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Abstract: An adaptive rate Compressive Sensing (CS) method for video signals is proposed. The
Blocked Compressive Sensing (BCS) scheme is adopted in this method. Firstly, each video frame is
blocked and measured by the BCS scheme, and then the mean and variance of each image block are
estimated by observing the CS measurement results. Using the mean and variance of each image
block, the sparsity of the block is estimated and then the block can be classified. Adaptive rate
sampling is realized by assigning different sampling rates to different classes. At the same time,
in order to make better use of the correlation between video frames, a reference block subtraction
method is also designed in this paper, which uses the estimates of the sparsity of image blocks as the
basis for the reference block update. All operations of the proposed method only depend on the CS
measurement results of image blocks and all calculations are simple. Thus, the proposed method
is suitable for implementation in CS sampling devices with limited computational performance.
Experiment results show that, compared with the actual values, the sparsity estimates and block
classification results of the proposed method are accurate. Compared with the latest adaptive
Compressive Video Sensing methods, the reconstructed image quality of the proposed method
is better.

Keywords: compressive sensing; statistical parameter estimation; sparsity estimation; adaptive rate
sampling; video

1. Introduction

Compared with the traditional Compressive Sensing (CS) [1–3], the adaptive CS can
adapt to the changes of the signal more effectively and achieve more reasonable signal
sampling by using an appropriate CS matrix, sparse basis, sparse dictionary or sampling
rates, to reduce the overall sampling rates and improve the quality of reconstructed image.
In this paper, the “sampling rate” is defined as the ratio of the number of CS measurements
to the length of the original signal.

Due to the characteristics of the CS imaging method [4], the original signal can
be sampled without digital conversion and storage, thus the complexity of sampling
calculation can be greatly reduced, the hardware requirements of the sampling equipment
can be simplified, and the sampling rate can be improved. This makes the CS method have
unique advantages in fields such as video compression [5,6], distributed coding [7], sensor
networks [8], radar imaging [9], medical imaging [10], etc.

According to measurement models, CS methods can be divided into ones using
global measurement scheme [11] and some others using block compressive sensing scheme
(BCS) [12,13]. In general, global measurement methods can get better performance in
the non-adaptive case [14]. However, the size of the measurement matrices in global
measurement methods are often very large, so the total number of matrix multiplication in
the sampling process will be large, and memory occupation of the measurement matrix
is also large. In this paper, the BCS scheme is used to reduce the size of the measurement
matrix and reduce the sampling computation. By allocating appropriate sampling rate to
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different blocks, the disadvantage of the BCS scheme can be overcome, and the performance
of the method is greatly improved.

However, it is often difficult to implement adaptive rate sampling in the CS method.
In CS applications, the original signal can be regarded as an unknown signal, which makes
it difficult to implement adaptive methods. For the sampling device, the information
that can be directly obtained is no longer the original signal, but the result of the CS
measurement, which is called the “CS domain signal”. In earlier studies, researchers mainly
used the CS domain signal to reconstruct the original signal, then used the reconstructed
signal to estimate the characteristics of the original signal, and adaptively adjusted the
CS matrix [15–17], sparse basis [18,19], sparse dictionary [20,21] or sampling rate [22,23].
The advantage of these methods is that it can obtain the characteristics of the original
signal with high accuracy, and then make full use of the characteristics of the signal to
adjust one or more sampling elements. In addition, the accuracy of these adjustments is
also high, which can follow the changes of the original signal well to make corresponding
adjustments. However, an important problem of these methods is that the computational
complexity of the signal reconstruction is quite high, and it is unlikely to be implemented
in the sampling device of CS. If the adaptive adjustment is implemented in the decoder, a
special feedback channel is needed, which will also greatly affect the real-time performance
of the sampling process.

In order to solve the above problem, some researchers have proposed new research
ideas in recent years. They hope that some interesting features can be extracted from the CS
domain signal through some simple calculations to guide the sampling device to carry out
adaptive sampling, to avoid the dependence on the reconstruction of the original signal.

According to this consideration, researchers have put forward some adaptive CS
methods based on CS domain signals in recent years. In [24], researchers proposed a
method to estimate the statistical parameters of the original signal by using the CS domain
signal, and then estimate the adaptive sampling rate. For image compressive sensing, the
covariance of the original signal is estimated by designing a special autoregressive CS
matrix, and then an appropriate sampling rate is allocated for each image block. In [25],
researchers proposed a method to estimate the motion of objects in the original video
depending on the CS domain signal, and then judge the motion speed of objects and realize
adaptive rate CS. In [26], researchers proposed a BCS method for video signal, which
judges the complexity of the original signal through the change of the CS domain signal in
the spatial and temporal dimensions, and adjusts the sampling rate of each image block
in real-time to realize adaptive rate CS. In our previous work [27], an adaptive rate CS
method for surveillance video is proposed, which uses the change of innovation energy
to estimate the complexity of innovation, and then realizes adaptive rate CS. The signal
foreground is obtained by the background subtraction method [28]. The total energy of
the foreground signal is estimated by using the CS domain signal, and then the number of
large value points of the original signal are estimated.

These methods avoid the dependence on signal reconstruction, but there are still some
problems in these methods, such as the dependence on some specially designed sampling
matrix, inaccurate rate estimation, only suitable for simple surveillance video signals etc.
Under the condition that the computing capacity of sampling equipment is strictly limited,
the adaptive method of adjusting the sampling rate based on the CS domain signal is more
difficult than the method based on the reconstructed signal, and the number of related
research works is relatively small. In [24,26], researchers have mentioned that in the field of
image CS and video CS, few researchers have reported the relevant research before them.

In this paper, a new adaptive rate CS method based on the BCS scheme is proposed
which only uses the CS domain signal and some simple operations to realize adaptive rate
sampling and achieves better reconstruction performance. The basic idea is as follows: the
original signal is CS measured firstly, the number of measurements equals the length of the
original signal, this kind of measurement is called “the full-speed measurement” in this
paper. Then, the full-speed measurement result (the CS domain signal) is used to estimate
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the statistic characteristics of the original signal. According to the estimation of the statistic
characteristics, the sparsity of the original signal is estimated in the wavelet transform
domain and then the original signal can be classified. Different CS sampling rates are
allocated for different signal classes. Finally, according to the allocated sampling rate, the
redundant part of the full-speed measurement result is discarded and only the imperative
samples are transmitted for reconstruction. Thus, adaptive rate CS can be implemented.

In order to make full use of the statistic characteristics of the wavelet transform
coefficients, a new CS measurement scheme is designed, which can estimate the statistic
characteristics of different subbands more accurately.

In order to make full use of the inter frame correlation of video signals, a dynamic
reference block update and subtraction method is designed. Compared with the measure-
ment method using only intra frame information, the proposed method may occupy more
memory, however it can make better use of the inter frame correlation to reduce the total
sampling rate. Meanwhile, in the proposed method, reference blocks are automatically
updated, the total number of reference blocks stored in memory is equal to the number of
blocks in an image frame, so the memory space occupied by the reference blocks is fixed
and acceptable.

The rest parts of the paper are organized as follows: in the second section, we briefly
introduce the BCS method. In the third section, we introduce the proposed adaptive rate
compressive video sensing (CVS) method. In the fourth section, the experiment results
and corresponding analysis of the results are given. The final section summarizes the
whole work.

2. BCS

In CVS applications, in order to reduce the memory occupation of the measurement
matrix and the amount of sampling computation, it is necessary to reduce the size of the
signal. BCS is a common method. For a two-dimensional video frame vt ∈ Rh×c with h
rows and c columns at time t, it can be decomposed into K non-overlapping image blocks.
The size of each image block is B rows and B columns, and the i-th (i ∈ 1, 2, · · · , K) image
block is recorded as vi

t ∈ RB×B. Theoretically, the value of B can be any positive integer,
and in image and video processing, the value of B is often the power of 2, such as 8 or 16
are commonly used. In this paper, we take B = 8.

In the process of the CS measurement, we first convert the image block vi
t into a vector

xi
t ∈ RB2

, and then we can use the measurement matrix Φ1 ∈ RM1×B2
and an appropriate

sparse basis Ψ1 ∈ RB2×B2
to measure it, the measurement result y1

i
t can be obtained as

y1
i
t = Φ1Ψ1xi

t = A1xi
t = Φ1ci

t, (1)

where A1 = Φ1Ψ1 and ci
t = Ψ1xi

t, ci
t is the sparse representation coefficients of xi

t on the
sparse basis Ψ1. M1 ≤ B2, this means that the signal is compressed into a low dimen-
sional space.

3. Adaptive Rate Compressive Video Sensing

Because each frame in the actual video has different content, for blocks in a frame, it is
possible that they have quite different characteristics, and the sparsities of different blocks
are also completely different. In order to adapt to the changes in different blocks, a new
adaptive rate BCS method is proposed to estimate the appropriate sampling rate for each
block. At the same time, using the estimate of the sparsity of a block, a new method using
inter frame correlation is also proposed.

3.1. Statistic Parameter Estimation Based on Restricted Isometry Property

For a signal vector xi
t, assume that it is unknown to the sampling device and only its CS

measurement result is obtained. In order to estimate an appropriate sampling rate for the
signal, the sparsity of the sparse coefficient ci

t needs to be estimated without reconstructing
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xi
t. In this paper, we use the restricted isometry property (RIP) [29] to estimate the mean

and variance of ci
t, and then to estimate the sparsity of ci

t.
For a CS measurement matrix Φ ∈ RB2×B2

and an appropriate sparse basis Ψ ∈
RB2×B2

, we have A = ΦΨ. If A satisfies the RIP, for a Restricted Isometry Constant (RIC)
δs ∈ (0, 1), there is:

1− δs ≤
‖Axi

t‖
2
2

‖xi
t‖

2
2

≤ 1 + δs. (2)

In practice, we can approximate it as

‖xi
t‖

2
2
∼= ‖Axi

t‖
2
2. (3)

Set a vector d1 ∈ RB2
with d1 = n1D, where D = [1, 1, . . . , 1]T and n1 is a constant,

and we have
‖(xi

t − d1)‖
2
2
∼= ‖A(xi

t − d1)‖
2
2. (4)

From Equations (3) and (4), we have

‖(xi
t − d1)‖

2
2 − ‖x

i
t‖

2
2
∼= ‖Axi

t −Ad1‖2
2 − ‖Axi

t‖
2
2. (5)

Since xi
t =

[
xi

t1, xi
t2, . . . , xi

tB2
]T, Equation (5) can be written as:

− 2n1(xi
t1 + xi

t2 + · · ·+ xi
tB2) + B2n1

2 ∼= ‖Axi
t −Ad1‖2

2 − ‖Axi
t‖

2
2. (6)

If all elements in vector xi
t are independent realizations of a random variable Xi

t,
denote the expectation of Xi

t as E
(
Xi

t
)
, it is easy to get the estimate of the expectation

E∗
(
Xi

t
)

with

E
(

Xi
t

)
=

(xi
t1 + xi

t2 + · · ·+ xi
tB2)

B2
∼=
‖Axi

t −Ad1‖2
2 − ‖Axi

t‖
2
2 − B2n1

2

−2n1B2 = E∗
(

Xi
t

)
. (7)

Set up another vector d2 ∈ RB2
, d2 = E∗

(
Xi

t
)
D, Then the estimate of the variance of

Xi
t can be recorded as

D∗
(

Xi
t

)
= ‖xi

t − d2‖2
2/B2. (8)

For
‖(xi

t − d2)‖
2
2
∼= ‖A(xi

t − d2)‖
2
2, (9)

we can take

D∗
(

Xi
t

)
∼=
‖Axi

t −Ad2‖2
2

B2 . (10)

These allow us to estimate the characteristics of xi
t using only the CS domain signal.

3.2. Statistic Characteristics Estimation for Wavelet Subbands

The signal xi
t is often not sparse, but it can be represented by a sparse coefficient vector

ci
t under a sparse base. If all elements in vector ci

t are independent realizations of a random
variable Ci

t, similar to Equations (7) and (10), the mean and variance of Ci
t can be estimated

using

E∗
(

Ci
t

)
=
‖Φci

t −Φd1‖2
2 − ‖Φci

t‖
2
2 − B2n1

2

−2n1B2 (11)

and

D∗
(

Ci
t

)
∼=
‖Φci

t −Φd3‖2
2

B2 (12)

where d3 ∈ RB2
, and d3 = E∗

(
Ci

t
)
D.
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In this paper, the wavelet basis is used to sparsely represent the original signal. We
have noticed that for natural images and videos, there is some specific feature in their
wavelet coefficient vector ci

t, which mainly shows the energy concentration property. Based
on the characteristics of the wavelet transform, ci

t can be divided into several subbands
according to the number of layers of the wavelet transform. The feature of energy con-
centration is that the main energy of the signal is concentrated in the lower frequency
subbands, and the small amount of energy is left in the higher frequency subbands. The
absolute values of the coefficients in lower frequency subbands tend to be larger, while
the absolute values of the coefficients in the higher frequency subbands tend to be smaller.
At the same time, within a subband, the absolute values of nonzero coefficients tend to
be close, while the absolute values of nonzero coefficients between different subbands
differ greatly.

Due to the above characteristics of the wavelet coefficients, estimating the sparsity
of ci

t directly using the mean and variance of all coefficients in ci
t often leads to results

that are not accurate enough. However, if the mean and variance of the coefficients in
each subband can be obtained, the sparsity of each subband can be estimated separately,
and then the sparsity of the entire wavelet transform coefficient vector ci

t can be more
accurately estimated.

In order to obtain the mean and variance for each subband, a new CS measurement
process is proposed. Consistent with previous assumptions, there is no need to know the
digital conversion results of the original signal and the corresponding wavelet transforma-
tion coefficients during the measurement process.

For an L-layer wavelet transform, denote the wavelet transform matrix as Ψw ∈
RB2×B2

, the wavelet transform coefficient vector is

ci
t = Ψwxi

t. (13)

According to the rule of the wavelet transform, the coefficients can be divided into
L + 1 subbands. Denote one of the coefficients subbands as cil

t (l = 0, 1, · · · , L),

cil
t = ci

t(bl+1):bl+1
, (14)

where ci0
t is the lowest frequency subband and ciL

t is the highest frequency subband,
ci

t(bl+1):bl+1
represents a new vector composed by elements from the (bl + 1)-th element to

the bl+1-th element in ci
t. And bj is given by

bj =

{
0, j = 0

B2

2(L−j+1) , L + 1 ≥ j ≥ 1
(15)

Set
Ψl

w = Ψw(bl+1):bl+1
, (16)

where Ψw(bl+1):bl+1
is a new matrix composed by the vectors from the (bl + 1)-th row to

the bl+1-th row in Ψw. Then we have

cil
t = Ψl

wxi
t (17)

If there is a random CS matrix Φr ∈ RB2×B2
, set a submatrix Φl

r ∈ RB2×(bl+1−bl) which
is composed by the vectors of column (bl + 1) to bl+1 in Φr,

Φl
r = (Φr

T
(bl+1):bl+1

)
T

(18)

where Φr
T is the transpose of Φr.
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Then cil
t can be measured by Φl

r

yil
t = Φl

rc
il
t = Φl

rΨl
wxi

t = Al
rwxi

t (19)

where Al
rw = Φl

rΨl
w. The CS measurement results of a certain wavelet coefficient subband

can be obtained directly from the CS matrix and the wavelet transform matrix. We can
know from the matrix multiplication rules that,

yi
t =

L

∑
l=0

yil
t = Φrci

t = ΦrΨwxi
t (20)

which means the CS measurement result of ci
t can be obtained from the CS measurement

results of cil
t .

If all elements in vector cil
t are independent realizations of a random variable Cil

t ,
Similar to Equations (11) and (12), the mean and variance of Cil

t can be obtained as follows,

E∗
(

Cil
t

)
=
‖yil

t −Φl
rd

l
1‖

2
2 − ‖yil

t ‖
2
2 − (bl+1 − bl)n1

2

−2n1(bl+1 − bl)
(21)

where dl
1 = n1Dl , Dl ∈ R(bl+1−bl), Dl = [1, 1, . . . , 1]T, and

D∗
(

Cil
t

)
∼=
‖yil

t −Φl
rd

l
4‖

2
2

bl+1 − bl
(22)

where dl
4 = E∗

(
Cil

t

)
Dl .

3.3. Sparsity Estimation

In the process of the CS measurement, a threshold τ is often set, if the value of the
measured signal sample is greater than τ, it is considered as a large value, otherwise it is
considered as a small value. The value of τ determines how much energy in the original
signal is considered as “noise”. If the value of τ is too small, many image blocks will
be mistakenly considered as not sparse, resulting in unreasonable increase of sampling
rate. If the value is too large, many pixels will be considered as small value affected by
noise, which will eventually affect the quality of the reconstructed image. Therefore, the
value of τ should be a small value that matches the reconstruction algorithm. In this paper,
considering that the original signals are 256 level gray images, the value of τ is set to 8.

The number of large values in the measured signal determines the sparsity of the
signal, which in turn, determines the number of measurements.

In the proposed method, we assume that coefficient values in cil
t obey a certain

distribution. For the wavelet coefficients, it is generally considered that Bessel K form
densities (BKF) [30] or generalized gaussian density (GGD) [31] can better describe their
distributions. However, it is difficult to get better estimates of the parameters which are
necessary in the BKF and GGD distributions when only the CS domain signals are known,
thus, we use the normal distribution to describe the coefficient distribution in cil

t . Since
the actual distribution of elements in cil

t cannot be optimally approximated with a normal
distribution, there will also be some error in the estimated result of the sparsity. However,
in this paper, the estimated result of the sparsity is used to classify the image block instead
of accurately solving the sampling rate, so approximating the real distribution using the
normal distribution is still an effective method.
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For an image block, its wavelet coefficients contain L + 1 subbands, one of the
subband is cil

t , we assume that coefficient values in cil
t are normal distributed, cil

t ∼
N
(

E∗
(

Cil
t

)
, D∗

(
Cil

t

))
. The probability of an element in cil

t taking a large value is

P(cil
t ) = 1−

∫ τ

−τ
N
(

E∗
(

Cil
t

)
, D∗

(
Cil

t

))
dx (23)

Denote the estimate of the number of large points in ci
t by

LPN(ci
t)
∗
=

L

∑
l=0

(bl+1 − bl)P(c
il
t ) (24)

In this paper, we classify blocks into four categories by LPN(ci
t)
∗, denoted C0, C1, C2,

and C3. For three sparsity thresholds st1, st2 and st3, where 0 < st1 < st2 < st3 < B2. If
0 < LPN(ci

t)
∗ ≤ st1, ci

t can be classified into the C0 class, if st1 < LPN(ci
t)
∗ ≤ st2, ci

t can be
classified into the C1 class, if st2 < LPN(ci

t)
∗ ≤ st3, ci

t can be classified into the C2 class, if
st3 < LPN(ci

t)
∗, ci

t can be classified into the C3 class. Different number of measurements
can be assigned to differently classified blocks. Denote the number of measurements as SPi

t
which takes corresponding values sp0, sp1, sp2, sp3.

The values setting of st1, st2, st3 and sp0, sp1, sp2, sp3 is determined by the correspond-
ing relationship between sparsity and necessary measurement number. According to the
description in [23,32], these values can be determined. For st1 = 5, when 0 < LPN(ci

t)
∗ ≤ 5,

the signal can be considered as very sparse, and the corresponding number of measure-
ments is set as sp0 = 0. For st2 = 24, when 5 < LPN(ci

t)
∗ ≤ 24, using the mapping

relationship provided in [23], the number of measurements is set as sp1 = 32. For st3 = 32,
when 24 < LPN(ci

t)
∗ ≤ 32, the number of measurements is set as sp2 = 48. When

32 < LPN(ci
t)
∗, the signal is considered as non-sparse, the number of measurements is set

as sp3 = 64. The sampling rate of the block equals SPi
t/B2. In particular, SPi

t = 0 means
the block is not measured, and at the reconstruction side, a matrix with all elements of 0 is
considered as the reconstruction result of this measurement.

3.4. Reference Block Subtraction

In video signals, there is often large redundancy between neighboring frames, so
reducing the encoding codelength by exploiting the inter frame correlation is a common
strategy in both traditional video encoding methods and CVS sampling methods. In this
paper, using the estimated sparsity, a method to reduce the sampling rate by using the inter
frame correlation in the sampling process is designed.

For an image block xi
t, assume that there is a similar image block xi

t0 at time t0 (1 ≤
t0 < t), we can consider xi

t0 as the “reference block” of xi
t. Since xi

t0 is similar to xi
t, by

subtracting xi
t0 from xi

t, the signal sparsity can be effectively improved.
One of the L + 1 measurement result vectors of the reference block is denoted as βil .

At the sampling side, since the CS domain signal yil
t0 is known, thus we can set βil = yil

t0.
By subtracting βil from yil

t , we have fil
t

fil
t = yil

t − βil = yil
t − yil

t0 = Al
rw(x

i
t − xi

t0) = Φl
r(c

il
t − cil

t0) (25)

Similar to Equation (20), there is

fi
t =

L

∑
l=0

fil
t = ΦrΨw(xi

t − xi
t0) = Φr(ci

t − ci
t0) (26)
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Denote sci
t = ci

t − ci
t0 and scil

t = cil
t − cil

t0. If all elements in vector sci
t and scil

t are
considered to be independent realizations of random variables SCi

t and SCil
t , similar to

Equations (21) and (22), the mean and variance can be estimated from

E∗
(

SCil
t

)
=
‖fil

t −Φl
rd

l
1‖

2
2 − ‖fil

t ‖
2
2 − (bl+1 − bl)n1

2

−2n1(bl+1 − bl)
(27)

and

D∗
(

SCil
t

)
∼=
‖fil

t −Φl
rd

l
4‖

2
2

bl+1 − bl
(28)

Using the method in Section 3.3, the sparsity of sci
t, i.e., LPN(sci

t)
∗, can be estimated.

By comparing LPN(ci
t)
∗ and LPN(sci

t)
∗, the measurement target can be decided. For a

coefficient q (0 < q ≤ 1), if LPN(sci
t)
∗
< qLPN(ci

t)
∗, it can be considered that sci

t is sparser
than ci

t, a shorter measurement result can be used to describe sci
t. Thus, sci

t can be chosen as
the measurement target. If LPN(sci

t)
∗ ≥ qLPN(ci

t)
∗, it can be considered that the sparsity

of sci
t and ci

t is close, choosing ci
t as the measurement target and update the reference block

by setting βil = yil
t will reduce the global sampling rate.

Denote the measurement result of the current block as

ξi
t =

{
fi
t, LPN(sci

t)
∗
< qLPN(ci

t)
∗

yi
t, LPN(sci

t)
∗ ≥ qLPN(ci

t)
∗ (29)

In this section, two alternative measurement targets ci
t and sci

t are set, by consider-
ing the sparsity of each image block, the measurement target can be selected, and the
reference block is updated accordingly, so as to achieve the goal of reducing the overall
video sampling rate by using the inter frame correlation. Each reference block can be
updated automatically when the correlation between it and the current block becomes
weak. Compared with the reference frame method, the proposed method can update the
reference block more flexibly, which is also conducive to make better use of inter frame
correlation to reduce the overall sampling rate. And the automatically update of reference
blocks ensures a relatively small memory occupation.

3.5. Sampling Operations

Since CS reconstruction is not lossless and suffers from the error accumulation effect,
the reconstruction quality of the reference block affects the reconstruction qualities of the
corresponding blocks in the following frames, thus we expect that the reconstruction quality
of the reference block could be higher than common blocks. In common blocks, the number
of measurements is SPi

t, which is determined by the classification result. For reference
blocks, a parameter ra (ra > 1) is used to achieve a higher number of measurements.
Denote the final number of measurements of blocks as

SPAi
t =

{
SPi

t, LPN(sci
t)
∗
< qLPN(ci

t)
∗

raSPi
t, LPN(sci

t)
∗ ≥ qLPN(ci

t)
∗ (30)

where the value of SPAi
t should not larger than B2.

When SPAi
t is determined, ξi

t1:SPAi
t

can be transmitted to the reconstruction side, where

ξi
t1:SPAi

t
is a new vector composed by elements from the 1st element to the SPAi

t-th element

in ξi
t. That means only a part of elements in ξi

t is transmitted to the reconstruction side and
the unnecessary part is discarded. Then the adaptive rate sampling of the current image
block is completed.

Since only ξi
t1:SPAi

t
is transmitted, and ξi

t cannot be obtained by the reconstruction

method, the SPAi
t cannot be solved in the reconstruction equipment. Therefore, additional

information (or the side information) including the classification result and the measure-
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ment target information should be transmitted to the reconstruction side. This increases
the amount of data to be transmitted. However, for the classification result of a block, only
2 bits are needed to describe it, and the measurement target information of a block only
needs 1 bit to describe. Take an image block with 64 points and each with 256 gray levels
as an example, suppose that the sampling result is also quantized to 256 levels, and it has a
small sampling rate, e.g., 10%. At this time, the measurement result can be described by
using 64× 8× 0.1 = 51.2 bits. The additional 3 bits account for less than 6% of the total
number, and with the increase of sampling rate, the proportion will further decrease. Thus,
it can be considered that such additional data transmission is acceptable.

3.6. Reconstruction Operations

In the process of reconstruction, for a block to be reconstructed, we first take the
classification result and the measurement target information from the transmitted side
information, the SPAi

t can be determined. Then we can get ξi
t1:SPAi

t
from the transmitted CS

sampling result. Using Φr1:SPAi
t

and a suitable CS reconstructed method, the ci
t or sci

t can
be reconstructed. The SPGL1 [33] method is used to reconstruct the signal here.

Assume that the reference block of current xi
t is xi

t0, and a vector bi is used to store the
reference block. In the reconstruction side, we use the reconstructed xi

t0
∗ to approximate

xi
t0, i.e., bi = xi

t0
∗. When reconstructing xi

t, if the measurement target information shows
that it is ci

t to be reconstructed, the ci
t
∗ can be obtained from the reconstruction method.

Using Ψ−1
w , the reconstructed block xi

t
∗ can be obtained by xi

t
∗ = Ψ−1

w ci
t
∗. The reference

block vector bi needs to be updated after the reconstruction is completed, with bi = xi
t
∗. If

the measurement target information shows that it is sci
t to be reconstructed, the sci

t
∗ can be

obtained from the reconstruction method, and the reconstructed block can be obtained as
xi

t
∗ = bi + Ψ−1

w sci
t
∗.

4. Experiments

Video sequences Hall, Coastguard, Foremen and Soccer are used to test the perfor-
mance of the proposed method. Sample frames of the four test videos are shown in
Figure 1.

Entropy 2021, 23, x FOR PEER REVIEW 9 of 18 
 

 

gray levels as an example, suppose that the sampling result is also quantized to 256 levels, 
and it has a small sampling rate, e.g., 10%. At this time, the measurement result can be 
described by using 64 × 8 × 0.1 = 51.2 bits. The additional 3 bits account for less than 
6% of the total number, and with the increase of sampling rate, the proportion will further 
decrease. Thus, it can be considered that such additional data transmission is acceptable. 

3.6. Reconstruction Operations 
In the process of reconstruction, for a block to be reconstructed, we first take the clas-

sification result and the measurement target information from the transmitted side infor-
mation, the SPA  can be determined. Then we can get 흃 :  from the transmitted CS 
sampling result. Using 횽 :  and a suitable CS reconstructed method, the 풄  or 퐬퐜  
can be reconstructed. The SPGL1 [33] method is used to reconstruct the signal here. 

Assume that the reference block of current 풙  is 풙 , and a vector 풃  is used to store 
the reference block. In the reconstruction side, we use the reconstructed 풙 ∗ to approxi-
mate 풙 , i.e., 풃 = 풙 ∗. When reconstructing 풙 , if the measurement target information 
shows that it is 풄  to be reconstructed, the 풄 ∗ can be obtained from the reconstruction 
method. Using 횿 , the reconstructed block 풙 ∗ can be obtained by 풙 ∗ = 횿 풄

∗
. The 

reference block vector 풃  needs to be updated after the reconstruction is completed, with 
풃 = 풙 ∗. If the measurement target information shows that it is 퐬퐜  to be reconstructed, 
the 퐬퐜 ∗ can be obtained from the reconstruction method, and the reconstructed block can 
be obtained as 풙 ∗ = 풃 + 횿 퐬퐜 ∗. 

4. Experiments 
Video sequences Hall, Coastguard, Foremen and Soccer are used to test the perfor-

mance of the proposed method. Sample frames of the four test videos are shown in Figure 
1. 

 
Figure 1. Example Frames of Test Videos. 

  

Figure 1. Example Frames of Test Videos.



Entropy 2021, 23, 1002 10 of 17

All these videos are standard test videos, and they represent four very representative
situations. Hall represents the common situation of surveillance video. Its background
is constant, and the foreground is changing. Coastguard video is a typical representative
of foreground object tracking. The background is changing rapidly, and the foreground
is similar. Foreman video contains close-up of characters and some fast-changing scenes.
The background and foreground of Soccer video are changing, and the speed of change is
sometimes fast and sometimes slow. All these videos can be found from https://media.
xiph.org/video/derf/ (accessed on 31 July 2021)

In this section, firstly, the parameter settings used in experiments are introduced. Next,
the corresponding experiments are designed to demonstrate the image block classification
ability and the sampling rate allocation ability of the proposed method, and the correspond-
ing results are analyzed. Then, we compare the performance of the proposed method with
adaptive rate CS methods proposed in recent years and analyze the results.

4.1. Parameter Settings

In the following experiments, Haar Wavelet Bases is used, and L = 3. The Gaussian
random matrix is adopted as the CS measurement matrix.

Parameters value setting of q and ra are shown in Table 1.

Table 1. Parameters Setting.

Parameter q ra

Value 0.6 1.5

The parameter q determines the update speed of the reference block. The larger the
q is, the slower the reference blocks update. If the value is too large, the reference blocks
will be updated very slow, the inter frame correlation will not be used effectively, and the
measurements will be wasted. If the value of q is too small, the reference blocks will be
updated too frequently. Because the measurement rate of the reference blocks is higher
than that of the common blocks, the measurements will also be wasted.

The parameter ra determines how much higher the number of measurements of the
reference block is than that of the common block. If the measurement number is too low,
the quality of the whole reconstructed video will decline. If the measurement number is
too high, considering the excessive measurement number contribute little to reconstruction
quality, which will result in the waste of the measurement number.

The parameter values in Table 1 are obtained by our experiments, which have good
effect on the four videos with different characteristics.

4.2. Image Block Classification Result

In the process of the adaptive rate allocation, the classification of image blocks is a
key step. If the classification result fit the actual sparsity, it brings a lower sampling rate
and better image reconstruction quality. Therefore, an experiment is designed to show the
classification performance of the proposed method.

We use the classification results of all blocks in a frame to evaluate the classification
performance. Take the 100th frame in the video Hall as an example. The experimental
result is shown in Figure 2, the bar represents the actual number of large points, and the
line represents the allocated measurement number for each block.

https://media.xiph.org/video/derf/
https://media.xiph.org/video/derf/
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It should be noted that the number of measurements is theoretically larger than the
number of large value points in the majority of cases. The specific correspondence is
described in Section 3.3. It can be seen from Figure 2 that the allocation of measurement
number basically matches the actual sparsity, and it can be adjusted according to the
change of the actual sparsity. Especially for the empty blocks and non-sparse blocks, the
classification results are very good. However, there are still some misclassifications in
the classification results. According to our statistics, the number of misclassified blocks
accounts for about 10% of the total number of blocks. Almost all misclassifications allocate
higher measurement number to those blocks, which leads to the waste of measurement.
However, such misclassification can ensure that the quality of the reconstructed image does
not decline significantly. Generally speaking, the classification result can be considered as
a quite good result.

Through the above experiment results, we can get the conclusion that the proposed
method can accurately classify the image blocks only according to the known CS domain
signal, and the classification results are in good agreement with the actual sparsity of
the signal.

4.3. Measurement Number Allocation Results

Based on the classification of blocks in a frame, different number of measurements
can be assigned to different blocks. The measurement number of a frame is the sum of the
number of all blocks in the frame. In order to verify whether the measurement number of
each frame is appropriately assigned, a relevant experiment is designed.

Using the same BCS method and the reference block subtraction strategy, the actual
sparsity of the wavelet coefficients in each image block is observed, and the measurement
number is determined by the actual sparsity. It is necessary to point out that when only
the CS domain signal is known, the actual sparsity cannot be observed directly. The
measurement number determined by the actual sparsity (named as Real measurement
number) is an ideal value. By comparing the deviation between the estimated measurement
number and the Real measurement number, the measurement number assignment ability
of the proposed method can be evaluated.

In the experiment, the real measurement number (Real) and the estimated measure-
ment number with the proposed method (Proposed) are calculated for each frame of the
4 test videos, and the results are shown in Figure 3.
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The experiment results show that the proposed method can allocate the number of
measurements very well for each frame, the allocation result is very close to the ideal
value, and when the actual value changes dramatically, the estimated value can also
make corresponding changes according to the actual value in time. At the same time,
the proposed method can well adapt to videos with different characteristics. For the four
test sequences with obvious different characteristics, there is no significant gap in the
performance of the proposed method.

Through the above experiment, we can get the conclusion that the proposed method
can allocate an appropriate measurement number for each frame under the condition that
only the CS domain signal is known.

4.4. Comparison of Reconstructed Image Quality

In order to evaluate the performance of the proposed method, we design another ex-
periment to show the Peak Signal to Noise Ratio (PSNR) [34] performance of the proposed
method frame by frame and compare it with the PSNR performance of several other meth-
ods. The example reconstructed images of these methods are also shown and compared.

As far as we know, there are not many adaptive rate CVS methods similar to the
methods proposed in this paper. Two methods proposed in recent years are chosen
for comparison, they are Compressive Domain Saliency-based Adaptive Measurement
(CDSAM) [26] and Adaptive-Rate Compressive Sensing based on Fast Sparsity Estimation
(ARCS-FSE) [27], respectively. The reconstructed result using Real measurement number
which is mentioned in Section 4.3 is also used for comparison and named as Real.

Here, we consider the PSNR of Real as an ideal value, and hope that the PSNR of the
proposed method can be close to the ideal value. In particular, it should be pointed out that
the ideal PSNR value here is not necessarily the highest PSNR value. Since the goal of the
adaptive method is to allocate an appropriate sampling rate, it can be considered that it is
inefficient to obtain a higher PSNR with a much higher sampling rate than the actual one.

In addition, because the frame measurement number of the Real method and the
proposed method are close, if the PSNRs are also close, then the intra block measurement
number allocation of the proposed method can be considered as reasonable.

The CDSAM method is an adaptive rate method based on blocked CVS. It adopts
a fixed frame measurement number and dynamically changes the block measurement
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number in the frame. Compared with the fixed rate CVS method, it has an obviously
improvement in performance. According to [26], the method has the best performance
compared with other adaptive rate CVS methods at that time.

ARCS-FSE is an adaptive rate CS method for surveillance videos. In the test videos
used in this paper, Hall is the sequence with the characteristics of a surveillance video, so
the ARCS-FSE method is applied for Hall. In other three test sequences, the ARCS-FSE
method cannot be applied because of its limited applicability.

By comparing the sampling rate and the reconstructed image quality, the performance
of the proposed method can be evaluated. The Real method, the proposed method and the
ARCS-FSE method can adaptively determine the sampling rate for each frame, while the
frame sampling rate of the CDSAM method needs to be set. Appropriate sampling rates
are selected for CDSAM method so that the average PSNR of CDSAM can be close to other
methods. The average sampling rates (ASR) and average PSNRs of different methods are
shown in Table 2.

Table 2. Average Sampling Rate and Average PSNR (dB) of Different Methods.

Hall
ASR

Hall
PSNR

Coastguard
ASR

Coastguard
PSNR

Foreman
ASR

Foreman
PSNR

Soccer
ASR

Soccer
PSNR

Proposed 0.1056 38.71 0.7148 36.81 0.5735 38.34 0.6996 38.63
Real 0.0923 38.98 0.7042 37.17 0.5818 38.91 0.7088 39.22

CDSAM 0.2200 39.13 0.8000 32.29 0.7000 34.89 0.8000 36.77
ARCS-FSE 0.2300 37.46 - - - - - -

In order to better demonstrate the quality of reconstruction images, with the above
sampling rate, PSNR of each frame for all methods are shown in Figure 4.
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In order to further illustrate the influence of the sampling rate on PSNR, in Figure 5,
we take video Hall as an example to show the actual sparsity and the measurement number
of each frame.
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It can be seen that the variation of proposed measurement number is consistent
with the variation of actual sparsity, while CDSAM and ARCS-FSE allocate too high
measurement number in some sparse regions. Combining with Figure 4a, we can see that
at the end of the video, the CDSAM method achieves only a few dB of PSNR gain at a high
number several times over the ideal value. At that part, because the PSNR achieved by the
proposed method is relatively high, such gain is of little significance.

We also show the reconstructed frames for visual quality evaluation, a local part of
the 150-th frame of each video is used as the example and shown in Figure 6.
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Figure 6. Reconstructed results of the four sequences Hall, Coastguard, Foreman and Soccer. In
each line, the sample images from left to right are: the original image, the reconstructed image by
Proposed, Real, CDSAM, ARCS-FSE. Since ARCS-FSE is only suitable for surveillance video, it is
only used for Hall.
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From the above experiment results, we can see that the reconstruction quality of the
proposed method is close to the Real method and has good performance. The proposed
method and the Real method have close PSNR values for similar measurement number,
and there is no obvious blocking effect in the visual quality of the proposed method. It
shows that the measurement number allocation for each block in the proposed method is
also close to the actual situation.

Compared with the CDSAM method and the ARCS-FSE method, the proposed method
can obtain better reconstruction quality at a lower sampling rate. The reconstruction quality
of each frame is relatively consistent. At the same time, the reconstruction quality of each
block is also relatively consistent. In addition, compared with the CDSAM method and the
ARCS-FSE method, the proposed method has more advantages in adapting to different
videos with different characteristics.

4.5. Computational Complexity Discussion

First, as we discussed in Section 1, compared with the method relying on signal
reconstruction, the method independent of signal reconstruction has obvious advantages
in running speed. The proposed method, CDSAM and ARCS-FSE are independent of
reconstruction, so they should have a great advantage in running speed compared with
the methods that depend on signal reconstruction.

Secondly, the BCS scheme is used in this paper. Compared with the global measure-
ment scheme, the measurement matrix size of BCS scheme is much smaller, which leads to
less multiplication operation in the measurement process. The ARC-FSE method adopts
the scheme of global measurement, which can be predicted that the proposed method
should be faster in the execution speed of matrix multiplication. Compare with the CDSAM
method, considering that the proposed method needs to measure each wavelet subband
separately, it can be predicted that the matrix multiplication speed of proposed method
will be slower than that of the CDSAM method.

Finally, as far as the sparsity estimation speed is concerned, the calculation of the
proposed method is relatively simple, while the CDSAM method needs to operate on all
adjacent blocks of each block in the sparsity estimation process, which makes it slower
than the proposed method.

Note that the average matrix multiplication time is T1, the average sparse estimation
time is T2, the average signal reconstruction time is T3, and the average sampling time of
each frame is T, T = T1+T2+T3. CDSAM method, ARCS-FSE method and ARCS-CV [23]
method is taken as comparison methods, where the ARCS-CV method is a representation of
methods relying on signal reconstruction. Taking hall video sampling time as an example,
we carried out simulation experiments on the same platform to verify the above analysis.
The simulation results are shown in Table 3.

Table 3. Running Time of Different Methods (ms).

T1 T2 T3 T

Proposed 22.40 43.62 0 66.02
CDSAM 7.48 104.18 0 111.66

ARCS-CV 957.26 0.14 2.99 × 105 3.00 × 105

ARCS-FSE 788.21 0.37 0 788.58

It can be seen that the simulation results are consistent with the theoretical analysis,
and the proposed method has the best performance in terms of running speed in all
these methods.

4.6. Conclusions of Experiments

It can be seen from the above experiment results that the proposed method can realize
adaptive rate CVS when only the CS domain signal is known, the sampling calculation is
simple. It can achieve good sampling rate adaptation and reconstructed image quality for
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a variety of videos with different characteristics. Compared with the existing adaptive rate
CVS methods, the proposed method has obvious advantages.

5. Conclusions

In this paper, an adaptive rate CVS method is proposed. By only using the CS domain
signal, suitable sampling rate is assigned to each image block adaptively. Experiment
results show that the proposed method has better performance than the previous methods.
Compared with the experimental result based on the ideal sampling rate, the proposed
method can achieve the close reconstructed quality for different frames.
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