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Abstract: Human activity recognition (HAR) plays a vital role in different real-world applica-
tions such as in tracking elderly activities for elderly care services, in assisted living environments,
smart home interactions, healthcare monitoring applications, electronic games, and various human–
computer interaction (HCI) applications, and is an essential part of the Internet of Healthcare Things
(IoHT) services. However, the high dimensionality of the collected data from these applications
has the largest influence on the quality of the HAR model. Therefore, in this paper, we propose an
efficient HAR system using a lightweight feature selection (FS) method to enhance the HAR classifi-
cation process. The developed FS method, called GBOGWO, aims to improve the performance of the
Gradient-based optimizer (GBO) algorithm by using the operators of the grey wolf optimizer (GWO).
First, GBOGWO is used to select the appropriate features; then, the support vector machine (SVM)
is used to classify the activities. To assess the performance of GBOGWO, extensive experiments
using well-known UCI-HAR and WISDM datasets were conducted. Overall outcomes show that
GBOGWO improved the classification accuracy with an average accuracy of 98%.

Keywords: human activity recognition; feature selection; gradient-based optimizer; grey wolf
optimizer; metaheuristic

1. Introduction

The widespread use of mobile and smart devices has increased the demand for various
smart home and Internet of Things (IoT) applications [1]. One of the most important
applications is the Internet of Medical Things (IoMT) [2]/Internet of Healthcare Things
(IoHT) [3], in which a real-time tracking, detection, and surveillance system is required for
monitoring people’s daily activities for medical diagnostics, healthy lifestyle purposes or
assisted living environments [4]. In many cases, a such system uses mobile device (such as
a smartphone) sensor data [5]. To this end, human activity recognition (HAR) is a necessary
application for IoHT, which plays an essential role in medical care applications [6].

In previous decades, different techniques have been used for HAR, such as computer
vision methods [7–9] that use cameras to track human motion and actions, and wearable
devices that should be carried by users, such as wearable sensors [10], smartwatches [11],
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and smartphones [12,13]. Additionally, there are other techniques, such as environment in-
stalled sensors [14], and WiFi signals, which include three techniques, namely received sig-
nal strength [15], channel state information [16], and WiFi radar (micro-Doppler radar) [17].
Each of these techniques has its advantages and disadvantages. For instance, computer
vision methods need good light conditions, and they raise significant concerns in terms
of people’s privacy [18]. Wireless methods do not require additional installation, but they
are still in their early stage, and they require more and more improvements. Using carried
sensors, such as smartphones, is preferred because virtually everyone uses smartphones
today, so it is easy to collect data and to track different motions and activities.

With the developments in context-aware and machine learning techniques, researchers
have applied different methods for HAR using data collected from smartphones. Smart-
phones have gained significant popularity for HAR due to three reasons. The first one is the
ubiquitous nature of these small devices, which are used by almost everyone. The second
reason is because of the reliability and efficiency of the procured data, and the third reason
is that less restrictions can be considered in terms of privacy concerns compared to the case
of computer vision methods. Therefore, in recent years, a number of studies have been
proposed using different artificial intelligence (AI) techniques, such as [19–21].

In general, feature selection (FS) plays a vital role in improving classification accuracy
and reducing computation costs. Nature-inspired algorithms such as ant colony optimiza-
tion [22], particle swarm optimization [23], artificial bee colony [24], firefly algorithm [25],
artificial ecosystem-based optimization [26], marine predators algorithm [27], Harris hawks
optimizer [28], grey wolf optimizer [29], polar bear optimization [30] and red fox optimiza-
tion [31], not to mention many others [32], are applicable and robust algorithms for finding
a subset of prominent features while removing the non-informative features.

Especially in HAR, FS methods are popular techniques that help in obtaining high
accuracy rates [33,34]. However, there are some limitations that can affect the performance
of FS methods. For example, obtaining high accuracy rates can only be achieved with
the correct features since some features do not provide improvements to the classification
accuracy. In addition, FS methods are prone to a large number of features (i.e., high
dimensionality), which can result in a high computational cost. Thus, to overcome these
limitations and challenges, an efficient FS method should fulfill certain criteria such as
being light and fast and able to extract relevant features, lower the feature space dimension,
and reduce computation costs in terms of time and resources.

Hybrid algorithms are important for increasing the feature selection capability. Hy-
bridization aims to benefit from each underlying optimization method to create a hybrid
algorithm while minimizing any significant drawbacks. Such hybridization can often
enhance the performance of various systems on complex tasks [35–37].

In our study, we propose a new FS method to improve the HAR system using the
hybridization of two algorithms, namely the gradient-based optimizer (GBO) and grey
wolf optimizer (GWO). The GBO is a novel metaheuristic (MH) algorithm proposed by
Ahmadianfar et al. [38]. The GBO was inspired by gradient-based Newton’s model, which
has two operators, namely the gradient search rule and local escape operator. Moreover,
GBO uses a set of vectors for exploring the search space. To our knowledge, this is
the first study to apply GBO for feature selection. Meanwhile, the GWO algorithm is a
swarm intelligence and MH algorithm inspired by the hunting mechanisms and leadership
hierarchies of grey wolves [39]. The GWO has four types of grey wolves, called alpha, beta,
delta, and omega. These types are applied to emulate leadership hierarchies. Furthermore,
GWO has three hunting steps, called searching, encircling, and attacking prey. In recent
years, the GWO has been adopted to solve various optimization tasks, including feature
selection [40–42].

Contribution

The main contribution of the current study is to provide an efficient HAR system
using smartphone sensors. The proposed system uses advanced AI techniques to overcome
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the complexity and limitations of traditional methods. We investigated the applications of
MH optimization methods to select the best features that enhance the performance of the
proposed HAR system. The GBO and GWO have proven their performance in the literature,
but their individual applications suffer from certain limitations, such as being stuck at the
local optima and the slow convergence. Thus, the combination of GBO and GWO provides
a more robust method that balances between exploration and exploitation stages, in which
the combined method will overcome the local optima problem. In addition, the proposed
GBOGWO models the features as input for the well-known classifier, support vector
machine (SVM), which is applied to classify human activities. Furthermore, extensive
experimental evaluations have been carried out to evaluate the proposed HAR system
performance using a public dataset, called UCI-HAR [43], and to verify its significant
performance in extensive comparisons with existing HAR methods. We applied several
performance measures, and we found that the proposed GBOGWO achieved better results
when compared to several existing methods. Additionally, we also used the WISDM
dataset to verify the performance of the GBOGWO method.

The rest of the current study is structured as follows. Related works are highlighted
in Section 2. The preliminaries of the applied methods are described in Section 3. The pro-
posed GBOGWO system is described in Section 4. Evaluation experiments are studied in
Section 5. Finally, we conclude this study in Section 6.

2. Related Work

In this section, we only focus on the recent related works of HAR using smartphones.
For other HAR techniques, the readers can refer to the survey studies [10,18,44].

Ronao and Cho [45] proposed a deep convolutional neural network (CNN) for tracking
human activities using smartphone sensors. They used the UCI-HAR dataset [43], which
was also used in this paper to test the performance of our proposed method. Their method
achieved an average accuracy of 94.79%. Ahmed et al. [34] proposed a hybrid FS method to
improve HAR using smartphones. They applied both wrapper and filter FS methods using
a sequential floating forward search approach to extract features and then fed these features
to the multiclass support vector machine classifier. The proposed approach showed robust
performance and achieved significant classification results. Chen et al. [46] applied an
ensemble extreme learning machine method for HAR using smartphone datasets. They
applied Gaussian random projection to generate the input weights of the extreme learning
machine, which improves the performance of the ensemble learning. Additionally, they
tested the proposed method with two datasets, and they obtained high accuracy rates
on both datasets. Wang et al. [21] proposed an HAR system using deep learning. They
proposed an FS method using CNN to extract local features. After that, they employed
several machine learning and deep learning classifiers to recognize several activities from
two benchmark datasets. Zhang et al. [47] proposed an HAR model, called HMM-DNN,
which uses a deep neural network to model the hidden Markov model (HMM). The main
idea of this hybrid model is to enhance the performance of the HMM using DNN to be able
to learn suitable features from the learning datasets and improve the classification process.
Cao et al. [48] proposed a group-based context-aware HAR method, called GCHAR. They
used a hierarchical group-based approach to enhance the classification accuracy and reduce
errors. The GCHAR uses two hierarchical classification structures, inner and inter groups,
that are used for detecting transitions through the group of the activities. Wang et al. [49]
proposed an HAR model using a new feature selection method combining both wrapper
and filter and wrapper methods. Moreover, they studied the use of different entrails’
sensors of smartphones and their impacts on HAR. Sansano et al. [50] compared several
deep learning models, including CNN, long short-term memory (LSTM), bidirectional
LSTM (biLSTM), deep belief networks (DBN), and gated recurrent unit networks (GRU),
for human activity recognition using different benchmark datasets. They found that the
CNN methods achieved the best results. Xia et al. [51] proposed a hybrid HAR model that
combined both CNN and LSTM. The hybrid model aims to automatically extract features
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of the proposed activities and classify these activities using a set of a few parameters. They
evaluated the proposed model using different datasets, including the UCI-HAR dataset,
which achieved an average accuracy of 95.78%. Moreover, a few studies have used swarm
intelligence in the HAR field. For example, Elsts et al. [52] proposed an efficient HAR
system using the multi-objective particle swarm optimization algorithm (PSO). The PSO
was applied to select the appropriate features, which also leads to reduce computation
time. They used a random forest (RF) to classify several activities. The results confirmed
that the PSO improved the classification accuracy and reduced the computational cost.
Abdel-Basset et al. [6] proposed a new HAR system, called ST-DeepHAR, which uses an
attention mechanism to improve long short-term memory (LSTM). Two public datasets
were utilized to evaluate the performance of the ST-DeepHAR, which showed significant
performance.

3. Material and Methods

In this section, we describe the datasets used in our experiments. Furthermore, we
present the preliminaries of gradient-based optimization (GBO) and grey wolf optimization.

3.1. UCI-HAR Dataset

Anguita et al. [43] have published a public dataset for activities of daily living. Thirty
participating subjects were asked to follow a protocol for performing 6 activities using
a waist-mounted smartphone, namely walking (WK), walking upstairs (WU), walking
downstairs (WD), sitting (ST), standing (SD), and lying down (LD). A sampling rate of 50 Hz
was used to collect the tri-axial linear acceleration and angular velocity of the smartphone
accelerometer and gyroscope sensors. Each participant performed a sequence of activities in
order. Hence, the raw signals of all activities were registered in one text file per participant.
Due to the low sampling rate and high amount of noise, collected signals were filtered using
a low-pass filter with a corner frequency 20 Hz. Then, body acceleration was separated
from the gravity acceleration component in order to better extract representative features.
After that, additional time and frequency-domain signals were generated from the filtered
body/gravity tri-axial signals such as jerk (or time derivative), signal magnitude using
Euclidean norm, and fast Fourier transformation (FFT). A total of 17 signals were obtained
per subject. Time-domain signals were segmented using fixed-width sliding windows
of a length of 2.56 s with 50% overlapping, and an equivalent rate was applied to FFT
signals. Thus, each window contained approximately 128 data points of activity; such a
selected segmentation rate is supposed to meet the activities of normal people, as justified
in [43]. After that, many useful functions were applied to filter and segment the signals
in order to extract the features including the mean, standard deviation, signal magnitude
area, entropy, energy, autoregressive coefficients and the angle between vectors. Now,
each activity window is represented by a 561-length vector. Authors have also published
separate files for training and testing featured data where 70% of the data samples were
randomly selected for training and the remaining 30% were the independent set for testing.
Thus, the number of examples per activity for the training and testing is indicated in
Table 1. The percentage of each activity in this dataset refers to a more or less balanced
dataset. Hence, it is relevant to design and test different classification and recognition HAR
models from an applicability point of view.
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Table 1. Summary of UCI-HAR activities data.

Activity Abb. Training Test Total Per. (%)

Walking WK 1226 496 1722 16.72
Walking upstairs WU 1073 471 1544 14.99

Walking downstairs WD 986 420 1406 13.65
Sitting ST 1286 491 1777 17.25

Standing SD 1374 532 1906 18.51
Lying LY 1407 537 1944 18.11

Total 7352 2974 10299 100

3.2. Gradient-Based Optimization (GBO)

Within this section, we introduce the basic concept of a new metaheuristic technique
named GBO. In general, GBO simulates the gradient-based Newton’s approach. The GBO
depends on two operators to update the solutions, and each one of them has its own
task. The first operator is the gradient search rule (GSR) which is used to improve the
exploration, while the second operator is the local escaping operator (LEO), which is used
to enhance the exploitation ability.

The first process in GBO is to construct a population X with N solutions, randomly
generated using the following equation:

xi = xmin + rand× (xmax − xmin), i = 1, 2, ..., N (1)

where xmin and xmax are the limits of the search space and rand ∈ [0, 1] denotes a random
number. Then, the fitness value for each solution is computed, and the best solution
is determined.

Thereafter, the gradient search rule (GSR) and direction movement (DM) are applied
to update the solutions (xIt

i , i = 1, 2, ..., N) in the direction (xb − xIt
i ) (where xb refers to

the best solution). This updating process is achieved by computing new three solutions
x1It

i , x2It
i and x3It

i as

x1It
i = xIt

i − GSR + rand× ρ1 × (xb − xIt
i ) (2)

In Equation (2), ρ1 is applied to improving the balance between exploitation and exploration
during the optimization process and it is defined as

ρ1 = 2× rand× α− α (3)

where:
α = |β× sin(3π/2 + sin(β× 3π/2))|

β = βmin + (βmax − βmin)× (1− (It/MaxIt)
3)2

where βmin = 0.2 and βmax = 1.2. Iter denotes the current iterations, and MaxIt is the total
number of iterations. The gradient search rule (GSR) is defined as follows:

GSR = randn× ρ2 × (2× ∆x× xIt
i )/(ypi − yqi + ε) (4)

with:
∆x = rand(1 : N)× |((xb − xIt

r1) + δ)/2|

δ = 2× rand× (|(xIt
r1 + xIt

r2 + xIt
r3 + xIt

r4)/4− xIt
i |)

where rand(1 : N) is a random vector whose dimensions N, r1, r2, r3, and r4 refer to
random integers selected from [1, N]. ρ2 is formulated as defined by Equation (3).

The locations ypi and yqi are updated using Equations (5) and (6):

ypi = rand× (xs + xi)/2 + rand× ∆x (5)
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yqi = rand× (xs + xIt
i )/2− rand× ∆x (6)

with:
xs = xIt

i − randn× ρ1 × (2× ∆x× xIt
i )/(xb − xworst + ε) (7)

x2It
i = xb − GSR + rand× ρ2 × (xIt

r1 − xIt
r2) (8)

x3It
i = xIt

i − ρ1 × (x1It
i − x2It

i ) (9)

Finally, based on the positions x1It
i x2It

i , and x3It
i , a new solution at iteration It + 1 is

obtained:
xIt+1

i = ra × (rb × x1It
i + (1− rb)× x2It

i ) + (1− ra)× x3It
i (10)

where ra and rb denote two random numbers.
Moreover, the local escaping operator (LEO) is applied to improve the exploitation

ability of GBO. This is achieved by updating the solution xIt
i using the following equation

according to the probability pr:

xIt+1
i =

{
xIt

i + f1 ×W1 + f2 × ρ1 ×W3 + u2 ×W2/2 pr < 0.5
xb + f1 ×W1 + f2 × ρ1 ×W3 + u2 ×W2/2 otherwise

(11)

W1 = (u1 × xb − u2 × xIt
k ),

W2 = (xIt
r1 − xIt

r2),

W3 = (u3 × (x2It
i − x1It

i ))

In Equation (11), f1 ∈ [−1, 1] and f2 denote a uniform random number and normal random
number, respectively. u1, u2, and u3 are three random numbers defined as

u1 = L1 × 2× rand + (1− L1) (12a)

u2 = L1 × rand + (1− L1) (12b)

u3 = L1 × rand + (1− L1) (12c)

where L1 represents a binary variable (i.e., assigned to 0 or 1). Therefore, the new solution
is obtained using the following equation:

xIt
k = L2 × xIt

p + (1− L2)× xrand (13)

where L2 is similar to L− 1 and xIt
p refers to a selected solution from X, and xrand denotes a

random solution obtained using Equation (1).
The main steps of the GBO algorithm are presented in Algorithm 1.
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Algorithm 1 The Gradient-Based Optimizer (GBO)

1: Initialize the parameters of GBO: ε, pr, MaxIt Maximum Iteration number, N: Popula-
tion size.

2: Initialize randomly the population of N vectors using Equation (1)
3: Evaluate the position of each vector using the fitness function fit
4: Determine the best and worst solutions : xbest, xworst
5: Let It = 1
6: while It ≤ MaxIt do
7: for each vector xIt

i do
8: Choose four integers randomly in the range [1..N] such that : r1 6= r2 6= r3 6= r4
9: Update the position of the vector xIt+1

i using Equation (14).
10: Evaluate the quality of the vector xIt+1

i using the fitness function f iti
11: end for
12: if rand < pr then
13: Update the position of xIt+1

i using the first branch of Equation (11)
14: else
15: Update the position of xIt+1

i using the second branch of Equation (11)
16: end if
17: Determine the best and worst solutions : xbest, xworst
18: It = It + 1
19: end while
20: Return the optimal solution xbest

3.3. Grey Wolf Optimization

In this section, the steps of the grey wolf optimization (GWO) [39] are described.
The GWO emulates the behaviors of wolves in nature during the process of catching the
prey Xb. The GWO has three groups of solutions named α, β, and γ—each of which has its
own task and represents the first three best solutions, respectively, while the other solutions
are called the µ group.

GWO starts by setting the initial value for a set of solutions X and evaluating the
fitness value for each of them and determines Xα, Xβ, and Xγ. Thereafter, the solutions are
updated using a set of approaches, such as the encircling technique, and it is formulated
as [39]

Xt+1 = Xt
pr − B× D, B = 2b× q1 − b, (14)

D = |A× Xt
pr − Xt|, A = 2q2 (15)

where A and B denote the coefficient parameters, whereas q1 and q2 refer to random
numbers generated from [0, 1]. The value of b sequentially decreases from 2 to 0 with an
increase in the iterations as

b = 2− 2× t/tmax (16)

where tmax refers to the total number of iterations.
The second strategy in GWO is called hunting, and this solution can be updated using

the following Equation [39]:

Xt+1 =
(X1 + X2 + X3)

3
, (17)

X1 = Xt
α − B1 × (Dα), X2 = Xt

β − B2 × (Dβ) (18)

X3 = Xt
γ − B3 × (Dγ)

Dα = |A1 × Xt
α − Xt|, Dβ = |A2 × Xt

β − Xt|, Dγ = |A3 × Xt
γ − Xt| (19)

where Ak = 2q2, k = 1, 2, 3, and Bk = 2b× q1 − b.
The steps of GWO are listed in Algorithm 2 [39].
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Algorithm 2 Grey Wolf Optimization(GWO)

1: Initialize the population X of wolves Xi(i = 1, 2, ..., N) and parameters.
2: Find the fitness of the population.
3: Find alpha (Xα), beta (Xβ) and gamma (Xγ) solutions.
4: while t < tmax do
5: Update the position of each wolf Xi(i = 1, 2, ..., N) based on Equation (17).
6: Find the fitness of population.
7: Update alpha (Xα), beta (Xβ) and gamma (Xγ).
8: t = t + 1
9: end while

10: Return Xα

4. Proposed Approach

Within this section, the steps of the developed HAR method based on a modified
version of the GBO are introduced. The framework of the developed HAR method is given
in Figure 1. The developed method starts by receiving the input data and splits them
into the training and testing sets. This is followed by determining the initial value for the
parameters of the developed HAR model such as the population size, the total number of
generations, and the probability pr. Then, the initial population X is generated and the
quality of each solution Xi, i = 1, 2, ..., N is evaluated. This is achieved through two steps;
the first step is to convert Xi into a binary solution using the following equation:

BXij =

{
1 i f Xij > 0.5
0 otherwise

(20)

where BXi is the binary form of Xi. The second step is to remove the features corresponding
to zeros in BX, which represent irrelevant features. Then, those selected features from the
training set are used to learn the multiclass-SVM classifier and compute the fitness value
as [43,51]

Fiti = λ× ηi + (1− λ)× (
|BXi|
Dim

), ηi = (1− PR) (21)

where PR presents the classification precision.
The next step in the developed model is to find the best solution Xb and the worst

solution. Then, the solutions are updated according to Xb and the operators of GBO and
GWO. Here, GWO is applied to enhance the local escaping operator (LEO) according to
the value of pr. In the case of pr greater than the random value, the operators of GBO are
used to generate a new solution. Otherwise, the operators of GWO are used. By comparing
the fitness value of the new obtained solution with the current solution Xi, we select the
best of them and remove the worst one. The process of updating the solutions is ongoing
until it reaches the stopping criteria. Thereafter, the testing set is reduced according to the
features obtained by the best solution and the performance of the predicted activities is
computed using different classification measures.

Equation (22) illustrates the time complexity analysis of the GBOGWO algorithm:

TGBOGWO = Tinit. + TN(TGSR + (1− p)TGWO
Xnew + pTGBO

Xnew + Tupd.)

=O(ND + NTFE) + O(TND) + O(TFE) (22)

=O(TND + NTFE).

where Tinit. represents the time spent collecting the initial population. p is the probability
of selecting either the GWO update mechanism or GBO exploration subprocedure. TGBO

GSR ,
TGBO

Xnew and TGWO
Xnew each has a time complexity of O(D). TFE refers to the time taken by

the function evaluation, which has a notable enhancement in terms of execution time in
HAR applications due to using classifiers such as multiclass-SVM, random forest, neural
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networks and others. Tupd. denotes the time for evaluating Xnew and updating the best
solution if necessary. T refers to the total number of iterations.

Figure 1. HAR model optimization framework (left) and GBOGWO flow chart (right).

5. Experimental Results and Discussion

The proposed algorithm was applied to improve the classification performance of
the UCI-HAR dataset via a feature selection approach. In this section, the experimental
settings, the results of the proposed approach, the comparisons with other models, and the
classification rates for the concerned dataset with comparison to other studies in the
literature are presented. Moreover, a critical analysis of the obtained results using the
proposed HAR system is given.

5.1. UCI-HAR Dataset

The performance of GBOGWO was exhaustively compared to a set of 11 optimization
algorithms for feature selection. Basic continuous-based versions of the GBO, GWO,
genetic algorithm (GA) [53], differential evolutionary algorithm (DE) [54], moth–flame
optimization (MFO) [55], sine–cosine algorithm (SCA) [56], Harris hawks optimization
(HHO) [57], and manta ray foraging (MRFO) [58] were implemented, in addition the
particle swarm optimization (B-PSO) [59], bat algorithm (B-BAT) [60] and sine–cosine
algorithm (B-SCA) [56]. The settings and parameter values of all algorithms used in the
comparison are provided in Table 2.
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Table 2. Search settings and parameter values of algorithms.

Search settings

lb −10 Lower bound
ub 10 Upper bound
thr 0 Threshold
N 30 Population size
T 50 Maximum number of iterations

Algorithm Parameter Value Description

GBOGWO pr 0.75 Local escape probability

GBO pr 0.5 Local escape probability

GA
crossover 0.4 Crossover percentage between individuals

mutation rate 0.15 Rate of mutation operator
mutation per 0.7 Percentage of mutation operator

MFO b 1.5 Controlling shape of logarithmic spiral

SCA a 2 Controlling range of sine and cosine waves.

B-SCA
a 2 Controlling range of sine and cosine waves.

TF V-shaped
∣∣∣∣ 2
π

atan2(
π

2
· x)

∣∣∣∣

B-BAT

A 0.5 Loudness factor.
r 0.5 Pulse rate

Qmin 0 Minimum frequency
Qmax 2 Maximum frequency

TF V-shaped
∣∣∣∣ 2
π

atan2(
π

2
· x)

∣∣∣∣

B-PSO

Vmax 0.5 Maximum velocity.
Wmax 0.9 Inertia value upper bound
Wmin 0.4 Inertia value lower bound

C1 2.78 Personal learning coefficient
C2 2.78 Global learning coefficient
TF S-shaped 1

1 + exp−x

As a classification task, true positive (TP), true negative (TN), false positive (FP) and
false negative (FN) rates define the commonly used performance metrics for HAR systems,
which are defined as follows:

Accuracy =
TP

TP + TN + FP + FN
(23)

Precision(PR) =
TP

TP + FP
(24)

Recall/Sensitivity =
TP

TP + FN
(25)

Specificity =
TN

FP + TN
(26)

Evaluation metrics of the comparison involve the mean (M) and standard deviation
(std) of the precision (PR), M, and std of the number of selected features (# F), the percent-
age of feature reduction (red (%)), and the execution time. The Wilcoxon statistical test
was used to determine the degree of significant difference between GBOGWO and each
other compared algorithm in terms of the null hypothesis indicator H and significance level
p-value. Each algorithm was repeated for 10 independent runs; this may be considered
as the bottom line for examining the behavior of such a stochastic optimization technique.
The reason refers to the huge execution time when training a multi-class SVM for extremely
long training records (the training set was recorded with the dimension 561). The classifi-
cation rates obtained by the proposed approach were compared to those of the original
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paper of the dataset under study as well as one recent study in the literature. Moreover,
the performance of GBOGWO was compared to commonly used filter-based methods such
as the t-test and ReliefF [61] in feature-selection applications.

All algorithms were implemented in the Matlab 2018a (MathWorks Inc., Natick, MA,
USA) environment using CPU 2.6 GHz and RAM 10 GB.

5.2. Numerical Results of Experiments

Table 3 summarizes the results obtained for the proposed HAR model using various
optimizers. The GBOGWO as a feature selector outperforms other techniques where the
SVM model gives a PR of ≈ 98.13% using 304 features on average. Furthermore, average
accuracy reaches 98%. Thus, the number of features is reduced from 561 to 304, which
achieves a reduction ratio of 45.8%. The standard deviation of the proposed model, together
with GA, are minimal (0.12 and 0.119, resp.) in this comparison. This reflects the good
precision of the feature selection approach for this problem. However, the MRFO found a
reduced feature set with a cardinality of 286.6 on average (i.e., a 52.12% reduction ratio),
however, it seems that some important features were missing, thus the mean PR is 97.77%.
Furthermore, HHO selected more features (approximately 428.6 on average), but the mean
PR was only 97.25%. The results of the Wilcoxon test show that the performance of the
GBOGWO is statistically distinguishable, where the p-value, which is <0.05 for all pairwise
comparisons, together with H = 1, reflects the superiority of the proposed technique.
Under the experimental settings shown in Table 2, GBOGWO with the multiclass SVM
model consumes 50.8 min on average for a single run. This execution time is very close
to other faster optimizers such as GWO, BSCA, SCA, and DE with 49.02, 49.35, 49.8,
and 49.8 min. In comparison, HHO takes a notable long execution time with 128.3 min.
Figure 2 shows a summary of the reported results in Table 3 in a normalized fashion,
which gives more clear intuition about the behavior of GBOGWO according to different
evaluation metrics.

Table 3. Comparison of GBOGWO and other algorithms’ feature selection results.

GBOGWO GWO GA MFO MRFO GBO DE BBAT HHO BSCA SCA BPSO

M PR 98.13 97.82 97.8 97.77 97.73 97.68 97.55 97.34 97.25 97.21 97.18 96.89
Std PR 0.12 0.213 0.119 0.173 0.175 0.179 0.149 0.13 0.137 0.176 0.172 0.148

M # F 304 289.4 285 299.1 286.6 298.5 290.5 288.4 428.6 281.6 282.8 290.3
Std # F 11.09 14.16 9.82 14.51 9.29 36.15 8.92 11.87 68.56 6.85 14.38 12.47
Red (%) 45.8 48.41 49.19 46.68 52.12 46.79 48.12 48.59 23.6 49.8 49.73 48.25

H - 1 1 1 1 1 1 1 1 1 1 1
p-value - 4.3× 10−3 2.4× 10−4 2.1× 10−4 2.3× 10−4 5.2× 10−5 1.3× 10−5 1.3× 10−7 3.2× 10−8 4.9× 10−8 1.7× 10−7 4.3× 10−9

Time
(min) 50.8 49.02 54.78 53.83 95.4 52.3 49.8 50.1 128.3 49.35 49.8 50.03

The confusion matrix, presented in Table 4, provides the rates of PR, sensitivity (Sens.),
and specificity (Spec.) for each single activity. Walking downstairs (WD), lying down
(LD), and walking (WK) were the highest recognized activities with PR rates of 100%,
100%, and 99.2%, respectively, while the worst PR rate was for standing (SD) activity with
93.57%. The recall of most activities was high except for sitting (ST) with 92.46%. It can
also be noticed that the Spec. for all activities is quite good (>98.51%). The proposed
model was able to well distinguish between the group of periodic activities (WK, WU,
WD) and the other one of static or single-transition activities (ST, SD, LD) where the rate of
misclassification is almost zero (only one wrong label between WU and ST in Table 4).



Entropy 2021, 23, 1065 12 of 20

Figure 2. Normalized evaluation metrics of the compared algorithms.

Table 4. Classification rates and confusion matrix of UCI-HAR activities using the proposed model.

True Class

Activities WK WU WD ST SD LD Sens. Spec.

Pr
ed

ic
te

d
C

la
ss WK 496 0 0 0 0 0 100 99.84

WU 0 471 0 0 0 0 100 99.56
WD 4 10 406 0 0 0 96.6 100
ST 0 1 0 454 36 0 92.46 99.67
SD 0 0 0 8 524 0 98.5 98.51
LD 0 0 0 0 0 537 100 100

Precision (PR) 99.2 97.72 100 98.27 93.57 100 98.13

Figure 3 presents 2D visualization for the basic feature records of activities (i.e.,
with 561 features) via carrying out principal component analysis and clustering. In Figure 3,
(WK, WU, WD) in (dark green, blue, black) can be linearly separated from (SD, ST, LD) in
(red, yellow, light green), except for very few records which are clustered to wrong classes
between WU and ST. On the other hand, there is a high degree of similarity between the
extracted features of each of SD and ST. Such similarity has complicated the classification
task; thus, there is notable confusion between SD and ST (on average, 36 wrong labels
in-between).

To summarize the conducted experiments, the proposed feature set for the UCI-HAR
dataset in [43] was useful for the targeted recognition task; however, discarding some
illusive features using the proposed technique proved very useful to improve the overall
performance of such an HAR model. The feature set was successfully reduced by 45.8%,
and at the same time, the mean PR reached 98.13%, and the mean accuracy was 98%.
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Figure 3. Original featured data [43] visualization in 2D.

5.3. Comparison with Other Studies

Recognition rates of the proposed HAR model were compared to each of the original
studies of UCI-HAR dataset [43] and the recent study by [51]. In [43], 561D feature vectors
were provided to a multiclass SVM, which gave a mean PR of 96%. A hybrid model using
LSTM and CNN was applied to segmented sequences of activity signals in [51], which
reported a mean PR of 95.8%. Table 5 shows a comparison of the results obtained herein
and in the aforementioned studies. The notable improvement of whole model performance
is noticed, in particular for WK and ST activities. However, the three models resulted in
low precision for the SD activity.

Table 5. Comparison with other studies in the literature.

Ref. Technique
Activities

PR (%)
WK WU WD ST SD LD

[43] All features+SVM 96 98 99 97 90 100 96
[51] LSTM-CNN 94.65 95.03 100 92.32 93.61 100 95.8

ST-DeepHAR [6] LSTM 99 96 99 95 99 98 97.66
Proposed technique GBOGWO+SVM 99.2 97.72 100 98.27 93.57 100 98.13

5.4. Comparison with Filter-Based Methods

Filter-based methods such as the statistical tests and the ReliefF algorithm [62] are
commonly used for feature selection tasks. Such methods are time-efficient and their
classifier-independent nature simplifies passing the selected feature set to any further
classifier [63]. As a statistical test, the t-test examines the similarity between classes for
each individual feature via mean and standard deviation calculations. It is then possible
to rank features according to the significance importance and finally, define some cut-off
threshold to select a feature set. The RelieF algorithm applies a penalty scheme, where
features that map to different values for the same neighbors are penalized (i.e., negative
weight); and otherwise rewarded. After that, the feature set with non-negative weights is
expected to better represent the concerned classes.

Table 6 gives the results of the comparison between the proposed model and the filter-
based approach using the t-test and ReliefF. ReliefF was able to extract the smallest feature
set, achieving a reduction ratio of 67%, but the GBOGWO was outstanding, according to
the resulting accuracy, sensitivity, and precision. However, the feature set selection using
the t-test was enlarged to 350D, but this did not improve the performance. In Table 6, and
for a typical value λ = 0.99, the proposed GBOGWO fitness was 97.15%. For a more biased
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λ = 0.9 towards reducing the feature set, the fitness of GBOGWO reaches 88.37%. For both
cases of α, the proposed approach is superior to the examined filter-based methods.

Table 6. Comparison with filter-based methods.

Method
Classification Rates (%)

# F Red (%)
Fitness Using Equation (21)

Acc. Sens. PR λ = 0.99 λ = 0.9

t-test 95.12 95.15 95.53 350 37.6 94.58 86.04
ReliefF 96.71 96.62 96.78 183 67 95.81 87.13

Proposed model 98 97.92 98.13 304 45.8 97.15 88.37

The superior performance of the developed method over all other tested methods can
be noticed from the previous discussion. However, the developed method still suffers from
several limitations, such as the relatively large feature set required for achieving reasonable
performance (i.e., 304 features on average for six activities). Thus, it is reasonable to realize
such an HAR system on a smartphone environment to examine both the model size and
real-time behavior. Moreover, enlarging the set of targeted activities is expected to add
more time complexity for training a classifier such as the multi-class SVM.

5.5. Evaluate the Proposed GBOGWO with WISDM Dataset

For further evaluation, we test the proposed GBWGWO with other HAR datasets,
called WISDM [64] dataset. This dataset contains six activities, namely walking (WK),
walking upstairs (WU), walking downstairs (WD), sitting (ST), standing (SD), and jogging
(JG). Table 7 shows the results of the proposed GBOGWO and several optimization methods,
including the GWO, GA, MFO, MRFO, and GBO. From the table, we can see that the
proposed method achieved the best results. It is worth mentioning that the best results for
the WISDM dataset were achieved by using the random forest (RF) classifier; therefore,
in this paper, for the WISDM dataset, we also used the RF.

Table 7. Numerical results for WISDM.

GBOGWO GWO GA MFO MRFO GBO

M Acc 98.87 98.30 98.1 98.21 98.23 98.11
Std PR 0.006 0.002 0.01 0.009 0.013 0.019

M # F 32.7 27.9 43.5 59.9 29.7 25
Std # F 3.77 4.38 4.67 6.33 8.35 0.9
Red (%) 78.2 81.4 71 60 80.2 83.33

H - 1 1 1 1 1
p-value - 6.5× 10−9 7.4× 10−13 1.7× 10−13 1.3× 10−13 2.6× 10−13

Time (min) 65.67 58.57 89.88 67.28 117.28 78.13

A basic version of the RF algorithm with 50 decision trees gives an average accuracy
of 97.5% for the feature set defined in Table 8. Following the pre-processing steps of the
UCI-HAR dataset, each activity signal was separated into body acceleration and gravity
component signals. Then, segments of a length of 128 points (i.e., same segment length
used for UCI-HAR dataset) with 50% overlap were generated for the purposes of real-
time applications. The feature set in Table 8 was generated using simple time-domain
statistics in the three-axes of each segment, notably the mean, standard deviation (STD),
the coefficients of the auto-regressive model (AR) in the order of 4, and the histogram
counts where the number of bins is 5, among others. Moreover, the mean, max, and median
frequencies of each segment in the three-axes enhance the feature set. Considering that the
proposed features are generated for both the body signal and gravity component, then the
cardinality of the feature set reaches 150. Thus, such a feature set can help distinguish the
behavior of the compared algorithms for the WISDM dataset. Since previous studies that
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addressed the WISDM dataset have considered Accuracy to evaluate their algorithms, then
the classification error is set to 1−mean(Accuracy) as shown in Figure 4b.

Table 8. Feature engineering for the WISDM dataset.

Signals Body Acceleration and Gravity Component

Time-domain *

AR coeff. (12); AR coeff. of magnitude (4); acceleration (1);
entropy of jerk (3); histogram (15); kurtosis (3); mean (3);

mean of jerk (3); mean of magnitude (1); max (3);
mean of absolute difference (3); power of gravity (3);

skewness (3); STD (3); STD of jerk (3);
STD of magnitude (1); SMA (1); TA (1)

Frequency-domain Mean freq. (3); max freq. (3); median freq. (3)

Cardinality 150
* AR coeff.: auto-regressive model coefficients; STD: standard deviation; SMA: signal magnitude area; TA: tilt
angle. The enhancement of each statistic/coefficient is mentioned in parentheses.
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Figure 4. Convergence curves for the compared optimization algorithms: (a) UCI-HAR; and
(b) WISDM.

Since the search space of UCI-HAR—as a feature selection problem—is high-dimensional,
then it is a suitable examiner for compared algorithms. Thus, for avoiding redundancy, only
the top six algorithms according to the results in Table 3, namely GBOGWO, GWO, GA, MFO,
MRFO, and GBO, were included in the experimentation of the WISDM dataset.

In Table 7, GBOGWO is able to achieve a mean accuracy (Acc) of 98.87%, which is a
notable optimization for the basic model with a whole feature set of 97.5%. The GBOGWO
outperforms other algorithms according to the Acc of classification only using 32.7 features
on average (78.2% of reduction ratio). However, MFO uses the largest feature set among
examined optimizers with 59.9 features, but it can reach a mean Acc of 98.21%. GBO attains
the minimal feature set with cardinality of 25, but it seems insufficient to achieve a mean
Acc above 98.11%. It was noticed that the STD for all algorithms was less than 0.01, which
may refer to the relatively limited search space (e.g., the feature set size is 150). Moreover,
the Wilcoxon test results in Table 7 ensure that GBOGWO is well distinguished from other
algorithms of comparison.

In Table 9, the selection power of GBOGWO outperforms both the t-test and ReliefF
which tend to attain a large feature set of size 124 and 108, respectively, whilst lesser
mean Acc of 97.58% and 98.11%, respectively. According to the fitness criteria defined in
Equation (21), GBOGWO outperforms both methods in the case of giving most importance
to Acc (i.e., λ = 0.99) or to feature set reduction (i.e., λ = 0.9).
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Table 9. Comparison with filter-based methods for the WISDM dataset.

Method
Classification Rates (%)

# F Red (%)
Fitness Using Equation (21)

Acc. Sens. PR λ = 0.99 λ = 0.9

t-test 97.58 96.01 96.37 124 17.33 96.61 87.9
ReliefF 98.11 96.85 97.32 108 28 97.14 88.37

Proposed model 98.87 98.02 98.54 32.7 78.2 97.88 89

Table 10 shows the confusion matrix of the test set, which represents 30% of whole
samples. The activities ST, SD, and WK, were well recognized with the mean PR that
exceeds 99.5%. It was noticed that the rates of PR, Sens. and Spec. were close for most
activities which reflects that the classification model (features + classifier) was balanced
between such metrics. Most conflicts occur between WU and WD, as well as between
WU and JG where misclassifications reach 27 and 15, respectively. Such conflicts may be
caused by the sensor position (in the pocket); thus, for such applications, it is suggested to
collect activity signals from different positions on the body such as pocket, wrist, waist,
and shoulder.

Table 10. Classification rates and confusion matrix of WISDM activities using the proposed model.
Test set represents 30% of total samples.

True Class

Activities WD ST SD WU WK JG Sens. Spec.

Pr
ed

ic
te

d
C

la
ss WD 426 0 0 27 0 2 93.63 99.85

ST 0 266 1 3 0 0 98.52 100
SD 0 0 216 0 0 0 100 99.98
WU 7 0 0 539 0 15 96.08 99.28
WK 0 0 0 0 1943 0 100 100
JG 0 0 0 2 0 1588 99.87 99.51

Precision (PR) 98.38 100 99.54 94.40 100 98.94 98.54

Figure 5 presents the selections of each of the top six algorithms for both datasets.
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Figure 5. Feature frequency according to the top 6 algorithms for both datasets: (a) UCI-HAR; and
(b) WISDM.

Table 11 focuses on the most frequent features in the optimized feature sets of each al-
gorithm. For UCI-HAR, only features attained by all considered algorithms (e.g., count = 6)
are shown. These features are generated from the body signals of both the accelerometer
(BodyAcc) and gyroscope (BodyGyro) in both the time-domain (with the prefix t) and
frequency-domain (with the prefix f ). For more explanation of such features, the reader can
refer to [43]. For WISDM, the skewness of the y axis of the body signal (Skewness-Y) looks
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like the most important feature as it is attained by every algorithm. Similarly, the tilt angle
(TA), the STD of the jerk of x axis body signal (STD-Jerk-X), and the first coefficient of the
AR model of magnitude signal (AR-Magnitude,1) have a frequency of 5. The maximum
frequency of the z axis of the body signal (Max-Freq-Z) shows most notable effectiveness in
the generated frequency-domain features with a count of 4. It is reasonable to find that body
signal statistics are more useful than those of gravity components for such applications.
Thus, only Gravity-STD-Y and Gravity-Kurtosis-Y appear in the elite feature set.

Table 11. Features selected by top 6 algorithms.

UCI-HAR (Count = 6) WISDM
Index Name Index Name Count

38 tBodyAcc-correlation()-X,Y 52 Skewness-Y 6
93 tBodyAccJerk-min()-X 14 TA 5

100 tBodyAccJerk-iqr()-X 21 STD-Jerk-X 5
132 tBodyGyro-max()-Z 30 AR-Magnitude,1 5
135 tBodyGyro-min()-Z 8 AR-Y,4 4
183 tBodyGyroJerk-entropy()-X 9 AR-Z,1 4
196 tBodyGyroJerk-arCoeff()-Z,3 23 STD-Jerk-Z 4
229 tBodyAccJerkMag-mad() 24 Mean-X 4
298 fBodyAcc-kurtosis()-X 26 Mean-Z 4
352 fBodyAccJerk-mad()-Y 27 STD-X 4
353 fBodyAccJerk-mad()-Z 28 STD-Y 4
355 fBodyAccJerk-max()-Y 33 AR-Magnitude,4 4
367 fBodyAccJerk-entropy()-X 35 STD-Magnitude 4
433 fBodyGyro-max()-X 67 Max-Freq.-Z 4
447 fBodyGyro-entropy()-Y 72 Acceleration 4
557 angle(tBodyGyroMean,gravityMean) 103 Gravity-STD-Y 4

130 Gravity-Kurtosis-Y 4

6. Conclusions and Future Work

In this study, we presented a robust human activity recognition (HAR) system based
on data collected from smartphones. We developed a new feature selection (FS) method
that was applied to enhance the HAR system using a hybrid MH algorithm that combine
both gradient-based optimization (GBO) and grey wolf optimization (GWO). The proposed
method, called GBOGWO, was applied to the SVM classifier to classify the activities of well-
known UCI-HAR dataset. The combination of GBO and GWO overcomes the shortcomings
of individual methods by exploiting the advantages of both algorithms to build an efficient
FS method, which is employed to build a robust HAR classification system. Compared to
existing HAR methods, and also to several metaheuristic algorithms that are applied as FS
methods with SVM classifier, the developed GBOGWO has shown better performance in
terms of classification accuracy and other performance metrics. Additionally, we evaluated
the proposed GBOGWO with the WISDM dataset using the RF classifier. It also obtained
the best results compared to several optimization algorithms.

The developed method could be further improved in future work to address more com-
plex HAR datasets that may contain two or more human activities conducted simultaneously.
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37. Damaševičius, R.; Woźniak, M. State Flipping Based Hyper-Heuristic for Hybridization of Nature Inspired Algorithms; Springer:

Berlin/Heidelberg, Germany, 2017; Volume 10245, pp. 337–346.
38. Ahmadianfar, I.; Bozorg-Haddad, O.; Chu, X. Gradient-based optimizer: A new Metaheuristic optimization algorithm. Inf. Sci.

2020, 540, 131–159. [CrossRef]
39. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
40. Emary, E.; Zawbaa, H.M.; Hassanien, A.E. Binary grey wolf optimization approaches for feature selection. Neurocomputing 2016,

172, 371–381. [CrossRef]
41. Abdel-Basset, M.; El-Shahat, D.; El-henawy, I.; de Albuquerque, V.H.C.; Mirjalili, S. A new fusion of grey wolf optimizer algorithm

with a two-phase mutation for feature selection. Expert Syst. Appl. 2020, 139, 112824. [CrossRef]
42. Al-Tashi, Q.; Rais, H.M.; Abdulkadir, S.J.; Mirjalili, S.; Alhussian, H. A review of grey wolf optimizer-based feature selection

methods for classification. In Evolutionary Machine Learning Techniques; Springer: Berlin/Heidelberg, Germany, 2020; pp. 273–286.
43. Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J.L. A public domain dataset for human activity recognition using smart-

phones. In Proceedings of the ESANN 2013 Proceedings, European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, Bruges, Belgium, 24–26 April 2013; Volume 3, p. 3.

44. Jobanputra, C.; Bavishi, J.; Doshi, N. Human activity recognition: A survey. Procedia Comput. Sci. 2019, 155, 698–703. [CrossRef]
45. Ronao, C.A.; Cho, S.B. Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst.

Appl. 2016, 59, 235–244. [CrossRef]
46. Chen, Z.; Jiang, C.; Xie, L. A novel ensemble ELM for human activity recognition using smartphone sensors. IEEE Trans. Ind.

Inform. 2018, 15, 2691–2699. [CrossRef]
47. Zhang, L.; Wu, X.; Luo, D. Human activity recognition with HMM-DNN model. In Proceedings of the 2015 IEEE 14th

International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), Beijing, China, 6–8 July 2015; pp. 192–197.
48. Cao, L.; Wang, Y.; Zhang, B.; Jin, Q.; Vasilakos, A.V. GCHAR: An efficient Group-based Context—Aware human activity

recognition on smartphone. J. Parallel Distrib. Comput. 2018, 118, 67–80. [CrossRef]
49. Wang, A.; Chen, G.; Yang, J.; Zhao, S.; Chang, C.Y. A comparative study on human activity recognition using inertial sensors in a

smartphone. IEEE Sens. J. 2016, 16, 4566–4578. [CrossRef]
50. Sansano, E.; Montoliu, R.; Belmonte Fernández, Ó. A study of deep neural networks for human activity recognition. Comput.

Intell. 2020, 36, 1113–1139. [CrossRef]
51. Xia, K.; Huang, J.; Wang, H. LSTM-CNN Architecture for Human Activity Recognition. IEEE Access 2020, 8, 56855–56866.

[CrossRef]
52. Elsts, A.; Twomey, N.; McConville, R.; Craddock, I. Energy-efficient activity recognition framework using wearable accelerometers.

J. Netw. Comput. Appl. 2020, 168, 102770. [CrossRef]
53. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
54. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob.

Optim. 1997, 11, 341–359. [CrossRef]
55. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 2015, 89, 228–249.

[CrossRef]
56. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96, 120–133. [CrossRef]
57. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.

Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]
58. Zhao, W.; Zhang, Z.; Wang, L. Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications.

Eng. Appl. Artif. Intell. 2020, 87, 103300. [CrossRef]

http://dx.doi.org/10.3390/sym12091460
http://dx.doi.org/10.3390/electronics10040447
http://dx.doi.org/10.3390/sym9100203
http://dx.doi.org/10.1016/j.eswa.2020.114107
http://dx.doi.org/10.3390/app8091521
http://dx.doi.org/10.1371/journal.pone.0124414
http://dx.doi.org/10.3390/s20010317
http://www.ncbi.nlm.nih.gov/pubmed/31935943
http://dx.doi.org/10.1016/j.amc.2010.12.053
http://dx.doi.org/10.1007/s00354-010-0102-z
http://dx.doi.org/10.1016/j.ins.2020.06.037
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.neucom.2015.06.083
http://dx.doi.org/10.1016/j.eswa.2019.112824
http://dx.doi.org/10.1016/j.procs.2019.08.100
http://dx.doi.org/10.1016/j.eswa.2016.04.032
http://dx.doi.org/10.1109/TII.2018.2869843
http://dx.doi.org/10.1016/j.jpdc.2017.05.007
http://dx.doi.org/10.1109/JSEN.2016.2545708
http://dx.doi.org/10.1111/coin.12318
http://dx.doi.org/10.1109/ACCESS.2020.2982225
http://dx.doi.org/10.1016/j.jnca.2020.102770
http://dx.doi.org/10.1038/scientificamerican0792-66
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1016/j.knosys.2015.07.006
http://dx.doi.org/10.1016/j.knosys.2015.12.022
http://dx.doi.org/10.1016/j.future.2019.02.028
http://dx.doi.org/10.1016/j.engappai.2019.103300


Entropy 2021, 23, 1065 20 of 20

59. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

60. Yang, X.S.; Gandomi, A.H. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput. 2012, 29, 464–483.
[CrossRef]

61. Kononenko, I.; Šimec, E.; Robnik-Šikonja, M. Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF. Appl.
Intell. 1997, 7, 39–55. [CrossRef]

62. Kira, K.; Rendell, L.A. A practical approach to feature selection. In Machine Learning Proceedings 1992; Elsevier: Amsterdam,
The Netherlands, 1992; pp. 249–256.

63. Urbanowicz, R.J.; Meeker, M.; La Cava, W.; Olson, R.S.; Moore, J.H. Relief-based feature selection: Introduction and review.
J. Biomed. Inform. 2018, 85, 189–203. [CrossRef]

64. Weiss, G.M.; Lockhart, J. The impact of personalization on smartphone-based activity recognition. In Proceedings of the
Workshops at the 26th AAAI Conference on Artificial Intelligence, Toronto, ON, Canada, 22–26 July 2012.

http://dx.doi.org/10.1108/02644401211235834
http://dx.doi.org/10.1023/A:1008280620621
http://dx.doi.org/10.1016/j.jbi.2018.07.014

	Introduction
	Related Work
	Material and Methods
	UCI-HAR Dataset
	Gradient-Based Optimization (GBO)
	Grey Wolf Optimization 

	Proposed Approach
	Experimental Results and Discussion
	UCI-HAR Dataset
	Numerical Results of Experiments
	Comparison with Other Studies
	Comparison with Filter-Based Methods
	Evaluate the Proposed GBOGWO with WISDM Dataset

	Conclusions and Future Work
	References

