑
j=1
|aij|2

)1/2

. (27)

The resulting measure of asymmetry—the deviation from symmetry—is then de-
fined as

dSym(A) =
||A−A>||F
||A+A>||F

. (28)

Based on the same idea, we define a deviation from normality (matrix is normal if
AA> = A>A) as

dNorm(A) =
||AA> −A>A||F
||AA> +A>A||F

. (29)

From the analysis outlined in Section 2, we know that a relation A = B> holds for
normal matrices (AA> = A>A) as well as A = B holds for symmetric matrices (A = A>).
In the following simulation we will show the relation between the deviation of matrix A
from symmetry (28) and the difference between matrices A and B. For this purpose we
define the normalized difference of these matrices as

←−
d Sym(A) =

||A−B||F
||A+B||F

. (30)
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Additionally, we investigate the relation between anormality (29) and the normalized
difference between A and B>, defined as

←−
d Norm(A) =

||A−B>||F
||A+B>||F

. (31)

Please note that we consider processes with white noise (zero mean, variance equals
to one, that is VAR(1) process in the form

Xt = AXt−1 + Yt, (32)

with white noise Yt.

3.2. Simple Causal Structures

In this part we will support theoretical analysis with numerical simulations. According
to the expression (32) the time series of length T are generated with different choices
of matrix A. These time series are then reversed in time, and the coupling matrix is
subsequently estimated using the arfit function implemented in the MATLAB software.

As a validation example, we use the matrix A introduced in Equation (25). We obtain
the following example estimates for time series of length T ∈ {102, 104, 106} respectively,
showing reasonably fast convergence of the estimates to the theoretically derived matrix B
given in Equation (26):

B ∼

0.290 0.119 0.363
0.212 0.397 0.005
0.152 0.336 0.286

,

 0.387 −0.009 0.391
0.388 0.400 0.015
−0.012 0.410 0.401,

,

0.400 0.002 0.400
0.402 0.399 0.001
0.000 0.399 0.401

. (33)

In the next simulation we explore to what level does the deviation from normality
dNorm(A) determine the imperfection of causal structure reversal

←−
d Norm(A), and similarly

how does the deviation from symmetry dSym(A) relate to the difference between the causal

structure of the forward and time-reversed process
←−
d Sym(A).

For this purpose, we use network topologies defined by a random binary directed
graph given by a binary matrix of dimension n× n with value 1 of the diagonal elements
(corresponding to loops) and with a total density D of nonzero elements. Each such
realization is scaled by a constant s

λmax
, where we set s = 0.8 to provide a ’stable’ matrix

A; from this the indices dSym(A) and dNorm(A) are calculated. Subsequently time series
of length T = 105 are generated according to Equation (32). The time series are reversed,
and the matrix B is estimated using the arfit function and finally

←−
d Sym(A) and

←−
d Norm(A)

is calculated. For the robustness of calculations, the whole process is repeated for 1000
different realizations of random matrix A. Two particular settings of the parameters are
used to provide a comparison with subsequent analysis of complex real-world connectivity
structures, namely n = 42, D = 15% and n = 90, D = 5%.

The results concerning the prediction of conservation of coupling matrix under time
series reversal from symmetry of the input matrix A are shown in Figure 2 Left and
Figure 3 Left. It is apparent, that the asymmetry of the coupling matrix dSym(A) provides
a very good prediction of the conservation of the coupling structure under time reversal
←−
d Sym(A), with the respective Pearson correlation coefficient attaining the value of ρ = 0.99

in both parameter settings. Similarly, Figure 2 Right and Figure 3 Right demonstrate that
the deviation of the coupling matrix from normality quantified by dNorm(A) provides a
very strong prediction of the coupling matrix reversal

←−
d Norm(A), albeit weaker than in the

case of the coupling conservation, with values ρ = 0.89 and ρ = 0.88 respectively.
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0.7

0.75

0.8

0.85

0.3 0.4 0.5 0.6

0.05

0.1

0.15

0.2

0.25

Figure 2. Prediction of the causal structure conservation and reversal from the coupling matrix properties, in a sample of
random directed matrices with full diagonal (matrix size n = 42, density of nonzero elements D = 15%). (Left): causal
structure conservation under time reversal

←−
d Sym(A) as function of the coupling matrix symmetry dSym(A). (Right): causal

structure reversal under time reversal
←−
d Norm(A) as function of the coupling matrix normality dNorm(A). ρ denotes the

correlation coefficient between the considered quantities. The red square denotes the values for the climate model.

0.74 0.76 0.78 0.8

0.74

0.76

0.78

0.8

0.4 0.6 0.8

0.1

0.2

0.3

0.4

Figure 3. Prediction of the causal structure conservation and reversal from the coupling matrix properties, in a sample
of random directed matrices with full diagonal (matrix size n = 90, density of nonzero elements D = 5%). (Left): causal
structure conservation under time reversal

←−
d Sym(A) as function of the coupling matrix symmetry dSym(A). (Right): causal

structure reversal under time reversal
←−
d Norm(A) as function of the coupling matrix normality dNorm(A). ρ denotes the

correlation coefficient between the considered quantities. The red square denotes the values for the brain model.

3.3. Complex Connectivity Structures

So far, we showed that somewhat counter-intuitively, even in linear processes the
time reversal has nontrivial effect on the coupling structure—in a general case it neither
conserves nor reverses it, while these two special phenomena appear under quite specific
conditions of normality (or more generally under fulfillment of the conditions given by
Equation (10)) and symmetry (14), respectively. In the previous subsection, we demon-
strated that indeed for random (ER) graphs, the coupling matrices of the time reversed
process are relatively far from purely reversed or conserved causality, with the variability
in the level of conservation/reversal being very well predicted by the symmetry/normality
of the original (random) coupling matrix.
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This motivates a question concerning the behaviour of more realistic models of real-
world complex structures. To this end, we analyze the time-reversal effect on the coupling
structure of linear vector autoregressive approximation of two archetypal examples of com-
plex systems, the brain network and the climate network. We use the simple order 1 linear
autoregressive process approximation of these processes, which is in line with the model
order for which we derived that simplified condition for causal reversal/conservation.
Therefore, the application of the corresponding indices of deviation from normality and
symmetry is here well motivated. However, it should be kept in mind, that these model
network examples, albeit realistically motivated, of course fall short of the complexity
of the real brain and climate—both in terms of not capturing the nonlinear aspect of
the brain/climate dynamics, and in simplifying the temporal dynamics by limiting the
interactions to a single temporal lag. Indeed, even at the level of spatial and temporal
sampling of the motivating datasets, the linear VAR(1) model is just an approximation,
rather than an optimal model for the data—as model order criteria such as the Bayesian
Information Criterion would suggest that a higher order VAR model would better describe
the generating process. However, the quantification of the (deviation from) the causal
reversal condition for higher-order VAR processes is not available in such a compact form;
so we use only these order-one approximation of the real-world data coupling structures
as motivating examples of somewhat more realistic connectivity matrices than provided by
the ER random graph model.

3.3.1. Earth’s Climate Network

The first example network is an approximation of a large-scale climate interaction net-
work, constructed from regional daily temperature time series. The network has 42 nodes
and was obtained by thresholding (binarizing) the interaction matrix in a data-fitted VAR(1)
model to 15 percent density. In more detail, the original dataset contains the daily surface
air temperature anomalies data obtained from the NECP/NCAR reanalysis dataset [14,15].
In particular, we used the daily air temperature fields at 1000 hPa level, spanning the period
from 1 January 1948 to 31 December 2012 and sampled at 2.5◦ × 2.5◦ angularly regular
Gaussian grid. This original data contains more than 10,000 time series—a relatively dense
grid covering the whole globe. The data were downsampled by remapping to a more
suitable 42-point grid by applying an interpolation scheme based on the quasi- isotropic
icosahedral grids [16] by a procedure implemented in the SCRIP package [17]. Details of
the data origin and preprocessing are described in [18,19].

3.3.2. Brain Network

The other network example is an approximation of brain interaction network that
has 90 nodes and was obtained by thresholding (binarizing) the interaction matrix in a
data-fitted VAR(1) model to 5% density. We use data obtained as part of a study on healthy
subjects brain activity. The activity in 90 brain regions of 84 subjects were measured by
functional magnetic resonance imaging, and temporally concatenated in order to provide
sufficiently long time series (20,160 time points in total) for estimation of the coupling
matrix. Details of the data origin and preprocessing are described in [18,19].

3.3.3. Data Processing

As mentioned above, in preparing an approximate model of these real-world complex
systems, we make the approximation that these datasets correspond to realizations of a
VAR(1) process. Please note that albeit quite coarse and not capturing either the nonlinear
aspects of the dynamics as well the plethora of time scales of these complex systems,
the linear (autoregressive) approximation has been shown to reproduce sufficiently a
range of properties of both the brain and climate network structure [20–23] and provide
robust and interpretable estimate of causal interactions [22,24]. The estimated coupling
matrix is then thresholded to predefined density (low values set to zero, only predefined
amount of entries retained, in this case 15% for the climate matrix, 5% for the brain matrix),
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binarized (non-zero values set to 1) and subsequently normalized by the constant s
λmax

for
the stationarity of the resulting process (all simulations were provided with setting s = 0.8).
This matrix defines the VAR(1) process from which we generate samples of arbitrary length
T (in the simulations, we set T = 105). The sample is then reverted and a VAR(1) model
fitted to it using the arfit MATLAB function, providing thus an estimate of the matrix B.
This matrix is then used to obtain an estimate of the values of

←−
d Norm(A) and

←−
d Sym(A).

3.3.4. Analysis

The resulting values of deviation from symmetry and normality of the random as
well as brain and climate coupling matrices, and imperfection of their coupling conser-
vation/reversal upon time series reversal are shown in Figures 2 and 3. How do the
real-world matrices compare to the sets of matched random matrices? Clearly, both the
brain and climate network show level of asymmetry relatively comparable to the directed
random matrix of the same size and density. The level of coupling conservation upon time
reversal is also similar to that of the asymmetric random matrices, suggesting that the
approximate prediction of

←−
d Sym(A) by

←−
d Sym(A) works relatively well. To be more precise,

both the climate and the brain matrix show slightly more asymmetry and less conservation
under time reversal than random directed matrices of the same size and density, being
safely above the 95-th percentile of the respective random matrix property distributions.

In contrast, in terms of normality, both the climate and brain coupling matrices show
a pronounced deviation from normality, in particular substantially higher than directed
random matrices of the same size and density. Notably, the deviation of the coupling
matrix from perfect reversal under time reversal is also higher than for corresponding
random matrices; as would be predicted by the high deviation of A from normality. These
real-world complex system coupling matrices thus seem to substantially deviate from the
intuition observed in two-dimensional linear systems, where the coupling tends to be
approximately reversed upon time reversal; at least much more so that the realizations of
randomly coupled linear networks do.

4. Discussion

The previous analysis has demonstrated, that even in very simple linear systems, the
operation of time reversal has nontrivial effect on the coupling structure of the system,
which only under very specific conditions corresponds to the reversal of the coupling
structure, i.e., transposition of the matrix A defining the interactions in the case of the
studied case of linear vector autoregressive process. For this particular case, we showed
an explicit condition on the coupling matrix that needs to be fulfilled for the reversal to
occur. Notably, this condition is far from fulfilled for a randomly coupled process, making
perfect reversal an unlikely phenomenon; however we show that the deviation of the
coupling matrix from normality, quantified by an intuitive index that we devised, seems
to very well predict the level to which the reversal occurs. On the other hand, this index
quantifying the deviation of the coupling matrix from normality is motivated by analytical
derivation that showed normality of the coupling matrix as the key property for causal
reversal for autoregressive processes of order one. For higher model orders, the condition
for perfect reversal entails existence of solutions for a set of matrix polynomial Equation (4)
that generally do not lend themselves to such an easy simplification as for order one that
provided the normality condition; in particular, normality of all matrices A1, . . . ,Ap is not
sufficient for perfect causal reversal in the VAR(p) case.

Examples of first order multivariate linear autoreggressive approximation of two real-
world complex systems support the theoretical prediction of ubiquity of imperfect reversal of
the coupling even for linear systems, and suggest that some if not many real-world systems,
even when linear or linearly approximated, might be less prone to coupling reversal under
time reversal than random coupled systems of the same size and density.

Of course, while perfect causal reversal seems reasonably predicted to be rare (as the
coupling structure would have to fulfill very specific set of equations for it to occur), the
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level of (lack) causal reversal may vary widely depending on the structure of the connec-
tivity. The analysis of example VAR(1) processes, including with random connectivity,
real-world systems approximations as well as carefully constructed or simulation-derived
counterexamples, only scratch the surface of the richness of real-world processes here;
we only used examples from the VAR(1) family here as the theoretical analysis provides
the convenient simplification to the normality condition. As noted previously, the VAR(1)
approximation of the brain or climate data does in fact not correspond to the optimal model
fit—the Bayesian Information Criterion would suggest to use a higher order model to
described more accurately the full interaction structure of the data.

Indeed, the VAR(1) approximation for fMRI data, albeit commonly used in practice,
has been shown to be typically not optimal (although the correct model order widely
varies depending on a range of properties of the fMRI datasets) [25]. Similarly, the climate
temperature anomaly data are known to be only approximately linear and stationary
(see [26]), and to contain nontrivial autocorrelation structure [27]. The fact that the VAR(1)
is just an approximation—rather than the optimal model fit—for these datasets, however
does not disprove the observation that even some more realistic rather than purely ran-
dom connectivity patterns suggest that the deviation from causal reversal/conservation
can be reasonably predicted from the deviation from the normality/symmetry. Indeed,
qualitatively similar results are however obtained also on data downsampled by factor
of 2 for the brain dataset and by factor of 3 for the climate dataset, for which indeed the
Bayesian Information Criterion marks the order p = 1 as the optimal model order (see
Figures 4 and 5 for the variant of the original Figures 2 and 3 using the downsampled data).
Indeed, it may be interesting to collate a catalogue of behaviour of different real-world
systems in terms of causal reversal; however it would also entail the difficult task of differ-
entiating properties of the original system and of the observation process and data quality
and specific sampling biases—an enterprise beyond the scope of the current manuscript.
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Figure 4. Prediction of the causal structure conservation and reversal from the coupling matrix properties, in a sample of
random directed matrices with full diagonal (matrix size n = 42, density of nonzero elements D = 15%). (Left): causal
structure conservation under time reversal

←−
d Sym(A) as function of the coupling matrix symmetry dSym(A). (Right): causal

structure reversal under time reversal
←−
d Norm(A) as function of the coupling matrix normality dNorm(A). ρ denotes the

correlation coefficient between the considered quantities. The red square denotes the values for the VAR(1) model of the
climate data downsampled by factor of 3 so that the model order p = 1 provides the optimal model order according to the
Bayesian Information Criterion.
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Figure 5. Prediction of the causal structure conservation and reversal from the coupling matrix properties, in a sample
of random directed matrices with full diagonal (matrix size n = 90, density of nonzero elements D = 5%). (Left): causal
structure conservation under time reversal

←−
d Sym(A) as function of the coupling matrix symmetry dSym(A). (Right): causal

structure reversal under time reversal
←−
d Norm(A) as function of the coupling matrix normality dNorm(A). ρ denotes the

correlation coefficient between the considered quantities. The red square denotes the values for the VAR(1) model of the
brain data downsampled by factor of 2 so that the model order p = 1 provides the optimal model order according to the
Bayesian Information Criterion.

These results may seem counter-intuitive in light of some earlier reports concerning
the coupling in time-reversed systems. The discussion of behaviour of causality measures
on time-reversed observations has generally followed two different albeit interdependent
motivations. First, it was (more or less explicitly) used to provide a control condition or
construct a statistical test for causality detection [5,7,11]. Secondly, it is a subject of deeper
discussion of the nature of causality and the meaning of the arrow of time in both linear
and nonlinear natural systems [6].

In general, while the (approximate) reversal of causal interactions under time reversal
has motivated both formulation of new causality estimation methods as well as theoretical
discussion concerning fundamental properties of causality in linear vs. nonlinear systems,
it is increasingly recognized that the issue is far from binary reversal/non-reversal. For
application in real-world problems, the generalizability of the previous reports to networks
of larger size would be of key importance. We hope that a more detailed analysis of the
simplest VAR(1) approximation of such networks, albeit far from the real-world complexity,
would thus help make next steps to extending the applicability of the proposed concepts to
real-world contexts.

4.1. Relevance for Causality Indices Using Time-Reversal

The use of time-reversed time series for statistical evaluation of causal interactions
in observed systems has been motivated by some perceived limitations of other available
methods for causal inference. While Haaga et al. [7] motivates their interest in time series
reversal by arguing that other methods including Granger causality, transfer entropy and
methods such as convergent cross-mapping can suffer from biases and low statistical power,
others such as Winkler et al. [5] and Haufe et al. [11] note that the application of Granger-
causal measures combined with standard significance testing leads to the detection of
spurious connectivity when applied to electrophysiology data that commonly suffer from
source mixing and observational noise. Thus, while motivations vary, the use of time series
reversal seems potentially relevant both in combination with nonlinear indices as well as
with the widely used Granger causality analysis approach framed in the context of linear
autoregressive processes [11].
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Let us remind the reader that Granger causality analysis, named after Sir Clive Granger,
who proposed this approach to time series analysis in a classical paper [4] follows the basic
idea can be traced back to Wiener [28], stating that if the prediction of one time series can
be improved by incorporating the knowledge of a second time series, then the latter can be
said to have a causal influence on the former. This idea was formalised by Granger in the
context of linear regression models. In the following, we outline the methods of assessment
of Granger causality, following the description given in [29–31]. Consider two stochastic
processes Xt and Yt and assume they are jointly stationary. Let further the autoregressive
representations of each process be:

Xt =
+∞

∑
j=1

a1jXt−j + ε1t, var(ε1t) = Σ1, (34)

Yt =
+∞

∑
j=1

d1jYt−j + η1t, var(η1t) = Γ1, (35)

and the joint autoregressive representation be:

Xt =
+∞

∑
j=1

a2jXt−j +
+∞

∑
j=1

b2jYt−j + ε2t, (36)

Yt =
+∞

∑
j=1

c2jXt−j +
+∞

∑
j=1

d2jYt−j + η2t, (37)

where the covariance matrix of the noise terms is:

Σ = Cov
(

ε2t
η2t

)
=

(
Σ2 Υ2
Υ2 Γ2

)
. (38)

The causal influence from Y to X is then quantified based on the decrease in the
residual model variance when we include the past of Y in the model of X, i.e., when we
move from the independent model given by Equation (34) to the joint model given by
Equation (36):

FY→X = ln
Σ1

Σ2
. (39)

Similarly, the causal influence from X to Y is defined as:

FX→Y = ln
Γ1

Γ2
. (40)

Clearly, the causal influence defined in this way is always nonnegative. When the
system consists of more than two processes, one can use the above described pairwise
Granger Causality Analysis to assess pairwise interactions in each direction. However,
this approach suffers from inherent limitations. To give an example, a system consisting
of three processes X, Y, Z, where Z drives both X and Y, but with different temporal lags,
may erroneously show causal influence between X and Y even if these were not directly
coupled. To deal with such situations, one can work with so-called conditional Granger
Causality, that allows taking into account the variance explained by third variable(s). Please
note that these definitions can be generalised to multivariate variables, as done e.g., in [32].

A key practical question is what can one infer from the value of the estimated Granger
causality index, in particular when can one reject the hypothesis that there is no causal
interaction between the two subsystems. In general, one can depend on some (asymp-
totically) known distribution of the test statistic (causal index), or construct an empirical
distribution that would represent well the null hypothesis of no causal interaction; and
compare the observed value against this empirical distribution. Additionally, as the value
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of the finite-sample estimate of the causality index might be affected by a bias depending
on specific sample properties (e.g., length, autocorrelation or nonlinearity), various sophis-
ticated heuristics have been proposed that would correct for this bias by subtracting the
expected baseline value of the statistic.

In the context of Granger causality, Haufe et al. [11] suggested to contrast the Granger
causality index FX→Y with the one obtained from time-reversed time series F̃X̃→Ỹ and
showed that this procedure, named time-reversed Granger causality (TRGC) robustly
rejects causal interpretations on mixtures of independent signals. In 2016, this approach
has been extended by Winkler et al. [5], who suggested three measures of causality based
on the time reversal effect on the Granger causality index Fx→y. Let us define the net
Granger causality score as F(net)

X→Y = FX→Y − FY→X . One can then define the time-reversed
net Granger causality score as

F̃(net)
X̃→Ỹ

= F̃X̃→Ỹ − F̃Ỹ→X̃ , (41)

the difference-based time-reversed Granger causality score as

D̃X→Y = FX→Y − F̃X̃→Ỹ, (42)

and the net difference-based time-reversed Granger causality score as

D̃(net)
X→Y = F(net)

X→Y − F̃(net)
X̃→Ỹ

. (43)

Please note that in the final score D̃(net)
X→Y, Winkler et al. [5] essentially combined

two useful tricks for controlling for bias of estimates of causality—they contrast to the
other direction of interaction (swapping source and target variable) and to the time-
reversed quantity. These heuristics have been previously used separately in various
contexts [33,34], also in conjunction with nonlinear data analysis approaches; see for
instance the work of Haaga et al. [7] for the time-reversal-based causal inference using
information-theoretical quantities, although their use of the time-reversed surrogate differs
from the current construction.

As a key result, Winkler proposed and proved non-negativity of D̃X→Y and D̃(net)
X→Y in

bivariate system in which causality flows from variable X to Y but not in the other direction
i.e., system represented by triangular matrix of size 2× 2, i.e.,

D̃X→Y ≥ 0 (44)

D̃(net)
X→Y ≥ 0. (45)

The authors have thus laid theoretical foundations to a more complex causal score,
and in a range of numerical simulations showed its advantageous properties, particular in
data confounded by observational (additive) noise, including scenarios where standard
GC and other methods clearly fail, such as the presence of mixed autocorrelated noise.
The (limitations) of applicability in nonlinear dynamical systems with a hidden influential
variable [8] or with non-gaussian noise [9] were further studied.

Importantly, Winkler et al. [5] also state some open questions concerning the use of
the net difference-based time-reversal Granger causality. In particular, its behaviour under
bidirectional information flow and its extension to multivariate signals are considered to be
important fields for further research. As we discuss below, a straightforward generalization
of the appealing properties of coefficients D̃X→Y and D̃(net)

X→Y in bidirectionally coupled or
multivariate systems does unfortunately not hold in full generality; however we comment
on conditions when it is applicable in its original form.

We envisage that in principle the knowledge of these conditions could either be used
directly, in some form of pre-screening of these conditions as assumptions of the time-
reversed Granger causality validity; or perhaps more efficiently, it may help develop a
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variant of the original time-reversed Granger causality approach that would be valid also
for multivariate and bidirectionally coupled systems, providing thus a more generally
applicable causal inference method.

4.2. Case of Normally Coupled Unidirectionally Systems

Importantly, even in the multivariate scenario, for unidirectionally coupled systems,
we can state some positive results using the earlier findings concerning systems with
a normal coupling matrix A. In particular, we can prove the same inequalities (45) for a
multivariate system represented by VAR(1) process whose coupling matrix is normal and in
which information flows from variable X to Y but not in the other direction i.e., FX→Y > 0
but FY→X = 0. As the coupling matrix is normal, the coupling in the time-reversed systems
is perfectly reversed, that is B = A>, and therefore FX→Y = F̃Ỹ→X̃. Then we have for the
difference-based time-reversed Granger causality score in the causal direction:

D̃X→Y = FX→Y − F̃X̃→Ỹ = FX→Y − FY→X = FX→Y > 0. (46)

In addition, similarly:

D̃(net)
X→Y = F(net)

X→Y − F̃(net)
X̃→Ỹ

= FX→Y − FY→X − (F̃X̃→Ỹ − F̃Ỹ→X̃) (47)

= FX→Y − FY→X − (FY→X − FX→Y) = 2FX→Y > 0. (48)

Based on previous numerical simulations we can conjecture that the coefficient D̃X→Y

and D̃(net)
X→Y are also non-negative for systems whose representing matrix is “not far from

normal” i.e., whose deviation from normality is close to zero. This would provide a promise
that these causality scores introduced by Winkler et al. [5] could be reasonably applied for
inference of causal direction in such family of multivariate systems.

4.3. Counterexample for Unidirectionally Coupled Systems

However, one can also construct examples, where these convenient properties fail,
motivating more detailed study and development of related inference techniques. Already
for a trivariate system represented by the VAR(1) process with a coupling matrix A and
corresponding coupling matrix of reversed process B

A =

0.10 0.10 0.90
0.00 0.70 0.90
0.00 0.00 0.90

, B =

 0.20 0.35 −0.00
−0.11 1.13 −0.37
0.33 0.08 0.37

. (49)

with a corresponding Granger causality matrices

F =

0.01 0.07 0.79
0.00 1.49 0.79
0.00 0.00 0.79

, F̃ =

0.04 0.45 0.00
0.01 1.64 0.09
0.32 0.10 0.40

 (50)

we obtain (using numerical simulations) matrices time-reversal Granger causality scores:

D̃ =

−0.02 −0.38 0.79
−0.00 −0.15 0.70
−0.32 −0.10 0.39

, D̃(net) =

 0.00 −0.37 1.11
0.37 0.00 0.80
−1.23 −0.80 0.00

. (51)

As can be seen, there is a unidirectional causal effect from X2 to X1 (i.e., F1,2 > 0, but
F2,1 = 0), but the time-reversed process has ’stronger’ causality in both directions, and
thus the values of the difference-based time-reversed Granger causality scores between
X1 and X2 are negative: D̃X2→X1 < 0. Moreover, even D̃(net)

X2→X1
is negative; and thus

inference depending solely on positivity of the scores would render wrong conclusion in
this particular case.
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4.4. Counterexample for Bidirectionally Coupled Systems

While for the unidirectionally coupled systems, Winkler et al. [5] proved analytically
positivity of the proposed indices for the correct direction, the authors highlighted the inter-
esting question of the behaviour of the time-reverted causality in the case of bidirectional
causality as an open topic for further research. While we showed that in the general case
the coupling matrix is not exactly reverted, for the application of the proposed causality
scores it would be sufficient, if at least the dominant direction of causality was reverted—a
behaviour that Paluš et al. [6] observed in example linear systems, in stark contrast to
selected archetypal nonlinear systems in which causality indices typically conserved the
dominant direction upon time reversal.

While we did not have a full analytical solution for the time-reversed coupling matrix
and the resulting causality scores, we used here (similarly as in the three-dimensional uni-
directionally coupled system) a systematic parameter search to test if any counterexamples
can be numerically found. An example of such counterexample is shown below, already in
dimension n = 2. Please note that the dominant coupling in both forward and backward
time-series is from X2 to X1, which is reflected both in the coupling matrices A and B as
well as in the Granger causality matrices F and F̃, although the (net) difference-based time-
reversed Granger causality matrices D̃, D̃(net) still detect the correct direction of causality
(and thus in this respect, the lowest dimension of counterexample stays at three):

A =

(
0.10 0.70
0.50 0.60

)
, B =

(
0.17 0.64
0.59 0.53

)
(52)

F =

(
0.02 0.86
0.36 0.70

)
, F̃ =

(
0.04 0.67
0.55 0.66

)
(53)

D̃ =

(
−0.02 0.19
−0.19 0.03

)
, D̃(net) =

(
0.00 0.38
−0.38 0.00

)
. (54)

In summary, while we have shown that a straightforward generalization of the useful
concept of difference-based Granger causalities for causal inference in bidirectionally
coupled or higher-dimensional systems is not available, the problem offers an interesting
and rich set of open questions that may stimulate further development of this idea.

5. Conclusions

On top of the general results in the theoretical analysis section, the above discussed
special cases demonstrated, that the situation concerning the coupling structure of the
time-reversed systems is far from trivial already in the relatively simple case of linear
autoregressive processes with white noise and a low dimension (n = 2 or n = 3). However,
for some special cases (such as normality of the coupling matrix in the case of linear vector
autoregressive model of order one), perfect causality reversal can be analytically shown,
and for a broader family of high-dimensional random or complex structures, analytical tools
seem to provide relevant clues concerning the time-reversed process coupling structure.
We further illustrated that the coupling reversal or conservation does not follow strictly the
dividing line between linear and nonlinear systems generally suggested by Paluš et al. [6],
but deviate from it already within the realm of relatively simple linear systems; extending
thus the problematic cases of linear systems with multiple delays and nonlinear systems in
the synchronized regimes mentioned as possible exceptions to such rule of thumb in the
original paper.

Notably, we used a theoretical framework that allows analytical derivation of con-
ditions for causality reversal or conservation in linear systems. While this allowed us to
derive the sufficient conditions for these phenomena in the simplest case of models with
single time lag, further work may focus in particular on deriving necessary conditions, and
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generalizing the family of processes for which they are observed; although this may prove
increasingly technical given the nature of the conditions that need to be considered.
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Appendix A. Bivariate Case

In this section, we will derive the explicit form of reverse process of two special cases

of VAR(1) process with white noise and coupling matrix
(

a b
0 d

)
.

• d = 0

A = −A1 =

(
a b
0 0

)
(A1)

The VAR(1) process with coupling matrixA is stationary if the equation det(A1 + λI) = 0
has all the roots smaller than 1 in absolute value. Since

det(A1 + λI) = det
(
−a + λ −b

0 λ

)
= λ(λ− a), (A2)

the process is stationary for |a| < 1.
We will show that reverse process is given by coupling matrix

B = −B−1
0 B1 =

(
a 0

b(1−a2)
1+b2 0

)
(A3)

and covariance matrix of the noise

B−1
0

(
B−1

0

)>
=

(
1 + b2 −ab
−ab 1+a2b2

1+b2

)
. (A4)

Since det
(
B−1

0

(
B−1

0

)>)
= 1, hence det

(
B−1

0

)
6= 0 and also det(B0) 6= 0. Process is

stationary because

det(B1 + λB0) = det

(
−B0

(
a 0

b(1−a2)
1+b2 0

)
+ λB0

)
= det(B0)det

(
λ− a 0
−b(1−a2)

1+b2 λ

)
= 0 (A5)
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if λ = 0∨ λ = a and |a| < 1 from the stationarity of the original process. The last step
is to prove the fulfillment of the Equations (5) and (6). From (A4) follows

B>0 B0 =

(
1+a2b2

1+b2 ab
ab 1 + b2

)
, (A6)

the Equation (5) is then satisfied because

−A>1 = B>0 B1 = −B>0 B0B−1
0 B1 =

(
1+a2b2

1+b2 ab
ab 1 + b2

)(
a 0

b(1−a2)
1+b2 0

)
=

(
a 0
b 0

)
(A7)

and (6) is satisfied because

B>1 B1 = B>1 B0B−1
0 B1 = A1B−1

0 B1 (A8)

and (
1 + a2 ab

ab 1 + b2

)
= I+A>1 A1 = B>0 B0 +B>1 B1 = B>0 B0 +A1B−1

0 B1 = (A9)(
1+a2b2

1+b2 ab
ab 1 + b2

)
+

(
a b
0 0

)( a 0
b(1−a2)

1+b2 0

)
=

(
1 + a2 ab

ab 1 + b2

)
. (A10)

• a = 0

A = −A>1 =

(
0 b
0 d

)
(A11)

The process is stationary if the equation det(A1 + λI) = 0 has all the roots smaller
than 1 in absolute value. Since

det(A1 + λI) = det
(

λ −b
0 −d + λ

)
= λ(λ− d), (A12)

the process is stationary for |d| < 1. We will show that reverse process is given by
coupling matrix

B = −B−1
0 B1 =

1
1 + b2

(
b2d bd2

b d

)
(A13)

and covariance matrix of the noise

B−1
0

(
B−1

0

)>
=

1
1 + b2

((
1 + b2)2

+ b2d2 bd
bd 1

)
. (A14)

Similarly to previous case, since det
(
B−1

0

(
B−1

0

)>)
= 1, hence det

(
B−1

0

)
6= 0,

det(B0) 6= 0 and process is stationary because

det(B1 + λB0) = det(B0)det

(
λ− b2d

1+b2
−bd2

1+b2
−b

1+b2 λ− d
1+b2

)
= det(B0)(λ− d)λ = 0 (A15)
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if λ = 0∨ λ = d and |d| < 1 from the stationarity of the original process. The last step
is to prove the fulfillment of the Equations (5) and (6). From (A14) follows

B>0 B0 =
1

1 + b2

(
1 −bd
−bd

(
1 + b2)2

+ b2d2

)
, (A16)

the Equation (5) is then satisfied because

−A>1 =
1

(1 + b2)2

(
1 −bd
−bd

(
1 + b2)2

+ b2d2

)(
b2d bd2

b d

)
=

(
0 0
b d

)
(A17)

and (6) is satisfied because

1 0

0 1 + b2 + d2

 = I+A>1 A1 = B>0 B0 +B>1 B1 = B>0 B0 +A1B−1
0 B1 =

1
1 + b2

 1 −bd

−bd
(
1 + b2

)2
+ b2d2

+
1

(1 + b2)2

0 b

0 d

b2d bd2

b d

 =

1 0

0 1 + b2 + d2

. (A18)
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