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Abstract: Beyond the usual ferromagnetic and paramagnetic phases present in spin systems, the usual
q-state clock model presents an intermediate vortex state when the number of possible orientations q
for the system is greater than or equal to 5. Such vortex states give rise to the Berezinskii-Kosterlitz-
Thouless (BKT) phase present up to the XY model in the limit q→ ∞. Based on information theory,
we present here an analysis of the classical order parameters plus new short-range parameters defined
here. Thus, we show that even using the first nearest neighbors spin-spin correlations only, it is
possible to distinguish the two transitions presented by this system for q greater than or equal to 5.
Moreover, the appearance at relatively low temperature and disappearance of the BKT phase at a
rather fix higher temperature is univocally determined by the short-range interactions recognized by
the information content of classical and new parameters.

Keywords: q-state clock model; entropy; Berezinskii-Kosterlitz-Thouless transition; ergodicity

1. Introduction

The idea of using simple, discrete, and finite models to understand complex phenom-
ena is a fundamental part of statistical physics. In particular, this guiding idea has achieved
particular success in the study of continuous phase transitions. For an infinite system, in the
critical regime, the correlation length diverges, and the system becomes scale-invariant. The
critical phenomena can then be described employing field theory in the long-wavelength
limit, and their physical properties are governed by universal critical exponents [1–5]. Two
famous examples are continuous Landau Ginzburg-type phase transitions [6–10], which
are driven by topological defects (vortices). A simple model that exhibits many of these
fascinating features is the so-called q-state clock model, which is a discretized XY [11–13]
spin model defined on the square lattice. We recently solved this model exactly for a very
small system [14] and also on larger lattices up to square lattices 128 × 128 by Monte
Carlo simulations, showing clearly the two-phase transitions and using two information
theory approaches (mutability and diversity) and calculated in thermal equilibrium on the
thermodynamic energy and magnetization variables as functions of temperature.

Moreover, the q-state clock model is one of many magnetic models to mimic the
thermodynamics of some materials, and it can be viewed as a classical Heisenberg spins
model with very strong planar anisotropy or the already mentioned discrete XY model. In
its simplest form it consists of a system of N spins, ~Si at site i, on a lattice where the spins
can have q equivalent possible orientations or "stations" in two dimensions (2D), which
can be written as ~Si = (sin(2πni/q), cos(2πni/q)), where ni = 0, 1, 2, . . . , q − 1. These
spins are interacting with their nearest neighbors through an exchange energy J, so the
Hamiltonian of this system can be written as follows.
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H = − ∑
<i,j>

J ~Si · ~Sj , (1)

where the sum runs over all pairs of nearest neighbors (i, j). If J > 0 the system is
ferromagnetic since the fundamental state is that all spins are aligned. The case q = 2
corresponds to the well-known Ising model which will not be of much attention in the
present paper.

A simulation in the canonical ensemble can be implemented to study properties as
functions of temperature. One example is the magnetization that presents ferromagnetic
ordering at low temperatures and paramagnetic disorder at very high temperatures. How-
ever, an intermediate phase arises for q ≥ 5, giving rise to two-phase transitions [15–21].
The new ordering corresponds to the so-called Berezinskii-Kosterlitz-Thouless (BKT) phase
where vortexes dominate (BKT) [22,23]. Thus, the low critical temperature corresponds to
the transition between a ferromagnetic phase (FP) to BKT, while the second transition at
a higher critical temperature corresponds to the transition between the BKT phase to the
usual disordered paramagnetic phase (PP). At values of q < 5, this system only exhibits a
single transition from an FP to a paramagnetic phase (PP). In this context, we highlight a
particular work where through Monte Carlo simulations with nonconserved Glauber’s dy-
namics, the existence of two different transition temperatures for a finite q-state clock model
with q ≥ 5 is confirmed [24]. In that work, the transition temperatures are quantified using
two different cumulants (the first transition temperature uses the Binder cumulant [25,26],
while the second is characterized using a new cumulant defined by the authors).

The descent of the critical temperature for the FP to BKT phase transition is simple to
understand: as q grows, less energy is needed to change the next spin to the next possible
station. If two adjacent spins differ in orientation in δq = 1 the extra energy per pair of spins
is only J2π2/q2 which decreases as q−2. So as q increases, the transition temperature FP to
BKT decreases. The BKT phase at T > Tc1 is characterized by wave-like spin excitations
and vortexes since their energies are very close to that of the ground state. Therefore when
q→ ∞ the FP to BKT transition temperature Tc1 → 0. The characterization of the different
phases can be achieved by calculating the specific heat, or the 2D order parameter, which is
the spin thermal average in the X and Y directions [14,27]. One of the main purposes of
this work is to show that both phase transitions can also be characterized by appropriate
short-range order parameters defined below, using simple spin correlations up to second
and third nearest neighbors.

In the present paper, we want to get deeper into the vorticity reached by the BKT
phase by two different means: On the one hand, we fully invoke diversity as the most
sensitive tool provided by information theory to achieve this goal (mutability and Shannon
entropy agree with these results but produce less sharp transition curves). On the other
hand, we will define new and more appropriate parameters to recognize the way vortexes
appear and disappear, establishing the way their presence marks both transitions.

This article is organized in the following way: Next Section describes the system.
Section 3 covers the methodology from different points of view, including the definition of
the new short-range order parameters. Section 4 is devoted to the presentation of the new
results and their discussion. Section 5 includes the main conclusions of this paper.

2. System

Let us consider a square lattice L× L = N with one magnetic unit or spin at each site i.
These spins lay on the plane of the lattice and have q fixed possible orientations or stations
at angles kπ/q with k = 0, 1, 2, . . . , q− 1 (see Figure 1).
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Figure 1. Two neighboring spins with orientations k = 0 and k = 1 interacting on a square lattice for
q = 8.

The Hamiltonian defining this interaction is given by Equation (1) where we express
energy in units of J (J = 1 unit of energy); temperature can also be expressed in the same
scale (Boltzmann constant is dimensionless and equal the unity).

The lattice average of the spin configuration, equivalent to the magnetization per site
m, is given by the following expression:

~m =
1
N

N

∑
j=1

~Sj

where Sj = (sin(2πnj/q), cos(2πnj/q)) with 0 ≤ nj ≤ q− 1 is the value of the spin at site
j at a given time t, and N = L× L is the total number of spins. In this particular case, ~m is
a vector of two components, ~m = (mx, my).

The normalized absolute magnetization is defined by the following relation.

< |~m| >=
1

Nc

Nc

∑
k=1

√
m2

kx + m2
ky (2)

where Nc is the number of configurations used to perform thermal averages for state
properties.

This form of looking at the magnetization will recognize long-range magnetic correla-
tions that include the BKT phase. However, if we want to detect the ergodicity breaking
associated with the short-range ordering, we have to look at the magnetization along the
natural q directions of the system. Let us define mk as the normalized magnetization along
the k-th direction only, namely, it presents the fraction of spins pointing along the k-th
direction. If we start from a very low temperature, then the phase will be ferromagnetic
along just one of these directions, κ say, while the magnetization along the oher directions
vanish. Namely, in the limit T → 0, mk = 1.0 for k = κ, while mk = 0.0 otherwise. We say,
κ is the dominant direction.

As T first increases, some spins deviate from the κ direction, and mκ slightly weakens
in favor of other directions. As T continues to increase, the dominant direction may shift to
another different from κ, and the spontaneous magnetization direction of the system will
be different. Thus, for instance, if the system was floating in the presence of an external
weak magnetic field, it will now realign its direction according to its new magnetization
axis. Let us define the dominant magnetization axis D at a given temperature T as the one
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that presents the highest fraction of spins pointing along the direction defined by this axis.
Namely, among all the q directions at the time of observation, mD(T) represents the largest
number of spins pointing in the direction k = D at a given temperature.

3. Methodology
3.1. Calculations and Data Organization

All calculations are done for time series generated by Monte Carlo simulations on
a square lattices of N = L× L sites; a standard Metropolis algorithm was used. Global
properties like energy, specific heat and magnetization are faster and were done for L = 128
with 120,000 MC steps for equilibration plus additional 120,000 MC steps to generate the
average value for each temperature (one MC step means L× L spin-flips attempts).

State-oriented properties, such as spin-spin correlations, are slower and were done by
employing 5× 104 MCS for equilibrium, additional 104 MCS for measurements at intervals
of 50 MCS are stored in a matrix file. These values will be later used to calculate average
values, standard deviations, and the information recognition for the classical variables. In
addition, short range spin-spin correlation defined below will also be calculated, requiring
the storage of all spin orientations at any given instant. Such a task is slow and memory
consuming which imposes a limit to the present calculations. So we restrict ourselves to
q = 2, . . . , 8, L = 32, and 64, and with a Monte Carlo sequence initiated at low temperatures
up to 3.0 in terms of J, with a ferromagnetic initial configuration.

3.2. Information Recognizer

Data compressor wlzip was created to recognize repeated meaningful information
in any data sequence [28–37]. It is offered free of charge upon request by email (euge-
nio.vogel@ufrontera.cl). Actually, wlzip is less efficient than other compressors in terms
of the final size achieved by the compressed file. However, compression done by wlzip
is based on exact matching of data structures that correspond to properties of the sys-
tem [28–37]. A high degree of compression is due to repetitive information characterizing a
system that tends to preserve its properties within the time window under consideration. A
very low degree of compression means that the system changes frequently and/or abruptly
the properties represented by the data in the file; a chaotic system will be among the less
compressible cases.

These considerations lead us to the definition of the information theory functions used
here. Let us consider a vector file with ν entries for any of the possible variables as those
generated by the MC calculations described above. Let W(ν) denote the size of this file in
bytes. Then an appropriate compressor (like wlzip) is invoked to generate a compressed
file of size W∗(ν); then the mutability µ(ν) for this variable, for a sequence of ν entries, at
the conditions this vector file was generated is given by:

µ(ν) =
W∗(ν)
W(ν)

. (3)

Wlzip generates something similar to a histogram where each different exact value
of the property defines a bean (within numeric precision that can be externally adjusted).
There is a difference thought: the entries in the compressed files keep track of their relative
positions in the original file thus providing dynamic information. Let λ∗(ν) be the number
of beans (different number of values of these properties among ν entries) then the diversity
div(ν) is defined as:

div(ν) =
λ∗(ν)

ν
. (4)
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If the dynamic information is ignored and the beans are treated as those of a normal
histogram then the number of entries nj with value f j within the compressed files allows us
to define the probability pj(ν) of visiting this j-th state within this time series of ν values as

pj(ν) =
nj

ν
. (5)

With this state probability we can calculate the Shannon entropy by its usual way:

h(ν) = −∑
j

pj(ν)ln(pj(ν)) . (6)

Information recognition is done on the vector files storing decimal information with
four active digits and no truncation in the data recognition is performed. This feature can
be improved if a precise determination of critical temperatures is needed [31]. Since in
the present paper the main goals are methodological, we do not proceed further in the
refinement of the data recognition.

3.3. Short-Range Order Parameters

We define short-order parameters to recognize the surge and disappearance of vor-
texes in the system. Two-spin order parameter C0

2 is intended to recognize that two
neighboring spins possess the same orientation regardless of the k-th orientation among the
q orientations of the system. C+

2 (C−2 ) recognizes when the second spin along the direction
of the spin of the former deviates from the first one in an angle θ = +π/4 (θ = −π/4)
clockwise (counterclockwise). This is illustrated in Figure 2. Three-spins parameters are
defined in a similar way as illustrated in Figure 3; first and second nearest neighbors are
considered. C0

3 intends to recognize three consecutive spins pointing along any of the q
directions of the system, while C+

3 and C−3 recognize the continuation of the curling of the
first pair through the third spin. Thus we go over the entire lattice, counting each couple or
trio just once, adding unity to the corresponding parameter, and normalizing over the N
number of different sets.

The procedure illustrated above is thought for a q = 8 system, but it can be modified
and adapted to other systems: (i) Let us assume that calculations have stopped and we go
through the lattice with the last state visited as a reference; (ii) We go to sites sequentially;
(iii) Consider site i and look in the direction that points the spin ~Si to find next spin along
this direction; (iv) if that spin points in the same direction as ~Si, θ = 0 and C0

2 is incremented;
if that spin points in a direction that deviated in an angle +2π/q (−2π/q) with respect to
~Si then C+

2 (C−2 ) is incremented. Namely, a still not normalized counter increases:

C0
2 → C0

2 + 1 (7)

Once the counting procedure finishes the counter is normalized to its final form:

C0
2 →

C0
2

N
(8)

and similarly for C+
2 and C−2 .

The definition of the three-spin parameters goes along the same way, requiring the
same conditions along three consecutive spins and it is illustrated in Figure 3.

It is convenient to define average values for the curling parameters in the form:

CA
2 = (C+

2 + C−2 )/2 ; CA
3 = (C+

3 + C3−)/2 . (9)

At the ferromagnetic initial state at very low temperature, it is obvious that C0
2 as well

as C0
3 yield both 1.0, the same result of the normalized magnetization.
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Figure 2. Graphical definition of two-spin parameters.

Figure 3. Graphical definition of three-spin parameters.

4. Results and Discussion

The internal energy of the system can be obtained from MC simulations, as depicted in
the methodology presented above. Then, its temperature derivative leads us to the specific
heat C(T), whose results for different q values can be appreciated, for instance, Ref. [14]. A
clear maximum is observed in the C(T) curves for q ≤ 4, changing to a maximum and a
shoulder for q ≥ 5. A phase diagram presented in the same previous reference clarifies
that this can be thought of as one phase transition originating in the loss of the FP to a PP
for q ≤ 4 and to a BKT phase for q ≥ 5; the critical temperature associated to this phase
transition decreases monotonously towards zero as q→ ∞. The second transition arises
from the loss of the BKT into a PP, and its critical temperature is rather independent of q at
nearly 1.1. Such results are also confirmed by the changes in magnetization for the same
MC simulations.

These previous results can also be obtained through information theory which is now
complemented by including Shannon entropy as shown in Figure 4 for q = 8 in a lattice with
L = 128 (no significant differences are obtained for other L values). It is not surprising that
these three curves (as well as specific heat or magnetic susceptibility) maximize at nearly
the same temperature. It is clear that any sequence of data representing an observable of
a system will be altered near the critical temperatures. The recognition of this alteration
can be obtained in different ways. In the present case, if a count of frequencies is obtained
for the different values visited when measuring the magnetization we would obtain a
distribution. Suppose a magnetization histogram is constructed with this information; then
the normalized visits to any of these values will allow to sample the probability of visiting
that value; this leads directly to the Shannon entropy according to Equation (6); the span of
the values visited will lead to the diversity (given by Equation (4)); the relative size of the
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compressed file with respect to the original file containig the magnetization series will yield
the mutability. It should be noticed that Shannon entropy and diversity pay no attention to
time while mutability bears an indirect reference to time [29,34]: the sooner a value repeats
itself in the series the lighter the compressed file results.

Figure 4. Information theory parameters as functions of temperature for q = 8 and L = 128. Each point
corresponds to a measurement done on the energy sequence of 120,000 instants after equilibrium.
The scales for the three dimensionless parameters have been adapted to begin as similar values,
coinciding in the maxima, stretching the same span for comparison purposes. The most external
ordinate axis to the right corresponds to diversity.

Although the three functions maximize at the precise temperatures, it is the diversity
that reports the second maximum more sharply. For this reason, we stick to diversity only
from now on. Figure 5 render the diversity results for the energy series for q = 2, 3, . . . , 8,
confirming both transitions and values of the critical temperatures. Additionally, Figure 6
reports the diversity results for the magnetization series, confirming that the origin of these
transitions is of magnetic nature. These are significant results since they fully incorporate
information analysis as a tool for recognizing the FP-BKT-PP transitions.

Figure 5. Diversity for energy series of 120,000 instants as functions of temperature for q = 2, . . . , 8,
on an L = 128 lattice.

In spite of the recognition of the transition phases, there are no reports on the exact
nature by which the BKT phase appears, evolves, and later disappears with temperature. It
is only the fluctuations of energy and magnetization that reveals the change of state as a
gross feature. We now turn our attention to the new parameters defined by Equation (7)
and Figures 2 and 3 to better characterize the short-range order implied by the BKT phase.
When applicable, we will prefer the case q = 8 to illustrate the vortex state since it is a
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system where the BKT phase is clearly present and the eight orientations for the clock
model are rather intuitive at π/4 angles between them.

Figure 6. Diversity for magnetization series of 120,000 instants as functions of temperature for
q = 2, . . . , 8, on an L = 128 lattice.

Figure 7 presents the variations of C2 parameters as functions of temperature; a change
in the curvature of the decaying magnetization in the form of a slight “swelling” can be
appreciated. The lower curve with open symbols gives the average value CA

2 defined in
Equation (9) that presents a broad maximum at T ≈ 0.8 (the same temperature at which
C0

2 presents the commented swelling). The inset presents separate results for (C−2 and C+
2

showing that they give almost identical results (as they should since there is no anisotropy).
The interpretation of these curves is direct: the system is initiated as ferromagnetic, so (C−2
and C+

2 are both zero; slightly over T = 0.2 some spins randomly get enough energy to
orient their magnetization to the next station at either side (π/4 or −π/4) and parameters
(C−2 and C+

2 begin to grow; the growth reaches maximum pace at around T = 0.4, and the
abundance of these parameters tends to maximize near T = 0.8. From there on, energy
is high enough, so excitations to larger angles are also possible, and the two-spin vortex
parameters slowly decrease to their asymptotic limit for huge temperatures, which is
typical for two-spin parameters at any angle, namely 1/q (0.125 in the scale of Figure 7).

The information content in the C2 series is reported through the diversity of C0
2 in

Figure 8 for q = 3, 4, 5, 6 and 8 which confirm previous findings by this additional method.
Namely, for q = 3 just one peak is found just above T = 1.5; this maximum decreases
to T = 1.1 for q = 4, while for q = 5, q = 6 and q = 8 the low temperature peak keeps
on moving to lower temperatures while the high temperature peak sticks around T ≈ 1.
All of this in correspondence with previous gross feature results (Figure 5 in particular).
The inset of Figure 8 reports on the average diversity of the curling two-spin parameters
([CA = C+

2 + C−2 )/2]) that maximizes nearly at T = 0.4 in agreement with the greatest
slope in the inset of Figure 7.

Figure 9 presents the descent of C0
3 parameter as functions of temperature in a way

similar to C0
2 . The inset presents the diversity of C0

3 that maximizes at the point of the more
pronounced descent of the parameter itself (main figure). Parameters C+

3 and C−3 (not
shown) behave similarly to the corresponding two-spin parameters C+

2 and C−2 , except
that their curves maximize as they approach T = 1.0 since spins need to be freer by
effect of temperature to articulate a series of two consecutive π/4 (−π/4) angles. The
inset reports the diversity of C0

3 maximizing at the same temperature C0
2 did in the inset

of Figure 7 evidencing that they both represent ferromagnetic alignment . The inset of
Figure 9 presents an additional disctintive feature: a slight broad swelling near T = 1.0 can
be seen for div(C0

3) evidencing the disappearance of three-spin correlations; this effect will
appear again in a different way after the next paragraph.
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Figure 7. Two-spin parameters as functions of temperature for q = 8; L = 64 and after 10,000 MC
steps post equilibrium. The main body plot C0

2 and CA
2 , while the inset plots C+

2 and C−2 separately.

Figure 8. Diversity of C0
2 for q = 3, 4, 5, 6 and 8. (C7

2 is omitted for clarity). The inset presents the
diversity of the average CA

2 parameter.

The descents of C0
2 and C0

3 resemble a bit like the magnetization curves for these
systems. In Figure 10 we do this comparison for q = 8. The four parameters presented
in this figure measure similar properties but with subtle differences: C0

2 measures the
way in which the pairing of two parallel spins is gradually lost tending to its asymptotic
value 1/8; C0

3 measures the way in which the pairing of three parallel spins is lost at lower
temperatures than previous case tending to its asymptotic value of 1/64 (first spin is a pivot
and second and third spins have independents probabilities 1/8 to point along the curling
direction). The absolute magnetization curve given by Equation (2) changes twice its slope
evidencing the two changes of phase and tending asymptotically to zero. On the other hand,
mD measures the way the magnetization loses its dominant direction originated in the
spontaneous ergodicity breaking associated to the FP-BKT phase transition only, as defined
at the end of Section 2. Thus, this figure offers a complete picture of the magnetization
evolution of the system as T increases: at low-temperature, ergodicity is broken in favor of
a ferromagnetic ordering along one dominant direction; then the FP is lost as drastically
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shown by the abrupt descent of mD; at T increases the absolute magnetization, C0
2 and

C0
3 point to the presence of short magnetic ordering, with ergodicity recovering with the

increase of T; At a temperature in which the slightest short-range interaction is exceeded by
the thermal fluctuations (this critical temperature is unique) the PP is finally reached and
ergodicity is fully recovered. We observe in the low temperature range that the decrease of
the ferromagnetic spin-spin correlation occurs first for C0

3 , then C0
2 and finally the extended

order parameters, i.e., the dominant magnetization and the absolute magnetization.

Figure 9. Three-spin parameter C0
3 descending from a full ferromagnetic state to its asymptotic limit

(1/q2) with a slight swelling under T = 1.0 as a function of temperature for q = 8. The inset presents
the diversity of this parameter maximizing near 0.4 (as C2 did) and a slight swelling near 1.0.

Figure 10. Order parameters C0
2 , C0

3 compared to the dominant magnetization mD (along any of
the 8 directions) and the absolute value of the normalized magnetization |m| for q = 8. In the low
temperature range (inset), we show the decrease of the ferromagnetic spin-spin correlation with
temperature that occurs first for C0

3 , then for C0
2 , followed by mD and closing with the absolute

magnetization.
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If careful attention is paid to Figures 7 and 9 it can be noticed that C0
2 and C0

3 present
changes of curvature. This is better analyzed by taking the temperature derivatives of these
curves which are presented in Figure 11, where they are compared to the specific heat of the
same particular system (q = 8). It is clear that the derivatives of the spin parameters show-
ing ferromagnetic alignments maximize at both transitions thus providing an additional
argument and measurements to define these magnetic transitions. The low temperature
maximum is more pronounced and agrees perfectly with the corresponding maximum
of the specific heat. In the case of the highest transition temperature, the temperature
derivative of C0

3 shows a larger broad maximum than the temperature derivative of C0
2 in

consonance with the light swelling shown by the diversity of C0
3 in the inset of Figure 9.

Figure 11. Temperature derivatives of variables E, C0
2 and C0

3 coinciding in point to both phase
transitions for q = 8 as an example.

5. Conclusions

Information content of the series corresponding to the classical variables internal
energy and magnetization recognize the different phase transitions present in the clock
model. Among the three investigated information theory techniques (Shannon entropy,
mutability, and diversity), it is diversity that provides the sharpest curves with appropriate
contrast to better recognize the transitions.

The new parameters defined here following the curling lines of the vortexes give
information on the short-range ordering achieved by the system. Thus, the ferromagnetic
phase is first lost to two-spin vortex parameters at π/4 just under T = 0.4, which is then
complemented by the less frequent three-spin parameters with two consecutive twists
of π/4. The complete BKT phase receives contributions from all possible n-spin vortex
parameters rendering a composed critical temperature around T = 1.1 for the BKT-PP
transition.

Diversity of the time series confirms both transitions for q ≥ 5 and just one transition
for q ≤ 4 in perfect agreement with the phase transitions already reported by reference [14].

C3 parameters are more sensitive than C2 parameters since the former actually measure
the formation of three-spin vortexes, while the former arise from the loss of the original
ferromagnetic phase.

All q-clock systems have a similar critical temperature for the BKT-PP phase transition
since this is mainly due to the dissociation of correlation in the interaction of neighboring
spins, thus affecting the C+

2 and C−2 parameters, which are at the bases of more complex
n-spin parameters.

Temperature derivatives of the new parameters are in perfect agreement with the
temperature derivative of the internal energy (specific heat) further validating the new
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parameters as describing the phenomenon which can now be also explained in terms of
short-range ordering. Finally, we can conclude that the spin-spin ferromagnetic correlation
at first-nearest neighbors is able to recognize the two phase transitions, FP to BKT and BKT
to PP, confirming the same transition temperatures of the q-state clock model for q ≥ 5.
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