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Abstract: In this study, the impacts of TD on the energy spectra and thermal properties of LiH,
TiC and I2 diatomic molecules is considered. The Schrodinger equation in cosmic string spacetime
is solved with the generalized Morse potential using the well-known (NU) method. The energy
spectra and eigenfunction are obtained respectively. The energy spectra is used to obtain the partition
function which is then used to evaluate the thermal properties of the system is evaluated accordingly.
We find that the energy spectra in the presence of the TD differ from their flat Minkowski spacetime
analogue. The effects of the deformation parameter and TD on the thermal properties of the system
is also analysed in detail. We observe that the specific heat capacity of the system tends to exhibit
quasi-saturation as the deformation parameter and topological defect approaches unity. The results
of our study can be applied in the astrophysical situation where these modifications exist in the
understanding of spectroscopical data and it may be used as a probe of the presence of a cosmic
string or a global monopole in the Universe.

Keywords: Nikiforov–Uvarov (NU); topological defect; diatomic molecule; thermal properties

1. Introduction

The deficiency of the harmonic oscillator in the description of interatomic interactions
in diatomic molecules brought about the Morse potential in 1929 [1,2]. The triumph of
this model cannot be overemphasized, although there have been several modifications
due to its shortfalls in modern spectroscopic studies. This has led researchers to propose
more interaction potentials, such as Improved Manning Rosen potential [3], Frost–Musulin
potential [3], Rosen–Morse potential [3,4], etc. Moreover, it is the pursuit of every molecular
physicist to continuously seek a better molecular or interaction potential that perfectly
simulates, as it were, the interatomic interactions in diatomic molecules. With this in mind,
we are inspired to adopt an interaction potential named the generalized Morse potential
(GMP), ref. [5] given as:

V(r) = D0

(
1− e−δ(r−re)

)2
+ D1

(
q− e−δ(r−re)

)2
(1)
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In respect to what has been observed in previous studies of molecular potential, Ikot
et al. [5] modified the Morse potential to a general form so as to allow for more physical
applications and a comparative analysis to existing studies with other molecular potentials.
In addition, in molecular physics, researchers have, in recent times, paid great attention to
obtaining a modified version of potential function by employing potential energy functions
with more parameters. The results from these investigations have been found over the
years to closely agree with experimental data from those with fewer parameters. This
model (GMP) will be an important tool for spectroscopists to represent experimental data,
verify measurements, and make predictions [6–10]. In recent times, researchers have paid
great attention to solving the SE with various potential models, because it contains all the
necessary information about the system. A number of researchers have carried out research
in this direction [11–16].

Furthermore, for many years, the study of quantum dynamics of a single particle
interacting in a given potential with a topological defect has been a subject of great interest
to researchers. The formation of a topological defect is thought to have occurred during
a phase transition in the early universe [17–20]. The effects of topological defects on
the dynamics of both non-relativistic and relativistic quantum mechanical systems have
recently piqued researchers’ interest, such as screw dislocation [21], bound eigenstates
of electron and holes to a declination. Furtado et al. [22] studied the landau levels in the
presence of a topological effect [23], a coulomb and quantum oscillator problem in conical
space [24] and the hydrogen atom in curve–space time [24], etc.

Topological defects play an important role in modifying the physical properties of
many quantum systems, and they have long been a popular topic in fields such as con-
densed matter and gravitational physics. In gravitation, topological defects appear as
monopoles, strings, and walls [25,26]. In condensed matter physics, they are vortices in
superconductors or superfluids [27,28], domain walls in magnetic materials [29], solitons
in quasi-one-dimensional polymers [29,30] and dislocations or disclinations in disordered
solids or liquid crystals [31]. A change in the topology of a medium caused by a linear
defect in an elastic medium, such as a disclination, dislocation, or dispiration, or a cosmic
defect in spacetime, has a certain impact on the medium’s physical properties [32]. How-
ever, in view of these studies, no research article has yet studied the energy spectra and
thermal properties of GMP in a medium with a global monopole (GM).

A global monopole is an exotic object that may have been formed during the phase
transition in the very early universe. When the corresponding vacuum is non-contractible,
M ∼= S2 [26]. Such an object can exist, for example, due to the spontaneous breaking of
global SO(3) symmetry. Its gravitational field has been studied by Barriola and Vilenkin
(BV), who found that the metric is Minkowski-like, and though not flat, it suffers from a
deficit in solid angle [26,27].

Lately, another area of research that has gained unparalleled attention is the study of
thermal properties of quantum systems [33–35]. It is thus very expedient to research the
effect of declination on particle dynamics in a quantum system based on the information
gathered [22,36–45]. However, to the best of our knowledge, no study in the literature has
scrutinized the impact of the cosmic string parameter on the energy spectra and thermal
properties of LiH, TiC and I2 diatomic molecules. These molecules were considered for
diatomic molecules because of their wide industrial applications.

The major goal of this paper is two-fold: first, we studied the energy shift related with
a non-relativistic quantum particle interacting with the GMP in the spacetimes generated
by a cosmic string for selected diatomic molecules. Further, we analyzed the effects of the
topological defect on the thermal these diatomic molecules.

This paper is organized as follows. In Section 2, we present a review of the Nikiforov–
Uvarov (NU) method. In Section 3, we present the theory and calculations. In Section 4,
we evaluate the thermal properties of the generalized Morse potential with a topological
defect. In Section 4, we discuss the effects of the topological defect on the energy spectra



Entropy 2021, 23, 1060 3 of 17

and thermal properties of LiH, TiC and I2 diatomic molecules placed in the gravitational
field of a cosmic string. Finally, in Section 5, we draw some conclusions.

2. Nikiforov–Uvarov (NU) Method

The NU approach reduces a second-order linear differential equation to a generalized
hypergeometric form equation [46–53]. The method produces a solution in terms of
special orthogonal functions, as well as the energy eigenvalue. With the right coordinate
transformation, s = s(r), the equation is transformed as follows [52]:

ψ′′ (s) +
τ̃(s)
σ(s)

ψ′(s) +
σ̃(s)
σ2(s)

ψ(s) = 0 (2)

In order to find the solution to Equation (2), a wave function of the form [52]:

ψ(s) = φ(s)y(s) (3)

is used. On substitution of Equation (3) into Equation (2), the hyper-geometric equation [52]
is obtained as follows:

σ(s)y′′ (s) + τ(s)y′(s) + λy(s) = 0 (4)

The wave function is given as:

φ′(s)
φ(s)

=
π(s)
σ(s)

. (5)

The hyper-geometric-type function y(s) is expressed in terms of the Rodrigues relation
as [52]

yn(s) =
Bn(s)
ρ(s)

dn

dsn [σ
n(s)ρ(s)] (6)

where Bn` is the normalization constant and ρ(s) is the weight function, which satisfies the
condition below:

d
ds

(σ(s)ρ(s)) = τ(s)ρ(s) (7)

where also,
τ(s) = τ̃(s) + 2π(s) (8)

For bound solutions, it is required that

dτ(s)
ds

< 0 (9)

Therefore, the function π(s) and the parameter λ required for the NU method are
defined as

π(s) =
σ′(s)− τ̃(s)

2
±

√(
σ′(s)− τ̃(s)

2

)2
− σ̃(s) + kσ(s) (10)

λ = k + π′(s) (11)

The values of k are obtained if the discriminant in the square root of Equation (10)
vanish, so the new eigen equation becomes

λn = −ndτ(s)
ds

− n(n− 1)
2

d2σ(s)
ds2 (12)

where n = 0, 1, 2, . . .
By equating Equations (11) and (12), the energy eigenvalue is obtained.
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3. Theory and Calculations

For spacetime with a point-like global monopole (PGM), the line element that explains
it is given by [54,55]:

ds2 = −c2dt2 +
dr2

α2 + r2dθ2 + r2 sin2 θdϕ2 (13)

where 0 < α = 1− 8πGη2
0 < 1 is the parameter related to the PGM which depends on the

energy scale η0. Furthermore, the metric (13) portrays a spacetime with scalar curvature

R = Rµ
µ = 2

(
1− α2)

r2 (14)

In this way, the Schrödinger equation (SE) is given as follows:

− }2

2µ
∇2

LBψ
(→

r , t
)
+ V(r, t)ψ

(→
r , t
)
= i}

∂ψ
(→

r , t
)

∂t
(15)

where µ is the particle’s mass, ∇2
LB = 1√

g ∂i
(√

ggij∂j
)

with g = det
(

gij
)
, is the Laplace–

Beltrami operator and V(r, t) = V(r) is GMP (1). Thereby, the SE for the GMP in a medium
with the presence of the PGM (1) is

− }2

2mr2

[
α2 ∂

∂r

(
r2 ∂

∂r

)
+

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂ϕ2

]
ψ(r, θ, ϕ, t) + Vψ(r, θ, ϕ, t) = i}∂ψ(r, θ, ϕ, t)

∂t
(16)

In what follows, let us consider a particular solution to Equation (16) given in terms
of the eigenvalues of the angular momentum operator L̂2 as

ψ(r, θ, ϕ, t) = e−i En` t
}

U(r)
r

Y`,m(θ, ϕ) (17)

where Y`,m(θ, ϕ) are spherical harmonics and R(r) is the radial wave function. Then, by
substituting Equation (17) into Equation (16), we obtain radial wave equation

d2U(r)
dr2 +

[
2m
}2α2

(
En` − D0

(
1− e−δ(r−re)

)2
− D1

(
q− e−δ(r−re)

)2
)
− `(`+ 1)

α2r2

]
U(r) = 0 (18)

Over the years, it has been known that equations of the form of (18) cannot be solved
in the presence of the centrifugal term, `(`+1)

α2r2 . In a bid to conquer this hurdle, Pekeris [56]
proposed an approximation scheme [56] to solve this problem. In view of this, to overcome
the barrier in Equation (18), we adopt the Pekeris approximation scheme [56] to bypass
with the centrifugal term:

}2`(`+ 1)
2µα2r2 = η

(
C0 + C1e−βx + C2e−2βx

)
(19)

where x = r−re
re

β = δre, η = }2`(`+1)
2µα2r2

e
and Ci is the parameter of coefficients i = 0, 1, 2 and

they are obtained as follows:
C0 = 1− 3

β + 3
β2

C1 = 4
β −

6
β2

C2 = − 1
β + 3

β2

(20)

By using approximation in Equation (19) and using the change of coordinate s = e−2δr,
the radial part of the SE with the GMP reduces to

d2U(s)
ds2 +

1
s

dU(s)
ds

+
1
s2

[
−εn` + γ0s− γ1s2

]
U(s) = 0 (21)
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where

−εn` =
2µr2

e
}2α2β2

(
En` − D0 − D1q2 − ηC0

)
, γ0 = 2µr2

e
}2α2β2 (2D0 − 2D1q− ηC1)

γ1 = 2µr2
e

}2α2β2 (D0 + D1 + ηC2)
(22a)

Comparing (21) with the hypergeometric equation of Equation (2), we obtain the
following polynomials:

τ̃ = 1, σ(s) = s, σ2(s) = s2, σ̃(s) = −εn` + γ0s− γ1s2 (22b)

The polynomial π(s) is given by,

π(s) = ±
√

γ1s2 + (k− γ0)s + εn` (23)

To find the expression for k, the discriminant of (10) is equated to zero. Thus,
we obtain,

k = −γ0 ±
√

γ1εn` (24)

The substituting k in π(s) in Equation (23),

π(s) = ±(
√

γ1s−√εn`) (25)

Taking the negative value of π(s) in Equation (25) to obtain,

π′(s) = −
√

γ1 (26)

To obtain the polynomial τ(s), we use τ(s) = τ̃(s) + 2π(s)

τ(s) = 1− 2
√

γ1s + 2
√

εn` (27)

The derivative of τ(s) in Equation (27),

τ′(s) = −2
√

γ1 < 0 (28)

The parameter λ is defined as,

λ = γ0 − 2
√

γ1εn` +
√

γ1 (29)

λn is expressed as,
λn = 2n

√
γ1 (30)

The eigenvalue expression holds if

λ = λn (31)

εn` =

(
γ0

2
√

γ1
−
(

n +
1
2

))2
(32)

Substituting Equation (22a) into (32) and evaluating it, we obtain the energy as follows:

En` = D0 + D1q2 +
}2`(`+ 1)

2µα2r2
e

(
1− 3

β
+

3
β2

)
− }2β2α2

2µr2
e

(
γ0

2
√

γ1
−
(

n +
1
2

))2
(33)

To find the eigenfunction, the weight function is first evaluated. From Equation (7),
we obtain

ρ(s) = s2
√

εn` e−2
√

γ1s (34)
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Integrating Equation (5), we obtain

φ(s) = s
√

εn` e−
√

γ1s (35)

Recalling y(s) is expressed in Rodrigues relation (5) and using (34), we obtain

yn(s) = Bn(s)s−2
√

εn` e2
√

γ1s dn

dsn

[
sn+2

√
εn` e−2

√
γ1s
]

(36)

The polynomial solution of yn in Equation (36) is expressed in terms of the associated
Laguerre polynomials, which is one of the orthogonal polynomials, that is

yn(s) = L2
√

εn`
n (2

√
γ1s) (37)

Combining the Laguerre polynomials yn(s) and φ(s) in Equations (37) and (35), the
radial wavefunction are constructed as

ψn`(s) = Bn`s
√

εn` e−
√

γ1sL2
√

εn`
n (2

√
γ1s) (38)

4. Thermal Properties of Generalized Morse Potential (GMP)

All thermodynamic properties can be obtained from the system’s partition function,
according to the extensive literature and basic text [33–35]. This means that a good evalua-
tion of the system’s partition function would serve as the starting point for evaluating all
of the system’s other thermal functions. An easy summation over all possible vibrational
energy levels accessible to the system can be used to compute the vibrational partition
function. Given the energy spectrum (33), the partition function Z(Λ) of the GMP at finite
temperature T is obtained with the Boltzmann factor as [33–35]:

Z(Λ) =
nmax

∑
n=0

e−ΛEn (39)

with Λ = 1
kT and with k is the Boltzmann constant.

Substituting Equation (33) in (39), we have:

Z(Λ) =
nmax

∑
n=0

e
−Λ(D0+D1q2+ }2`(`+1)

2µα2r2
e
(1− 3

β +
3

β2 )−
}2β2α2

2µr2
e

(
γ0

2√γ1
−(n+ 1

2 ))
2
)

(40)

where n is the vibrational quantum number, and n = 0, 1, 2, 3 . . . nmax, nmax denotes the
upper bound vibration quantum number. The maximum value nmax can be obtained
by setting dEn

dn = 0. Converting the summation sign in (40) to an integral, it yields the
following expression:

Z(Λ) =

nmax∫
0

e−Λ(ξ−χ(
γ0

2√γ1
−(n+ 1

2 ))
2
)dn (41)

where
ξ = D0 + D1q2 + }2`(`+1)

2µα2r2
e

(
1− 3

β + 3
β2

)
χ = }2β2α2

2µr2
e

(42)

If we set t = γ0
2
√

γ1
−
(

n + 1
2

)
, we can rewrite the above integral in Equation (34)

as follows:

Z(Λ) = −
t2∫

t1

e−Λ(ξ−χt2)dt (43)
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where
t1 = t = γ0

2
√

γ1
− 1

2 ,

t2 = γ0
2
√

γ1
−
(

nmax +
1
2

) (44)

Using Mathematica 9.0 to integrate the integral in Equation (43) yields the following
vibrational partition function of the generalized Morse potential with topological defects:

Z(Λ) =
e−Λξ

√
π
(

Er f i
[
t1
√

Λ
√

χ
]
− Er f i

[
t2
√

Λ
√

χ
])

2
√

Λ
√

χ
(45)

where is Er f i is the error function. The classical partition function is represented by the
above expression, Equation (45). All thermodynamic properties of the generalized Morse
potential with topological defects can be obtained in the following, including the free
energy, mean energy, entropy and specific heat capacity from the partition function. The
following expressions can be used to calculate the thermodynamic functions of LiH, TiC
and I2 [33–35]:

F(Λ) = − 1
Λ ln Z(Λ),

U(Λ) = − d ln Z(Λ)
dΛ ,

S(Λ) = ln Z(Λ)−Λ d ln Z(Λ)
dΛ ,

C(Λ) = Λ2 d2 ln Z(Λ)

dΛ2 .

(46)

Mathematica 9.0 is used to evaluate and plot the thermodynamic quantities.

5. Applications

In this section, the results obtained in the previous sections are used to study LiH, TiC
and I2 diatomic molecules in the presence of a topological defect. These diatomic molecules
are selected because of their wide applications and studies by several authors. For instance,
Oyewumi et al. [56] studied the thermal properties of these molecules with the shifted
Deng–Fan potential. Ikot et al. [16] obtained the thermal properties of LiH using improved
screened Kratzer potential. Again, Rampho et al. [57] studied the effects of external fields
on the energy spectra, thermal and magnetic properties of LiH using improved screened
Kratzer potential. We categorically state here that the authors of [57–59] studied LiH, TiC
and I2 diatomic molecules in the absence of a topological defect. However, we are inspired
to scrutinize the effects of this defect on the energy spectra and thermal properties of these
molecules. The experimental values of molecular constants for the lowest (i.e., ground)
electronic state of the LiH, TiC and I2 diatomic molecules are taken from the literature [56]
and shown in Table 1 below.

Table 1. Spectroscopic constants of the diatomic molecules studied in the present work [56].

Molecules D0=D1=De re(Å) δ(Å
−1

) µ(amu)

LiH 2.515267 1.5956 1.128 0.880122
TiC 2.66 1.79 1.5255 9.606079
I2 1.5556 2.662 1.8643 63.45224

5.1. Energy Spectra

We used the following conversions: }c = 1973.269 eVA and 1 amu = 931.5× 106eV(A)−1

for all computations [58]. Table 2 shows the numerical energy spectra En`(eV) for LiH,
TiC and I2 molecules for different quantum states with various values of the topological
and deformation parameter. It is observed that for a given quantum state, the energy
decreases as the deformation parameter increases. However, if one pays close attention
to the behavior of the energy spectra as it varies with the α, we immediately see that the
energy increases with increasing α. This is consistent with the result of an earlier study by
Marques and Bezerra [60].
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Table 2. Energy spectra En`(eV) for LiH, TiC and I2 molecules for different quantum states with
various values of the topological and deformation parameter.

LiH TiC I2

State α q = 0.5 q = 1.0 q = 0.5 q = 1.0 q = 0.5 q = 1.0

1s 0.4 0.3512750 0.0491954 0.3480500 0.0207404 0.2001070 0.0075446
0.8 0.3878990 0.0981492 0.3635600 0.0414403 0.2057560 0.0150801
1.0 0.4061210 0.1225350 0.3713000 0.0517750 0.2085760 0.0188444

2s 0.4 0.4242820 0.1468610 0.3790290 0.0620996 0.2113950 0.0226064
0.8 0.5319810 0.2915470 0.4251940 0.1238350 0.2282570 0.0451305
1.0 0.5850140 0.3630740 0.4481390 0.1545660 0.2366570 0.0563616

2p 0.4 0.3599230 0.0608046 0.3487440 0.0215881 0.2001590 0.0076027
0.8 0.3900530 0.1010420 0.3637330 0.0416519 0.2057680 0.0150946
1.0 0.4074970 0.1243840 0.3714100 0.0519104 0.2085840 0.0188537

3s 0.4 0.4963230 0.2435600 0.4098460 0.1032970 0.2226450 0.0376316
0.8 0.6721940 0.4810760 0.4861790 0.2055810 0.2506110 0.0750343
1.0 0.7578630 0.5975680 0.5239660 0.2563430 0.2645080 0.0936497

3p 0.4 0.4328560 0.1583860 0.3797210 0.0629450 0.2114460 0.0226645
0.8 0.5340970 0.2943980 0.4253660 0.1240450 0.2282700 0.0451449
1.0 0.5863600 0.3648880 0.4482490 0.1547000 0.2366650 0.0563708

3d 0.4 0.3771840 0.0839731 0.3501330 0.0232833 0.2002630 0.0077189
0.8 0.3943590 0.1068260 0.3640800 0.0420752 0.2057940 0.0151237
1.0 0.4102470 0.1280790 0.3716320 0.0521811 0.2086010 0.0188723

4s 0.4 0.5673970 0.3392920 0.4405010 0.1443320 0.2338590 0.0526202
0.8 0.8085400 0.6667380 0.5465170 0.2866790 0.2728190 0.1047920
1.0 0.9246700 0.8260200 0.5987810 0.3571080 0.2921310 0.1307090

4p 0.4 0.5048230 0.2550000 0.4105360 0.1041400 0.2226970 0.0376896
0.8 0.6742740 0.4838850 0.4863500 0.2057900 0.2506240 0.0750487
1.0 0.7591800 0.5993490 0.5240750 0.2564770 0.2645170 0.0936590

4d 0.4 0.4499690 0.1813850 0.3811050 0.0646356 0.2115500 0.0227805
0.8 0.5383290 0.3000960 0.4257100 0.1244660 0.2282950 0.0451739
1.0 0.5890510 0.3685160 0.4484690 0.1549690 0.2366820 0.0563893

4f 0.4 0.4029900 0.1186020 0.3522150 0.0258259 0.2004190 0.0078931
0.8 0.4008110 0.1154930 0.3645990 0.0427100 0.2058330 0.0151672
1.0 0.4143700 0.1336200 0.3719640 0.0525871 0.2086260 0.0189001

N/B: α = 1 means absence of topological defect.

In Figure 1a,b, the energy spectra is plotted as a function of the principal quantum
number n, angular momentum `, the deformation parameter q, and topological defect, α
for various diatomic molecules. In Figure 1a, the energy is plotted against the principal
quantum number, n. We see that, as the principal quantum number increases, the energy
increases as well. However, upon comparison between the molecules, the molecule with
highest energy is LiH, followed by TiC and then I2. In Figure 1b, the energy is plotted
against the angular momentum, `. The energy increases with increasing angular momen-
tum for LiH but was quasi-constant for TiC and I2 Figure 1c shows a plot of the energy
versus the deformation parameter, q. The energy spectra are seen to decrease as the de-
formation parameter increases. This is observed in all three molecules studied. Figure 1d
shows the energy of the system versus the topological defect. The energy of the system
increases as the topological defect increases.



Entropy 2021, 23, 1060 9 of 17

Entropy 2021, 23, x FOR PEER REVIEW 10 of 20 
 

 

1.0 0.7578630 0.5975680 0.5239660 0.2563430 0.2645080 0.0936497 
3p 0.4 0.4328560 0.1583860 0.3797210 0.0629450 0.2114460 0.0226645 

 0.8 0.5340970 0.2943980 0.4253660 0.1240450 0.2282700 0.0451449 
 1.0 0.5863600 0.3648880 0.4482490 0.1547000 0.2366650 0.0563708 

3d 0.4 0.3771840 0.0839731 0.3501330 0.0232833 0.2002630 0.0077189 
 0.8 0.3943590 0.1068260 0.3640800 0.0420752 0.2057940 0.0151237 
 1.0 0.4102470 0.1280790 0.3716320 0.0521811 0.2086010 0.0188723 

4s 0.4 0.5673970 0.3392920 0.4405010 0.1443320 0.2338590 0.0526202 
 0.8 0.8085400 0.6667380 0.5465170 0.2866790 0.2728190 0.1047920 
 1.0 0.9246700 0.8260200 0.5987810 0.3571080 0.2921310 0.1307090 

4p 0.4 0.5048230 0.2550000 0.4105360 0.1041400 0.2226970 0.0376896 
 0.8 0.6742740 0.4838850 0.4863500 0.2057900 0.2506240 0.0750487 
 1.0 0.7591800 0.5993490 0.5240750 0.2564770 0.2645170 0.0936590 

4d 0.4 0.4499690 0.1813850 0.3811050 0.0646356 0.2115500 0.0227805 
 0.8 0.5383290 0.3000960 0.4257100 0.1244660 0.2282950 0.0451739 
 1.0 0.5890510 0.3685160 0.4484690 0.1549690 0.2366820 0.0563893 

4f 0.4 0.4029900 0.1186020 0.3522150 0.0258259 0.2004190 0.0078931 
 0.8 0.4008110 0.1154930 0.3645990 0.0427100 0.2058330 0.0151672 
 1.0 0.4143700 0.1336200 0.3719640 0.0525871 0.2086260 0.0189001 

N/B: 1α =  means absence of topological defect. 

In Figure 1a,b, the energy spectra is plotted as a function of the principal quantum 
number n , angular momentum  , the deformation parameter q , and topological defect, 
α  for various diatomic molecules. In Figure 1a, the energy is plotted against the principal 
quantum number, n . We see that, as the principal quantum number increases, the energy 
increases as well. However, upon comparison between the molecules, the molecule with 
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5.2. Partition Function

In Figure 2a–c, the partition function is plotted as a function of the Boltzmann factor
Λ = 1

kT , deformation parameter, q and topological defect, α for various diatomic molecules.
In Figure 2a, the partition function is plotted against Λ. We see that as Λ increases, the
partition decreases. In Figure 1b, the partition function is plotted against the deformation
parameter, q. The partition function monotonically decreases as the q increases for the LiH
diatomic molecule, but increases with rising temperature for TiC and I2. Figure 1c shows a
plot of the energy versus the topological defect, α. The partition function is seen to decrease
as the defect increases (i.e., α→ 1). This is observed in all three molecules studied.

5.3. Free Energy

In Figure 3a–c, the free energy is plotted as a function of the Boltzmann factor Λ = 1
kT ,

deformation parameter, q and topological defect, α for various diatomic molecules. In
Figure 3a, the free energy is plotted against Λ. The free energy increases monotonically
as the temperature increases. The free energy of LiH was found to be highest, followed
by TiC and then I2. In Figure 3b, the free energy is plotted against q. The free energy for
LiH first peaks in the interval 0 < q < 0.3 and then decreases rapidly beyond this region.
However, for TiC and I2, the free energy decreases with increasing q for I2. In Figure 3c, the
free energy is plotted against α. The free energy increases monotonically as the topological
defect increases.
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Figure 2. Partition function as a function of: (a) Λ for various diatomic molecules; (b) as a function
of q for various diatomic molecules; (c) as a function of α for various diatomic molecules.

5.4. Entropy

In Figure 4a–c, the entropy is plotted as a function of the Boltzmann factor Λ = 1
kT ,

deformation parameter, q and topological defect, α for various diatomic molecules. In
Figure 4a, the entropy is plotted against Λ. The entropy decreases with increasing Λ. In
Figure 4b, the entropy is plotted against q. We see that the entropy decreases as the defor-
mation parameter increases. Figure 4c shows a plot of the entropy against the topological
defect. The entropy again decreases as the defect rises.
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5.5. Average Energy

In Figure 5a–c, the average energy is plotted as a function of the Boltzmann factor
Λ = 1

kT , deformation parameter, q and topological defect, α for various diatomic molecules.
In Figure 5a, the average energy is plotted against Λ. The average energy declines as
the Λ increases. In Figure 5b, the average energy is plotted as a function of q for various
diatomic molecules. The average energy for LiH first peaks in the interval 0 < q < 0.3 and
then decreases rapidly beyond this region. However, for TiC and I2, the average energy
decreases with increasing q. In Figure 5c, the average energy is plotted against α. The
average energy increases monotonically as the topological defect increases.
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5.6. Specific Heat Capacity

In Figure 6a–c, the specific heat capacity is plotted as a function of the Boltzmann
factor Λ = 1

kT , deformation parameter, q and topological defect, α for various diatomic
molecules. In Figure 6a, the specific heat capacity is plotted against Λ. The specific heat
capacity increases as Λ increases. The trend also reveals that the specific heat capacity
saturates. In Figure 6b, the specific heat capacity is plotted as a function of q for various
diatomic molecules. The specific heat capacity for LiH reveals a sinusoidal behavior as the
deformation parameter varies. The specific heat capacity of TiC decreases with increasing
q and that of I2 increases with increasing q. In Figure 6c, the specific heat capacity is
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plotted against α. The specific heat capacity increases monotonically as the topological
defect increases.
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6. Conclusions

In this research article, we have scrutinized the effects of topological defect on the
energy spectra and thermal properties of the generalized Morse potential for LiH, TiC and
I2 diatomic molecules. We see here that the presence of the defect and deformation can be
used to alter the behavior of the system and its thermal properties. We also found that to
create an upward shift in the energy spectra, the topological defect is required, whereas
the deformation parameter can be used as a controller or an enhancer. The effects of the
topological defect and deformation parameter on the thermal properties of the system is
duly analyzed. We observe that the specific heat capacity of the system tends to exhibit
quasi-saturation at large as the deformation parameter and topological defect approaches
unity. Conclusively, we note here that our study of the generalized Morse potential in
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non-trivial gravitational background, such as what we treated in this study, will aid in the
understanding of the problems of combining quantum mechanics and general relativity.
The present model (GMP) could be applied for calculating the mass spectra of heavy
mesons such as charmonium and bottomonium [61–63].
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List of Abbreviations

GMP Generalized Morse potential
NU Nikiforov–Uvarov
LiH Lithium hydride
TiC Titanium carbide
I2 Iodine
Λ = 1

kT Boltzmann factor
Z(Λ) Partition function
F(Λ) Free energy
S(Λ) Entropy
U(Λ) Average energy
C(Λ) Specific heat capacity
T Temperature
q Deformation parameter
α Topological defect (TD)
n Vibrational quantum number
` Rotational quantum number
En`(eV) Energy spectra
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