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Abstract: Recently, deep reinforcement learning (RL) algorithms have achieved significant progress in
the multi-agent domain. However, training for increasingly complex tasks would be time-consuming
and resource intensive. To alleviate this problem, efficient leveraging of historical experience is essen-
tial, which is under-explored in previous studies because most existing methods fail to achieve this
goal in a continuously dynamic system owing to their complicated design. In this paper, we propose
a method for knowledge reuse called “KnowRU”, which can be easily deployed in the majority of
multi-agent reinforcement learning (MARL) algorithms without requiring complicated hand-coded
design. We employ the knowledge distillation paradigm to transfer knowledge among agents to
shorten the training phase for new tasks while improving the asymptotic performance of agents. To
empirically demonstrate the robustness and effectiveness of KnowRU, we perform extensive experi-
ments on state-of-the-art MARL algorithms in collaborative and competitive scenarios. The results
show that KnowRU outperforms recently reported methods and not only successfully accelerates
the training phase, but also improves the training performance, emphasizing the importance of the
proposed knowledge reuse for MARL.

Keywords: multi-agent reinforcement learning; knowledge reuse; knowledge distillation

1. Introduction

Reinforcement learning (RL) has made great progress in solving complicated tasks,
such as Atari games [1], board games [2], and video-game playing [1]. With the compelling
performance of single-agent models, multi-agent RL (MARL) tasks, such as collaboration
and competition among multiple agents, have piqued the interest of researchers in several
fields [3,4], as the applications of MARL seems to be evident.

Current MARL algorithms are still highly task-specific and lack the ability to generalize
to new environments. Moreover, for resource-limited embedded systems, training the
MARL system from scratch would be extremely time-consuming and resource intensive
because of the MARL system’s high complexity. Efficient transfer and use of knowledge
between tasks can alleviate the aforementioned issues; sustainable efforts have been made
in this field. One category of solutions employs the transfer learning paradigm to reuse the
knowledge of historical experience, which can relieve the burden of training a new model
with previous experience [5].

However, most existing transfer learning methods for multi-agents mainly depend
on the hand-coded design, which requires knowledge from domain experts. For example,
a method based on the Pepper algorithm [6] proposed by [7] is used to obtain strategies
for opponents in adversarial scenarios and calculate policies against them. Then, agents in
new scenarios evaluate the opponents’ strategy and reuse the knowledge by learning from
the calculated policy. Similarly, a genetically programmed approach [8] utilizes strategies
from previously trained networks to new tasks. A set of neural networks are trained to
predict the value of each action and obtain a set of action strategies to build a multi-tiered
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architecture for agents to learn when to trigger which strategy in new tasks. However,
these approaches mainly rely on hand-coded design, which is closely related to specific
tasks, such as the mapping of state variables or modeling of opponents. Obviously, owing
to the difficulties in professional and hand-coded design for tasks, existing methods that
require sufficient domain knowledge are not universal enough and are difficult to deploy.
It is desirable to reuse knowledge from previous experience using a method that can be
widely used and easily deployed without considering how and what to transfer.

In this paper, we propose a method for knowledge reuse called KnowRU, which can
be easily deployed in MARL algorithms. KnowRU can shorten the training phase for new
tasks while improving the asymptotic performance of agents. Our motivation is derived
from knowledge distillation (KD) [9], which has been successfully applied in the field of
computer vision. By leveraging the knowledge of well-trained agents in previous tasks as
a historical experience, we employed the KD approach to transfer knowledge to agents
for new tasks. Here, we suppose that the action taken by the agent in response to the
environment is the simplest form of knowledge, and that action is determined by the
network’s output. Therefore, mimicking the output is a potentially feasible way to reuse
the knowledge of historical agents. During the training phase of new tasks, agents not only
achieve higher rewards in the environment, but also mimic the outputs of previous agents.
In this way, agents can learn from varying rewards and derive knowledge by mimicking
historical agents. Knowledge from historical agents can be viewed as a fundamental
consensus among different tasks owing to discrepancies in the tasks. Empirical experiments
were conducted on different tasks and MARL algorithms to validate the effectiveness of
KnowRU. Figure 1 illustrates an example in which agents must work together to reach the
closest target as soon as possible. We retained the well-trained agents from the previous
task; agents in the target task can observe how the well-trained agents would work in the
same situation and transfer knowledge by mimicking the observed actions.

Figure 1. Overview of KnowRU. Agents in the target task mimic historical agents’ actions in the same
situation, and then effectively reuse the knowledge in the previous task and allow further learning in
a new environment.

The contributions in this paper are as follows:

• We propose a task-independent KD framework for MARL, which focuses on not only
accelerating the training phase, but also improving asymptotic performance for new
tasks.

• Different strategies are explored to further improve the knowledge transfer perfor-
mance.

• Extensive empirical experiments demonstrate the effectiveness of KnowRU in different
task scenarios with different MARL algorithms.
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2. Related Work

A multi-agent system (MAS) can be defined as stochastic games (Markov games,
SG) [10], which extend from basic Markov decision processes (MDPs). Based on these
theories, many excellent MARL algorithms have been proposed in recent years. The con-
ventional approaches developed for basic MDPs, such as Q-Learning [11] and policy
gradient [12], fail to train agents well in MAS because they have no head for considering
environmental dynamics due to non-stationary policies of other agents. Instead, the MARL
algorithms based on the actor–critic architecture [13], such as multi-agent deep determin-
istic policy gradient (MADDPG) [14], consider all agents’ information with a centralized
critic. Furthermore, MAAC [15] learns a centralized critic with an attention mechanism to
help agents focus on vital information.

However, because of the high sample complexity of conventional RL methods, train-
ing agents from scratch every time is difficult, especially in a continuous variational task,
which would cost a considerable amount of time and computational resources. Trans-
fer learning [16] is a practical approach to alleviate the problem via knowledge reuse.
The vanilla MARL algorithms [17–20] focus only on designing some mechanism to im-
prove the learning process of the current task. There are some methods aimed at mapping
the relationships among tasks. For example, ref. [21] used the task relations to aggregate
specific strategies in source tasks and generate an abstract policy that is used to help
agents quickly adapt to new tasks. However, the indescribable relations among tasks
are the difficulty of the abstracting policy. The use of evolutionary algorithms to transfer
knowledge in an evolved multi-agent system is a feasible approach. Ref. [22] presented a
neuro-evolutionary method that uses a neural network to codify agents’ policies, optimizes
the network’s topology, and weights though interactions with respect to the environment.
However, the method relies heavily on humans to define parameters and mapping between
tasks. These above-mentioned transfer learning approaches differ from our method in
the following ways. (1) They mainly focus on how and what to transfer between tasks.
(2) The nifty artificial design for specific tasks based on sufficient domain knowledge is the
key to their success. In this study, KnowRU only requires a policy model related to target
tasks, without considering the model structure, relationships between tasks, or task-specific
design. In comparison, KnowRU shows wider application prospects and can be aggregated
into more MARL algorithms in a more convenient way.

KD is a type of knowledge transfer method, which was first proposed by [23] and has
since become popular [9]. KD compresses the knowledge of large-scale complex models
(teachers) into small and efficient models (students) to facilitate the deployment of models on
devices with insufficient computing resources. The idea of KD inspired us to train the small
student model with not only true labels but also soft targets provided by the well-performed
large teacher model. Currently, the main KD methods can be divided into three categories:
logits-based methods for learning the output layer, feature-based methods for learning
the hidden layers, and relation-based methods for learning the relations between network
layers. Some studies were also conducted on the application of KD in RL [24,25]. They
mainly focus on making use of agent-level knowledge to tackle the problems in a single
RL task with a KD paradigm. However, our primary focus was knowledge reusability in
multi-agent tasks and to solve the problem of agents’ rapid adaptation to the dynamic
changes of tasks in experiments.

3. Methodology
3.1. Preliminaries and Notations

MDPs [5] in MARL can be denoted as a tuple, < S, U, T, R1...n, γ >, where S is the
state space, U is the joint action space, T is the state transition function, Ri is the reward
function of agent i, γ is the discount factor, and n is the number of agents. The observation
of agent i is in the current state Si is Oi; then, the agent takes action Ai with policy πθi ,
and the environment produces the next state according to T. Agent i can obtain rewards Ri
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from the environment according to state Si and action Ai. Agents simply aim to take proper
actions that lead to maximal total return, R = ∑T

t=0 γtRt
i , where T is the time horizon.

Actor–Critic (AC): To overcome high variance of policy gradient, the actor–critic [13]
methods use a function as the critic to evaluate actions and replace the return term of the
policy gradient with the value function. In RL, given the state and action, according to the
Bellman equation, the critic function can be written as Equation (2), and the returns can
be estimated so that the actor can be updated at every step. In this way, the models can
be updated with less noise. The AC framework lays down a solid foundation for future
multi-agent algorithms. Let π in Equation (2) be the agent’s policy.

Qπ(st, at) = Ert ,st+1∼E[r(st, at)+ γEat+1∼π [Qπ(st+1, at+1)]
]
. (1)

MADDPG: MADDPG [14] is an extension of the deep deterministic policy gradient
(DDPG) [26], which uses “target+online” networks and the experience replay to deal with
the failure of AC in continuous action space. The critic in vanilla DDPG focuses only
on the local information of the current agent, rather than the global view, resulting in
a not-so-stable performance in multi-agent systems. Instead, MADDPG exploits global
observations and actions for all agents with a centralized action-value function:

Qπ
i (x, a1, . . . , aN), (2)

where x = (o1, . . . , oN) and i denotes the current agent. Let π = {π1, . . . , πN} be the set of
all agent policies. If all actions taken by all agents are accessible, the learning processes
conform to the Markov property. This is why MADDPG works well in multi-agent systems.

MAAC: MAAC [15] makes a significant contribution to the AC-based MARL algo-
rithm with the attention mechanism. Every agent queries information from other agents’
observations and actions, and then estimates its value based on the information. The Q-
value function, Qψ

i , considers the current agent i’s observation, action, and other agents’
contributions as follows:

Qψ
i (o, a) = fi(gi(oi, ai), xi), (3)

where fi is a multilayer perceptron (MLP), and gi is an MLP embedding function. The con-
tribution from the key-value memory model is a weighted value of other agents:

xi = ∑
j 6=i

αjvj = ∑
j 6=i

αjh
(
Vgj

(
oj, aj

))
, (4)

where vj denotes a function of agent j’s embedding that is encoded with an embedding
function, and then linearly transformed by shared matrix V; h is an element-wise nonlin-
earity; and αj represents the attention weight.

In this study, we are in line with the AC methods and consider MADDPG and MAAC
as our baselines.

3.2. KD

As mentioned earlier, because the teacher model provides more useful information
for the student model, KD has achieved success in the field of computer vision. The soft
probability output of trained teachers is key to distillation. Let lt be the input log of the
final softmax layer of the teacher network, where lt = [l1, l2, ...., lj]. The logits are converted

into probabilities qt = [q1, q2, ...., qj] using the following softmax function: qi =
eli

Σje
lj

where

i represents the i-th neuron. To extract more information compared with true labels, [9]
proposed softening the teacher probabilities with temperature T:

qi =
exp(li/T)

Σjexp(lj/T)
. (5)
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In KD, such dark knowledge from the soft output of the teacher provides more in-
formation than that from the true labels. Based on the same image input x, the teacher
and student networks produce probabilities qt(x) and qs(x) with Equation (5), respec-
tively. The gap between qt(x) and qs(x) is usually penalized by the Kullback–Leibler (KL)
divergence (Equation (7)) or cross-entropy loss:

LKD = T2KL(qs(x), qt(x)). (6)

KL(P‖Q) = ∑ P(x) log
P(x)
Q(x)

(7)

where P(x) and Q(x) are two probability distributions of the random variable x. Tempera-
ture T in Equation (6) also aims to soften the output of the teacher network. Then, through
back propagation of LKD, the student network could reuse knowledge from the teacher
network. KD inspires us to believe that minimizing the gap between previous agents and
current agents through the skill of distillation is the essence of knowledge reuse. We then
draw upon the KD thought in our MARL research to reuse knowledge and verify the
feasibility of KnowRU in Section 3.3.

3.3. Knowledge Reuse via Mimicking

Consider a real-world scenario in which our training task is constantly variational
and the number of agents is also increasing. It is impractical to train agents from scratch
whenever a task changes due to the high cost of time and resources. There are some
similarities between tasks, and the knowledge learned in previous tasks can be regarded
as historical experiences. Thus, knowledge reuse from historical experiences is important.
However, we have argued that some existing works cannot reuse knowledge directly and
effectively without exquisite design or expert-level experience. To solve such problems as
rapid adaptation to dynamic changes in the number of agents, it is necessary to find an
easier and more practical way of reusing knowledge. We aimed at designing a method that
works well in such scenarios.

In this study, based on the concept of KD, we propose to reuse knowledge through
mimicking to minimize the gap between tasks in MAS. We designed a task-independent
knowledge reuse method that can be applied based on multiple MARL algorithms without
a task-specific design. First, we used the policy models of the well-trained agents homoge-
neous with the current training agents in previous tasks related to the current task. Then,
we paired every current agent and every homogeneous policy model. If the number of
current agents is greater than the number of policy models, repeated pairings are allowed.
During the training process, the same observations of the current agent were input into
both the previous policy and current models. Based on the same input, the logits, which
are the inputs of the last softmax layer, are used to measure the gap between tasks with
a loss function. Simultaneously, current agents receive feedback from the environment
through returns. It is worth mentioning that using logits and softmax is more of a direct
and simple approach but using other characteristics of neural networks to measure the gap
is also feasible.

In this way, the agents of new tasks are trained by not only maximizing the total
return from the environment but also by mimicking the output of previously well-trained
policy models. Finally, considering the differences between tasks, determining how to
reasonably combine the mimicking gap loss and returns from the environment is essential
for training. Here, we used hyperparameter α to adjust the relationship between these two
factors and finally obtain the total loss, Lall , for back propagation. Figure 2 illustrates the
main components of KnowRU based on the AC framework that is widely used in MARL.
KnowRU has been proven to be feasible in various experimental scenarios in Section 4.
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Figure 2. Workflow of KnowRU based on the actor–critic algorithm. It can be explained as three
steps: 1: Match the policy models in the previous task with the agents in the target task. 2: Calculate
the loss from the environment and the gap between the actor network and policy model. 3: While
the agent receives feedback from the environment, it also mimics the actions of the policy model.

Mimicking. In the field of computer vision, the teacher model used to transfer
knowledge is a well-trained model that is trained on the same dataset as the current
student model. Therefore, to extract dark knowledge, it is necessary to soften the teacher
model’s output probability using Equation (5) and minimize the gap between them with
cross-entropy (CE) loss or KL loss, using Equation (6). However, in the MARL, the source
and target tasks might be different. The previous policy models may be overconfident or not
authoritative in the new task. Therefore, it is not necessary to soften the probability of the
policy model with hyperparameter T. Assume that ap and ac are the input logits of the final
softmax layer in the previous policy model and current model, where ap = [a1, a2, ...., an]
and ac = [a′1, a′2, ...., a′n], respectively. Here, we use the mean-squared error (MSE) loss as
the Lreuse loss function.

LMSE =
1
n

n

∑
i=1

(
ai − a′i

)2. (8)

Task’s guide and specialization. We state that the previous policy model and current
model usually work for different but similar tasks in MARL. The previous policy model
cannot completely bootstrap the current learning; however, there is still some knowledge
between similar tasks that can be described as a consensus. Some studies [27,28] showed
that unprincipled reuse of knowledge may not help but hinder training. Therefore, it is vital
to reuse the consensus in a reasonable manner. The training process is divided into two
phases: phaseI guide and phaseI I specialization. In phaseI, the previous policy model
guides the current model to reuse knowledge. As the training progresses, the agents enter
into the stage of specialization, stepwise, and the difference between tasks gradually
increases. As shown in Figure 2, the training depends on two factors: Lreuse and LQ. We
used hyperparameter α to adjust the weights of the two factors and achieve the transition
between the two stages.

Lall = αLreuse + (1− α)LQ, (9)

where α ∈ [0, 1]. Here, Lreuse := LMSE, where LQ is defined as the Q-value obtained from
the action-value function in the algorithms. By controlling α, we simulated the shift of
focus from the guide phase to the specialisation phase in the learning process. In our
experimental settings, α usually starts at around 0.5 and decreases linearly to 0.02. Some
studies [29] showed that the low weight of knowledge reuse left behind can provide some
noise for training to avoid task overfitting. It is worth mentioning that Lreuse and LQ may
not be of the same order of magnitude, and this may adversely affect RL. Our experiments
demonstrated that scaling Lreuse to an order of magnitude with LQ is a prudent solution to
the problem. Algorithm 1 depicts the KnowRU algorithm based on the AC framework.
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Algorithm 1: The training process based on AC framework.
Initialization: Parameters θA and θC represent student’s actor and critic networks,

respectively; parameter θP represents the previous policy model; and parameters
α and β represent the weight of knowledge reuse and weight decay value,
respectively.

Output: Parameter θA of the actor networks and parameter θC of the critic
networks for every agent:

for episode = 1 to max-episodes:
for step i = 1 to max-steps-in-episode:

take action ai : ai = πθA(si) +Ni
get ri from environment, and observes new state si+1
store transition (si, ai, ri, si+1) into replay buffer

end for
randomly sample N transitions from replay buffer
for j = 1 to N by step k:

get nj samples by order
get logitsP by πθP(si)
get logitsS by πθA(si)

compute Lreuse =
1
nj

∑i(L f unction(logitsP, logitsS))

where L f unction := LMSE

get LQ = 1
nj

∑i(QθC (si, ai))

optimize actor network by minimizing: Lall = αLreuse + (1− α)LQ
optimise critic network by minimizing: Lcritic =

1
nj

∑i |(QθC (si, ai)− ri)|
end for
if α > 0.02:

α = α− β
end for

4. Experiments and Analysis
4.1. Experimental Setup

Multi-agent particle environment. We constructed three scenarios in the multi-agent
particle environment (MPE) [14] to validate the performance of our method. The environ-
ment supports both cooperation and competition scenarios, and allows for the modification
of existing scenarios. We tested KnowRU in both cooperation and competition scenarios
based on the MADDPG and MAAC.

As mentioned earlier, knowledge reuse plays a vital role in continuous variational
tasks. Therefore, we constructed a series of environments to simulate the variations
in such tasks by changing the number of agents and landmarks. In our experiments,
KnowRU had a positive impact on accelerating training and improving performance, pri-
marily by comparing the results of basic algorithms and KnowRU. All the contrasts were
based on the same experimental conditions. The experiments consisted of three scenarios
involving cooperation and competition: simple_spread, simple_adversary, and coopera-
tive_treasure_collection.

Performance Metrics. There is also a common standard to measure the success of
knowledge reuse in our experiments, summarized by [16] and resumed by [5], as illus-
trated in Figure 3. The three main indicators are as follows: (1) jump start—measuring
performance improvement at the beginning of training; (2) time to threshold—for tasks
which may yield a significant result at some point, the learning time required to reach the
level is meaningful; and (3) asymptotic performance—in complex tasks, agents may fail
to achieve optimal performance and instead achieve a suboptimal one. Knowledge reusing
may help agents in achieving higher performance, and the before-and-after performance
gap is called asymptotic performance.
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Figure 3. Transfer performance metrics.

4.2. Simple _Spread Scenario

A simple _spread is a predefined typical cooperative scenario of an MPE. In this
environment, agents must cooperate to reach a set of landmarks (targets) without com-
munication. The targets are not different, and agents must collect the shared rewards by
arriving at all targets as quickly as possible. Meanwhile, agents are penalized when they
collide with one another.

In our experimental settings, we took the task containing four agents and four targets
as the previous policy models’ training scenario, called Task I. In a real-world scenario,
the number of agents and targets usually changes with the continued variation of the
training mission. For this reason, we designed two scenarios to serve as current agents’
training scenarios. Task II was made up of six agents and six targets, while Task III was
made up of eight agents and eight targets, as illustrated in Figure 4a. In simple_spread,
we used MADDPG as the baseline algorithm and implemented KnowRU based on it.
In addition, we specially added a control group that initialized the current agent with
the previous policy model, which is called “MADDPG with initialization”, to verify the
infeasibility of training directly based on the policy model.

4.3. Simple _Adversary Scenario

A simple _adversary is a predefined typical competitive MPE scenario. In this scenario,
n agents must work together to reach one target landmark from the total n landmarks
(targets) without communicating. The agents must maximize the shared rewards by
minimizing the distance between the right target and the nearest agent. Meanwhile,
the adversaries also want to reach the target without knowing which one is right, and the
agents are also penalized by the adversary’s distance from the target. Because agents know
the correct target point, the agents have an advantage at the beginning. As the training
progressed, adversaries learned how to distinguish the correct target and achieve a balance
of power.

In our experimental settings, we took the task that contained two agents, one adversary,
and two targets as the previous policy models’ training scenario, called Task IV. We
designed two scenarios as the current agents’ training scenarios. Task V was made up
of three agents, two adversary and three targets, while Task VI was made up of three
agents, two adversary and three targets as illustrated in Figure 4b. For this scenario, we
only implemented KnowRU with adversaries to help them distinguish the correct target at
the beginning.

In the first two scenarios, we took the average step reward from the environments in
each episode to measure the effect of training. The higher the reward, the better was the
reward. The actor and critic networks in the experiments were all randomly parameterized
by a four-layer fully connected MLP with 64 units per layer. The architecture of MLP is not
strictly limited, only that the output layers of historical models and current models (that
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is, the neural layer’s output that determines the action) have the same action dimensions.
We set 5000 episodes to ensure convergence, every episode consisted of 25 steps, and the
networks were updated every four episodes. The hyperparameters α and i are set to 0.5
and 0.02, respectively. All the results and 95% confidence intervals (95% CI) are illustrated
in Figures 5 and 6. The red lines represent the best performances in these scenarios.

(a) Tasks in simple_spread scenario.

(b) Tasks in simple_adversary scenario.

Figure 4. The tasks in Simple_spread & Simple_adversary.

Discussion. From Figures 5 and 6, it is obvious that the performance of KnowRU
in all experiments was greatly improved at the beginning of training, and the episodes
required for training convergence were also greatly reduced, satisfying two of the three
indicators, and demonstrating that KnowRU successfully reuses knowledge. It is worth
mentioning that when we trained the initialized agents in Tasks II and III, compared to
MADDPG, the results did not clearly improve. This was caused by the characteristics
of the models, which usually only work well in the scenarios where they are trained.
When the task changes, the former models are no longer applicable because of over-
fitting. Meanwhile, MADDPG showed considerable fluctuations in the training process
without prior knowledge, particularly in the early stages of training, and performance
decreased significantly. As for KnowRU, the convergence results were almost obtained
at the beginning, achieving the goals of reusing knowledge in new tasks. Compared to
MADDPG, KnowRU showed excellent performance and small fluctuations during training.
We believe that the reason KnowRU works is that it effectively narrows the solution space
by providing more prior knowledge, thereby narrowing the space for exploration. We
also found that during the training process, the fluctuation of the loss function value
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caused an unstable performance of the agents. When we used KnowRU to train the
agents, the oscillating amplitude of the loss value for backpropagation was apparently
smaller, and Lreuse first decreased and then increased, demonstrating the effectiveness
of KnowRU’s two-phrase design. KnowRU does not appear to learn beyond its initial
performance because agents achieved the best performance in the scenarios.

(a) task II in Simple_spread.

(b) task III in Simple_spread.

Figure 5. Knowledge reusing in Simple_spread.

4.4. Cooperative _Treasure _Collection Scenario

Cooperative_treasure_collection is a more complex competitive scenario constructed
by [15] based on the framework of the MPE. In this scenario, there are two types of agents:
X treasure collectors and Y treasure banks. There are also X treasures that correspond
to the color of the bank. The collector’s role is to collect the treasures of any color and
transport them to the bank of the corresponding color. The treasures are reborn after being
collected, and the banks simply gather as many treasures as possible from collectors. When
the treasures are collected by the collectors, the collectors will share a global reward.
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(a) task V in Simple_adversary.

(b) task VI in Simple_adversary.

Figure 6. Knowledge reusing in Simple_adversary.

At the same time, while the treasure is transported into the bank, all agents receive a
global reward. However, collectors are penalized if they collide with one another. To con-
clude, the collectors must learn how to collect treasures cooperatively and deposit them
into the correct color bank as quickly as possible without colliding with other agents. Banks
need to cooperate with collectors to place treasures.

In our experimental settings, we took the task which contained four collectors, one
bank, and four treasures as the teacher models’ training scenario, called Task VII. We
designed a scenario which consists of six collectors, two banks, and six treasures as student
model training scenarios, called Task VIII, as shown in Figure 7a. To test the universality,
we used MAAC as the basic algorithm, which can learn these tasks well using the attention
mechanism and implement KnowRU based on it. The actor networks in our experiments
were randomly parameterized by a four-layer fully connected MLP with 64 units per layer,
and critic networks were parameterized by the attention mechanism. We set 60,000 episodes
to ensure convergence; each episode consisted of 100 steps, and the networks were updated
four times every episode. The hyperparameters α and i were set to 0.5 and 0.02, respectively.
We took the average episode reward of all agents from the environment to measure the
effect of training. The higher the reward, the better. The results and 95% confidence
intervals (95% CI) are illustrated in Figure 7b.
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Discussion. As shown in Figure 7b, we completed the time to threshold and asymp-
totic performance goals. MAAC first obtained and stabilized a reward value of 150
at approximately 37,000 episodes. However, KnowRU first achieved approximately
29,000 episodes and advanced this time by approximately 21.6% compared to MAAC.
In comparison to the other two scenarios, we can draw different conclusions and con-
jectures from this scenario. Even though the two tasks in this scenario are not closely
related, KnowRU also successfully helps agents in avoiding the local optima and achieving
higher performance. The result proves our conjecture that KnowRU can help and guide
the training of agents by providing more useful information.

(a) The tasks in cooperative_treasure_collection scenario.
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Figure 7. The tasks and results in Cooperative_treasure_collection.

4.5. Component Analysis and Discussion

Alpha. We have declared that annealing of the alpha parameter blends the guide
phase and specialization phase. We intended to explore the impact of alpha on performance
using Equations (10) and (11).

T = {Tα1, Tα2, Tα3 · · · Tαn} (10)

Performanceα = ln
(

Tmax

Tα

)
(11)
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where Tα represents the moment when the best performance is achieved with α, T is the set
of Tα, Tmax is the maximum value of the set T, and performance α denotes the performance
of α. We tested the performance in Task III of the simple_spread scenario, and the results
are shown in Figure 8.

Figure 8. The impact of alpha on the moment when the best performance is achieved.

When alpha is greater than 0.1, our method clearly outperforms the baseline. Here,
we explored the best settings for alpha. When the alpha value is approximately 0.3∼0.5,
the training performance is optimal, which is in line with our expectation that the train-
ing process is first guided and then specialized. We also found similar patterns in the
other tasks.

Loss Function. There are three viable loss functions for Lreuse tested: MSE loss, CE
loss, and KL loss. The logits can be converted into probabilities with a softmax function,
which can then be used in CE or KL. We found that using different loss functions had no
discernible effect on the experimental results.

Discussion. We tried different combinations of the components. The results did not
show a significant difference, and they all demonstrated that KnowRU successfully helped
agents in quickly adapting to the environment, proving the effectiveness and robustness of
our method.

5. Conclusions

The transferring of knowledge from historical experiences is of great practical impor-
tance in the MARL fields; however, it is notoriously unstable and difficult. In this study, we
explored a novel knowledge transfer approach for MARL and addressed its accompanying
unique challenges, leveraging the KD paradigm. To empirically demonstrate the robustness
and effectiveness of KnowRU, we performed extensive experiments on state-of-the-art
MARL algorithms in collaborative and competitive scenarios. The results demonstrate the
effectiveness and robustness of KnowRU under different experimental settings.
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