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Abstract: Deep neural networks may achieve excellent performance in many research fields. How-
ever, many deep neural network models are over-parameterized. The computation of weight matrices
often consumes a lot of time, which requires plenty of computing resources. In order to solve these
problems, a novel block-based division method and a special coarse-grained block pruning strategy
are proposed in this paper to simplify and compress the fully connected structure, and the pruned
weight matrices with a blocky structure are then stored in the format of Block Sparse Row (BSR) to
accelerate the calculation of the weight matrices. First, the weight matrices are divided into square
sub-blocks based on spatial aggregation. Second, a coarse-grained block pruning procedure is utilized
to scale down the model parameters. Finally, the BSR storage format, which is much more friendly to
block sparse matrix storage and computation, is employed to store these pruned dense weight blocks
to speed up the calculation. In the following experiments on MNIST and Fashion-MNIST datasets,
the trend of accuracies with different pruning granularities and different sparsity is explored in
order to analyze our method. The experimental results show that our coarse-grained block pruning
method can compress the network and can reduce the computational cost without greatly degrading
the classification accuracy. The experiment on the CIFAR-10 dataset shows that our block pruning
strategy can combine well with the convolutional networks.

Keywords: neural network compression; block pruning; sparse matrix computation

1. Introduction

Deep neural network architectures are becoming more complex, and the number
of parameters is also increasing sharply [1,2]. Such a large number of parameters and
operations cost a lot of storage and computing resources. In order to reduce the number
of parameters and to accelerate the computational process, many methods for neural net-
work compression and pruning have been proposed, such as low-rank factorization [3],
knowledge distillation [4], and weight sharing and connection pruning [5], etc. For tradi-
tional connection pruning strategies, many fine-grained pruning methods only remove
individual connections [6,7]. These pruning processes allow the network to reach a higher
sparsity level but lead to irregular computing patterns. The distribution of zero elements is
scattered in the irregular weight matrix such that the unique computational advantages
of zero in the multiplication computation cannot be fully used, resulting in inefficiency.
On the other hand, existing coarse-grained pruning methods proposed to achieve high
computing efficiency are mostly specific to convolutional neural networks (CNNs). These
methods mainly prune the unique structures in convolutional layers such as filters [8],
whereas they rarely carry coarse-grained pruning on fully connected networks, which are
very straightforward and effective models with many connections. Therefore, in order to
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address these limitations, a coarse-grained pruning method suitable for fully connected
structures, which removes model redundancy and improves computing efficiency without
greatly harming accuracy, will be the focus of this paper.

For coarse-grained pruning models, there are many sparse matrix compression storage
approaches for optimizing the pruned weight matrices operations. Block Sparse Row
(BSR) as an effective compression format for sparse matrix-vector multiplication (SpMV)
acceleration is very suitable for storing sparse weight matrices with continuous data sub-
blocks. We were inspired by the above two facts to design the strategy of block as the
coarse-grained pruning unit in this paper. In our method, the weight matrix is divided
into square sub-blocks. Whether the sub-block is retained or pruned depends on its
importance in the network. After these remaining nonzero elements in the weight matrix
are aggregated into blocks with regular structures, the BSR storage format is employed to
compress the network and to accelerate the weight matrix computation.

We conducted experiments on the MNIST, Fashion-MNIST, and CIFAR-10 benchmark
datasets. It is found that some pruning models maintain accuracy when achieving a
large pruning rate. At the same time, the pruned network may still achieve a reasonable
performance on the classification effect compared with random sparse networks and some
existing pruned models. The relationships between sparsity and accuracies and between
pruning granularities and accuracies are also discussed for our method. With the increase
in sparsity and pruning granularity, the accuracy has a decreasing trend. It is found that the
accuracy is influenced by the sparsity and pruning granularity according to a certain rule.

From the perspective of computation, our block pruning strategy can work well with
the BSR storage format. The combination can improve the computational efficiency and
cache hit ratio compared with the traditional Compressed Sparse Row (CSR) format.

Our main contributions reported in this paper are as follows:

1. We design a coarse-grained unit called sub-block, which is applicable to the fully
connected structure. Based on this structure, we propose a novel block-based division
strategy and coarse-grained block pruning method for fully connected structures,
which learns the weights and network structure. Accuracies with different sparsity
and different pruning granularities are explored. This method can also be combined
with CNNs.

2. We exploit the BSR storage format to store the pruned blocky weight matrices, which
can effectively accelerate in computation and compress in storage.

3. We show that the cache hit ratio during network inference can be improved when the
compressed model is stored by BSR. We analyze the reasons for the high computa-
tional efficiency from this aspect.

2. Related Works
2.1. Pruning Criterions

Many studies have designed different pruning guidelines on selecting the important
connections. In [9], Han et al. investigated the criterion based on absolute values. The
relatively low absolute values of weights in the network would be set to 0. It cut down
the number of parameters by 9–13 times. In [10], Ayinde et al. removed duplicate weights
or similar weights based on relative cosine distances. In [11], Wu et al. designed a multi-
objective particle swarm optimization algorithm for evolutionary pruning. The objectives
of accuracy and the sparsity were iteratively optimized to prune network with remaining
accuracy. In [12], Lee et al. designed a saliency criterion based on connection sensitivity.
The proposed saliency measurement criterion evaluated the gradient of the loss function
with respect to the connections. The network at initialization was pruned using this
criterion. The method reduced the network scale with the minimal or no loss of accuracy
on AlexNet [13] and VGG [14]. In [15], Lee et al. characterized the initialization condition
from the signal propagation perspective and made the connection sensitivity reliable. Then,
they pruned the initialized network based on connection sensitivity.
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2.2. The Granularity of Pruning
2.2.1. Fine-Grained Pruning

Fine-grained pruning is a technique for pruning individual weights. In [6], Han et al.
sorted the absolute values of weights in the network and deleted connections below the
threshold. It reduced the number of parameters of LeNet-300-100 by 12 times. This method
also exceeded the accuracy of the original network. The Lottery Ticket Sparse Network [7]
cut down the individual weights and found a sub-network that accounts for 20% of the
original LeNet-300-100 network parameters scale, achieving the accuracy of the original
network. Boyd et al. [16] pruned networks by using ADMM [17]. The regularization
target was updated dynamically in each ADMM iteration. This resulted in high model
compression performance.

2.2.2. Coarse-Grained Pruning

Many proposed coarse-grained pruning methods are used to regularize the structures
of neural networks. They are usually applied to CNNs. In [8], the sums of absolute values
of weights in the CNN’s structures (kernels and filters) were calculated. Then, these coarse-
grained structures with low sums were pruned. The sparsity on AlexNet [13] reached 75.2%
after pruning. Li et al. [18] significantly reduced the computation cost by removing filters.
The Structured Sparsity Learning (SSL) method [19] regularized convolutional network
structures (e.g., channels, filters, etc.). The regularization was realized by adding a group
Lasso regularization item to the loss function. During the optimization, some regularized
structures were zeroed out. For ConvNet [13], each convolutional layer pruned 50%, 70.7%,
and 36.1% of the parameters. The SSL method also used group Lasso regularization on fully
connected layers. However, the influence of different pruning granularities on accuracies
was not considered. Lin et al. [20] pruned filters by integrating two different structured
regularizers into the objective function. The pattern-based convolution (PCONV) pruning
method [21] pruned specific convolution kernel patterns. In [22], He et al. designed a novel
method for filter pruning via the geometric median. This method compressed the models
by pruning the redundant convolution kernels rather than the less important kernels. Lin
et al. [23] calculated the rank of feature map and sorted them. The filters with low-rank
feature maps were pruned. In [24], Chen et al. proposed a channel pruning method. This
method assessed the importance of channels by considering the weights in convolutional
layers and the scaling factors in the BatchNorm layers.

2.3. Sparse Matrix Storage and Computational Optimization

Many studies explored storage methods and computational optimization methods on
pruned sparse matrices. For sparse matrix storage formats, Bell et al. [25] summarized a
large number of sparse matrix representations and storage approaches, such as coordinate
(COO) format, ELLPACK format, CSR format, etc. Yang et al. [26] considered the probability
distribution of nonzero elements in the matrix to obtain dense blocks, thereby improving
the performance of SpMV. In [27], a sparse matrix partitioning algorithm was proposed
based on hybrid sparse matrix storage format, which overcomes the limitation of single
sparse format and combines the characteristics of each selected format (ELLPACK format
and COO format). The matrices can be partitioned and stored using hybrid format and can
then be respectively assigned to the CPU and the GPU for simultaneous calculation, which
accelerates the SpMV operations. The SSL method [19] reached 3.1× and 5.1× layer-wise
acceleration on the GPU and the CPU in AlexNet [13] by storing the pruned sparse weight
matrices in the format of CSR.

3. Block Pruning Model

In our method, the block-based division and the coarse-grained block pruning are
performed on fully connected structures to regularize the weight matrices firstly. After
the model is pruned, the sparse weight matrices with dense blocks are stored in the BSR
format. The block-based division structure is specified in Section 3.1, and the block-based
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pruning approach is introduced in Section 3.2. The compression method is also discussed
in Section 3.3.

3.1. Block-Based Division Structure

For fully connected networks, the a × b weight matrix of each layer is divided into
many n × n square sub-blocks without overlap, where n is the division granularity. In
other words, the granularity is length of the side of the sub-block.

The upper-left vertex coordinates of each sub-block are (k× n , i× n), where k, i = 0,
1, 2· · · and k × n < a, i × n < b. The lower-right vertex coordinates of each sub-block are
(min((k + 1)× n , a) , min((i + 1)× n , b)), where k, i = 0, 1, 2· · · . Under this partition,
the entire weight matrix can be regarded as a matrix arranged by a multitude of sub-blocks.

3.2. Block-Based Pruning Method

Based on the above block division structure, we propose a new block coarse-grained
pruning method that outputs a sparse blocky sub-network. This method prunes the divided
weight sub-blocks rather than individual weights. The pruning granularity is the same
as the division granularity. Figure 1 shows the a × b weight matrix example after block
pruning and the corresponding special pruned neural network structure. In the matrix
example, the white areas represent sub-blocks that have been pruned.
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Figure 1. Weight matrix example (top) of 2 × 2 block pruning. Corresponding neurons and con-
nections structure example (bottom). The retained weights in the weight matrix are distributed
in blocks.

Our weight-pruning criterion for sub-blocks is designed on the basis of the low-
magnitude weight removal strategy in [6]. In our method, scores of sub-blocks are calcu-
lated based on the average of absolute values of weights in sub-blocks. Whether sub-blocks
in the weight matrix are pruned or not depends on their scores. The connections in
sub-blocks with lower scores are removed from the network. The formulas are as follows:

Si =
∑
∣∣wgi

∣∣
|gi|

(1)

Ri =
Si

max(S)
(2)



Entropy 2021, 23, 1042 5 of 14

where gi represents the ith sub-block in the weight matrix and |gi| is the number of weights
in the ith sub-block, which is not identical in the blocks near edges. Wgi

means the weight
values in the sub-block gi. Si denotes the average of absolute values of the weights in the ith
sub-block. The max(S) means the maximum value of all Si, and the scores Ri are normalized
to the range [0, 1]. After calculating the scores, the pruning procedure is performed.

We employed the iterative pruning proposed by [6] in the process of model compres-
sion. Compared with the one-shot direct pruning, it can make the model sparser while
maintaining the accuracy. Specifically, pruning and then retraining is one iteration. In every
iteration, sub-blocks are sorted by their scores Ri first. Then, a threshold value is calculated
according to the pruning rate and the number of the remaining weights (The pruning rate
is the ratio of the number of weights to be pruned to the total number of nonzero weights
remaining). Finally, the weights Wpruned

gi
in the sub-blocks with Ri less than this threshold

are set to 0 and the weights in other sub-blocks retain their original values Wgi
, as shown

in the Equation (3).

Wpruned
gi =

{
0 Ri < threshold

Wgi Ri ≥ threshold
(3)

After that, the model is retrained for multiple epochs to fine-tune the remaining
weights and to enhance the performance. Let |weight| denote the total number of weights.
During the back propagation, a mask m ∈ {0, 1}|weight| can be set based on the correspond-
ing weight and can make a element-wise product with the weight gradient Gw to ensure
that the removed weight values are not updated.

To visualize the iterative pruning method, the iterative process is shown in Figure 2.
After several such iterations, the unimportant connections are gradually pruned to reach the
target sparsity and the well-performed compressed model is obtained in a gradual manner.

Prune sub-blocks

Retrain remaining 

sub-blocks

Iterate

Original Network

Calculate the Score Ri of  

remaining sub-blocks

Set the pruning threshold 

based on Scores

Prune low-score 

sub-blocks

Figure 2. The process diagram of iterative pruning. The pruning-step and retraining-step are
performed alternately. The sub-diagram on the right details the flow of the pruning phase in our
blocky compression strategy.

The sparse blocky structure produced by this coarse-grained pruning method has
better spatial aggregation, which is much more convenient for the following computational
optimization work.

3.3. Block Sparse Matrix Storage and Computation

The CSR format is a typical sparse matrix storage method that has many advan-
tages [25,28]. The CSR format tends to store nonzero elements in the weight matrix one
by one by recording row offsets, values, and column indices rather than the whole matrix.
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Such information is able to facilitate quick access to data and to benefit compression in
storage space.

However, in this paper, pruned sparse weight matrices are stored in the BSR format.
BSR is similar to the CSR format, except that the elements are stored and recorded block
by block. After block-based pruning, there are many compact weight blocks in the weight
matrices so BSR format is more effective in storage and computation.

4. Experiments and Results

We conducted block-based pruning experiments on the LeNet-300-100 [29] model and
on the fully connected layers of the ResNet18 [30] model using three datasets—MNIST,
Fashion-MNIST, and CIFAR-10—to examine the effectiveness of our block pruning method.
The classification accuracies were evaluated, and the relationships between accuracies and
sparsity and between accuracies and pruning granularities were explored. The computation
efficiency experiments were then carried out on the blocky sparse matrices. Furthermore,
we performed the experimental analysis about the cache hit ratio. In the end, we com-
bined this block pruning strategy with the convolutional network and then evaluated
the accuracy.

4.1. Block-Based Pruning Strategy on Fully Connected Network
4.1.1. Accuracy Evaluation Experiments

We performed coarse-grained block-based pruning iteratively on a classic LeNet-300-
100 fully connected network, which is a three-layer network. This network is a very popular
fully connected network. This facilitates comparisons with other classic methods.

During iterative pruning, for the first two layers the pruning rate is set to 0.2, that is,
20% of remaining parameters were pruned each time. In the output layer, since the number
of parameters takes a very small proportion in the whole number of parameters (1000 in
266,000), the pruning rate is set to 0.1, which is the half of the pruning rate for the first two
layers. Such a pruning rate setting learned from [7,31] is commonly used.

In the experiments, we applied this block pruning strategy on the two datasets MNIST
and Fashion-MNIST to evaluate the results.

MNIST. The MNIST handwritten digital dataset, which contains 60,000 samples for
training and 10,000 samples for testing, was adopted. MNIST is a typical and popular
dataset that is suitable for fully connected networks.

Experiments were conducted to explore accuracies with different sparsities and dif-
ferent pruning granularities. One of our focuses is how sparsity and pruning granularity
affect accuracy. The baseline is the unpruned LeNet-300-100 fully connected network
trained on the MNIST dataset. We performed iterative block pruning on the baseline
model. The experimental results are shown in Figure 3. Each solid line with different colors
represents a pruning granularity. The vertical axis represents accuracy. The horizontal
axis marks density formed during the iterative pruning process. (The density refers to
the percentage of unpruned weights in the weight matrix to the total number of weights.
The relationship between density and sparsity is density = 100% − sparsity. For a more
intuitive representation of the percentage of remaining parameters in the experiments,
we chose the density as the horizontal axis.) During the experiments, the model at each
density was obtained by pruning the model at the previous density and retraining. Each
model with different sparsities and pruning granularities was trained for 1000 epochs. The
cross-entropy loss function was used for network training. In the experiments, it is found
that, when the density is more than 8%, the accuracy of each model is almost the same
and the difference in accuracy is not obvious so models with a density less than 8% are the
main focus.
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Figure 3. The accuracy for training and testing of LeNet-300-100 on the dataset of MNIST. Solid lines
are our block coarse-grained pruned networks.

When the density is 8%, each model can still maintain a similar accuracy to the baseline.
It can be observed from Figure 3 that there is a downward trend for accuracy with the
increase in sparsity. When the number of weights is less than a threshold, almost every
weight is useful so over-pruning results in a loss of accuracy.

We also find that, with the same sparsity, as the pruning granularity increases, accura-
cies also decrease. It is caused by the limitation in search space due to the coarse-grained
pruning rule. For example, test accuracy decreases from 97.85% to 97.51% (pruning granu-
larity is from 2 × 2 to 6 × 6) when the density is 8%. When the density is 2.8%, the gap
tends to be relatively obvious with the increase in pruning granularity, as shown in Table 1.

Table 1. The specific variation in test accuracy on the dataset of MNIST.

Granularity
Density 8% 2.8%

2 × 2 97.85% 96.74%

6 × 6 97.51% 95.32%

To validate our pruning method, the comparison between our coarse-grained pruning
network and the random pruning networks is made. Two kinds of random sparse networks
are investigated. One is the fine-grained random pruning sparse network, trained about
15 K epochs in [7]. The other is the block-based random pruning network with the same
1000 training epochs as our weight magnitude-based blocky pruning method for better
comparison. The accuracies of both random networks are the average of 10 trials. The result
of the fine-grained random sampling sparse network is from [7]. From Figure 3, when
the density is 7%, our method achieves much better performances than the fine-grained
random sparse network and block-based random sparse network, which demonstrates the
effectiveness of our pruning method.

In addition, our model is compared with the fine-grained pruned model of The Lottery
Ticket Sparse Network, the accuracy of which is obtained from [7]. The pruning criterion
of [7] is also based on the weight magnitude. After training for 1000 epochs in both cases,
it is found that the accuracies of some of our block-based pruned models are higher than
those of [7] when the densities are 7% and 3.6%. The little advantage is most likely caused
by different training methods rather than the model properties. Our training process
continues from the remaining weights after pruning but their model restarts with initial
random weights.
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We also compared our block pruning method with methods that employed other
pruning criterions. Reference [11] exploited the multi-objective particle swarm optimization
algorithm for pruning, which consists of two objective terms of the accuracy and the sparsity.
The comparison results are shown in the Table 2. Our block pruning model performed
better than [11] with less parameters.

Table 2. Comparison of the accuracies between our block pruning model and the model of [11] on
the MNIST dataset. Our model adopted the pruning granularity of 2 × 2.

Model Method Error % Remaining
Weights %

multi-objective optimization
algorithm [11] 2.2% 16.64%

LeNet-300-100 our method 1.97% 13.52%

our method 2.15% 8%

Fashion-MNIST. To verify the generalizability of the findings, we also conducted
block pruning experiments on this dataset of Fashion-MNIST. The Fashion-MNIST dataset
describes clothing classification images. It consists of 60,000 training images and 10,000 test
images. We performed pruning experiments on Fashion-MNIST using similar experimental
settings to that of MNIST. Every model with different sparsities and pruning granularities
trained 1000 epochs. The results are shown in Figure 4.10%8%7%5.7%4.6%3.6%2.8%
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Figure 4. The accuracy for training and testing of LeNet-300-100 on the dataset of Fashion-MNIST.
Solid lines are our block coarse-grained pruned networks.

From the experimental results, the accuracy variation law shown on the Fashion-
MNIST dataset is the same as that of the MNIST dataset. It can fully reflect the relationships
between accuracies and sparsity and between accuracies and pruning granularities. The
accuracies decrease with the increase in sparsity and pruning granularity.

We also conducted comparative experiments on this dataset of Fashion-MNIST. The
sparse network model proposed by [15] adopted another pruning strategy. In [15], the prun-
ing criterion were designed based on the signal propagation perspective. From Figure 4,
our blocky pruned model reaches a higher accuracy than [15] with the same density. It
demonstrates that our block pruning method performs well in terms of preserving accuracy.

In our experiments, the accuracy has a slight gap compared with that of the baseline,
which is acceptable. One of the reasons is that the number of training epochs is a little
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small. On the other hand, our target is analyzing the relationships between sparsity and
accuracies and between pruning granularities and accuracies and obtaining the sparse
weight matrix structure suitable for computation rather than striving for excellent accuracy.

It is also worth mentioning why fully connected structures are mainly considered in
the experiment rather than CNNs. On the one hand, the concept of a coarse granularity
applicable to fully connected structures is currently unclear. Therefore, we designed sub-
blocks as the coarse-grained pruning units and conducted block pruning on fully connected
structures. On the other hand, CNNs share weights and reduce the number of parameters.
However, floating-point operations (FLOPs) are not reduced by much. Taking MNIST
dataset as an example, without greatly increasing error rate, FLOPs and the number of
weights of our pruned blocky network are significantly less than those of LeNet-5, as
shown in Table 3. Therefore, we believe that it makes sense to only perform block-based
coarse-grained pruning on fully connected structures.

Table 3. Comparison of floating-point operations(FLOPs) and weights between the convolutional
network LeNet-5 and the pruned network LeNet-300-100 with 8% density on the MNIST dataset.

Network Weights FLOPs FLOPs% Error

LeNet-5 unpruned 431 K 4586 K 100% 0.8%

LeNet-300-100 unpruned 266 K 532 K 11.6% 1.82%

LeNet-300-100 block pruned
(Ours) 23 K 46 K 1% 2.15%

4.1.2. Block Sparse Matrix Computation and Cache Hit Ratio Experiment

In this section, we intend to explore the performance of our pruning strategy from
the perspective of computational efficiency and cache hit ratio. We first conducted weight
matrix-vector multiplication computation experiments during forward propagation on the
MNIST dataset.

The sparse matrices obtained from Section 4.1.1 were used in this computational
experiment on CPU. Weights are floating point numbers. In the experiments, the CPU
version was i7-6500U and the performance analysis function provided by Intel Math Kernel
Library (Intel MKL) was exploited to sample the time span. There are some reasons why we
did not carry out experiments on an Nvidia GPU. First, related functions of the cuSparse
library [32] split BSR blocks with different sizes, which causes performance jitter. The
detailed function implementation is not documented, so we cannot analyze the cause
accordingly. Second, though we attempted to design it, the performance of our own CUDA
implementation is not as good as cuSparse so it is not persuasive enough to make the
comparison. Finally, in our opinion, the CPU results are enough to display the pattern of
memory access which is a key point in sparse matrix algorithms.

In the experiment, we explored the computational efficiency when our block pruning
method was combined with the BSR format. The computational time of sparse matrices
stored by the BSR format and the CSR format is also made a comparison. The model settings
and the operating environment are the same , for fairness. To avoid cold starting and the
random noise effect, the sparse matrix-vector multiplication was iterated 100 times and
then the total time was recorded. The experiment was repeated four times for averaging.
The experimental results are shown in Figure 5 and Table 4.
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Figure 5. The inference computation time of block sparse models. Note that the computational time of Block Sparse Row(BSR) storage
is much less than that of Compressed Sparse Row(CSR). This indicates that it is effective and reasonable to use the BSR format to store
a block sparse matrix.

Table 4. The sparse matrix computation speedups (The times of the computation speed in the BSR format to that in the CSR
format) of block pruned models using the BSR format (compared with the CSR format).

Model Granularity
Density 8% 7% 5.7% 4.6% 3.6% 2.8%

2 × 2 1.229× 1.534× 1.400× 1.883× 1.722× 1.717×
3 × 3 1.767× 1.561× 1.864× 1.597× 1.560× 1.971×

LeNet-300- 4 × 4 2.657× 2.509× 3.476× 3.015× 2.663× 3.220×
100 5 × 5 1.931× 1.559× 1.642× 2.161× 1.746× 1.691×

6 × 6 2.024× 1.962× 1.660× 1.421× 1.854× 2.484×
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From Figure 5, we could observe that, as the density decreases, the computation time
of the BSR storage format tends to decrease significantly. This indicates that, as the sparsity
increases, the computational efficiency of the BSR improves. We can further analyze the
tradeoff between accuracy and computational efficiency based on this variation law. From
Section 4.1.1, it can be found that there is no significant loss in accuracy at a density of
about 8–10%. Therefore, according to this result, we believe that the model can be block
pruned to this extent if the balance between accuracy and efficiency is pursued. At a
density below 8%, the accuracy tends to decrease with the increase in sparsity and pruning
granularity. However, the computational efficiency of the BSR format can be improved
significantly with the increase in the sparsity. We believe that the model of high sparsity
and high pruning granularity could be chosen if the accuracy requirement is not strict and
the computation and storage resources are limited.

From Table 4, the speedups achieved 1.229×– 3.476× by comparing the BSR storage
format with the CSR storage format. All of the pruned models stored in the format of
BSR achieved varying degrees of speedups. It can be seen that the combination of this
block-based pruning strategy and the BSR storage format can greatly increase the sparse
matrix operation speed and can optimize computation.

We assume that one of the main reasons for the speedups of the BSR storage format
is the higher cache hit ratio. Therefore, the number of misses of L1 cache are measured
for various sparsity and pruning granularity models stored in the BSR and CSR formats
in the experiments, as shown in Figure 6. All results are the sum of 1000 times network
inferences. The number of misses is the average of five experimental results.

From Figure 6, as the density decreases, the number of cache misses is reduced. This
variation trend is the same as that of computation time. It reflects the increase in cache hit
ratio being one of reasons for the enhancement in the computational efficiency.

It also can be seen that the cache misses using the BSR storage format are, on average,
19.98% less than that using the CSR storage format. Since the data are stored by block in
the format of BSR, the BSR approach makes better use of the aggregation of data in terms
of the storage mechanism compared with the CSR storage format. The integrity of data
access is much more enhanced, so the number of cache updates is reduced and then the
cache hit ratio increases in the format of BSR.

For the dataset Fashion-MNIST, we also conducted computational and cache hit ratio
experiments. The performance is very similar to that of the MNIST dataset since the size,
the density, the division granularities of weight matrices, and the other settings are the
same as those of the MNIST dataset. This illustrated that our block pruning strategy is very
computationally friendly.

4.2. Block-Based Pruning Strategy on Convolutional Network

Though our pruning method mainly focused on the fully connected structures rather
than on convolutional structures, the block pruning strategy can combine well with CNNs.
In the experiments, we conducted iterative block pruning on the fully connected layers
of ResNet18 on the CIFAR-10 dataset. The images in the CIFAR-10 dataset are the natural
images in RGB colors.

We added an extra fully connected layer with 300 neurons on top of the original fully
connected layer of ResNet18. The unpruned ResNet18 model was trained until convergence
with 300 epochs on CIFAR-10 as the baseline model. To focus on the pruning properties
of the fully connected layers, the weights in the convolutional layers were fixed during
the iterative pruning and fine-tuning. The block pruning was only performed on fully
connected layers using the pruning granularity of 2 × 2. The model trained 300 epochs
at every iteration. Finally, we cut off 97% of the parameters of the fully connected layers.
From the experimental results, the test accuracy improved from 90.37% (baseline model) to
90.73%. This boost demonstrated that our block pruning method found the proper capacity
of the network. It can eliminate the redundance and can alleviate overfitting.
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Figure 6. Comparison of the number of misses of L1 cache. The BSR storage format has an advantage in terms of the cache hit rate.

5. Conclusions and Discussion

This study presented a special block-based division method and coarse-grained block
pruning method for fully connected structures. This pruning method can also be integrated
into convolutional networks well. The experimental results on the MNIST, Fashion-MNIST,
and CIFAR-10 testing datasets show that some models maintain similar accuracies when
reaching a large compression rate. Our block-based models do not decrease the classifica-
tion accuracy compared with the existing fine-grained pruning method and other methods
based on different pruning criterions. The correlations between accuracies and sparsity
and between accuracies and pruning granularities were also evaluated. The increase in
sparsity and pruning granularity has a negative effect on accuracy. The tradeoff between
accuracy and efficiency was discussed.

In terms of calculation, all compressed models stored in the format of BSR improved in
computation speed compared with the CSR format. The speedups reached 1.229×–3.476×.
The CPU cache hit ratio was 19.98% higher than that of the CSR storage format, on average.
The experimental results show that our block-based pruning models stored in the format
of BSR can ensure the continuity of data access, can improve the cache hit ratio, and can
increase the calculation efficiency.
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In the future, we intend to design a strategy combining block-growth and block-
pruning, which adjusts the network structure more flexibly to give “silent” connections a
chance to be reactivated. This algorithm may enhance the accuracy further. In addition, we
plan to consider how to fully take advantage of this block sparse structure to significantly
reduce the FLOPs of CNNs. For a more accurate computational performance analysis, we
will consider the use of Field Programmable Gate Arrays (FPGAs) to implement a special
computational model.
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