
entropy

Article

Generalized Reversible Data Hiding with Content-Adaptive
Operation and Fast Histogram Shifting Optimization

Limengnan Zhou 1 , Hongyu Han 2 and Hanzhou Wu 3,*

����������
�������

Citation: Zhou, L.; Han, H.; Wu, H.

Generalized Reversible Data Hiding

with Content-Adaptive Operation

and Fast Histogram Shifting

Optimization. Entropy 2021, 23, 917.

https://doi.org/10.3390/e23070917

Academic Editor: Raúl Alcaraz

Received: 23 June 2021

Accepted: 16 July 2021

Published: 19 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electronic and Information Engineering, Zhongshan Institute,
University of Electronic Science and Technology of China, Zhongshan 528402, China;
dreamzlmn@gmail.com

2 School of Computer Science, Sichuan Normal University, Chengdu 610000, China; hongyuhanswjtu@163.com
3 School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
* Correspondence: h.wu.phd@ieee.org

Abstract: Reversible data hiding (RDH) has become a hot spot in recent years as it allows both
the secret data and the raw host to be perfectly reconstructed, which is quite desirable in sensitive
applications requiring no degradation of the host. A lot of RDH algorithms have been designed by a
sophisticated empirical way. It is not easy to extend them to a general case, which, to a certain extent,
may have limited their wide-range applicability. Therefore, it motivates us to revisit the conventional
RDH algorithms and present a general framework of RDH in this paper. The proposed framework
divides the system design of RDH at the data hider side into four important parts, i.e., binary-map
generation, content prediction, content selection, and data embedding, so that the data hider can
easily design and implement, as well as improve, an RDH system. For each part, we introduce
content-adaptive techniques that can benefit the subsequent data-embedding procedure. We also
analyze the relationships between these four parts and present different perspectives. In addition, we
introduce a fast histogram shifting optimization (FastHiSO) algorithm for data embedding to keep the
payload-distortion performance sufficient while reducing the computational complexity. Two RDH
algorithms are presented to show the efficiency and applicability of the proposed framework. It is
expected that the proposed framework can benefit the design of an RDH system, and the introduced
techniques can be incorporated into the design of advanced RDH algorithms.

Keywords: reversible data hiding; watermarking; dynamic prediction; histogram shifting; optimization

1. Introduction

Reversible data hiding (RDH) [1,2], also called reversible watermarking (RW), is re-
ferred to as the art of embedding extra data, such as source information and authentication
data, into a host signal (also called cover) by slightly modifying the host signal. The embed-
ded information and the original host signal can be fully reconstructed from the marked
content by a legal receiver [3,4]. As RDH enables us to perfectly recover the original host
content, it is quite desirable and helpful in some sensitive scenarios, such as medical image
processing, remote sensing, and military communication.

Up to now, a number of RDH techniques have been reported in the literature. Early
methods [5,6] mainly use lossless compression (LC) techniques to substitute a part of the
host with the compressed code of the substituted part and the secret message. Since the
LC procedure is often applied to the noise-like component of the host, the introduced
distortion due to data embedding can be kept low. However, as the entropy of the noise-
like component of the host is very high, the compression rate will be very low, which
indicates that the (pure) embedding capacity of LC-based RDH is low. More efficient
RDH methods are thereafter designed to increase the embedding capacity, e.g., difference
expansion (DE) [1,7] and histogram shifting (HS) [2]. Since better payload-distortion
performance can be achieved by exploiting the prediction-errors (or differences) of cover

Entropy 2021, 23, 917. https://doi.org/10.3390/e23070917 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-7466-0907
https://orcid.org/0000-0002-1599-7232
https://doi.org/10.3390/e23070917
https://doi.org/10.3390/e23070917
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23070917
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23070917?type=check_update&version=1

Entropy 2021, 23, 917 2 of 20

elements, various RDH techniques [8–12] have been developed along this line. It can be
said that, today, most RDH methods use prediction-errors (PEs) of cover elements to hide
secret data since data embedding in PEs can always provide superior payload-distortion
performance. Though these algorithms differ from each other in terms of the working
mechanism, they are essentially finding the most compressible component of the host
(i.e., the noise-like component with the minimum entropy) so that high capacity or low
distortion can be achieved.

In PE-based RDH methods, there are two important steps: content prediction and data
embedding. The former can be separated into two stages. First, some cover elements are
selected out in advance. Then, the others are orderly predicted to generate a PE histogram
(PEH). In the first stage, the pre-selected cover elements are usually unchanged throughout
the content prediction, ensuring that both the data hider and the data receiver can find the
identical prediction values. In the second stage, a suitable predictor is required to obtain
accurate estimation of the cover elements to be embedded. The existing works [10,12]
often use fixed content pre-selection rule and predictor, which, actually, is not desirable in
applications according to the Kerckhoffs’s principle since one may successfully reconstruct
the marked PEH.

For data embedding, HS [2] is still the most common operation in today’s RDH tech-
niques. Variants, such as prediction-error expansion (PEE) [13], have also been developed.
In HS, one hopes to select such PEH bins that the required payload can be carried by
shifting the PEH bins while the distortion is as low as possible. The traditional methods
often empirically tune the shifting parameters, which is not applicable in practice. And,
as a host signal can be utilized to embed the secret data several times, it is actually time
consuming for searching parameters and makes a it hard for a reader to reproduce the
simulation results due to this non-deterministic empirical operation.

Therefore, on the one hand, it is quite desirable to design a general framework for RDH
so that many existing RDH works can be generalized and more advanced RDH schemes (in
terms of the payload-distortion performance and the security) can be developed based on
the designed framework. On the other hand, by optimizing the data embedding parameters
in a deterministic and fast manner, the RDH systems will be more applicable to practice. In
order to fill this research gap, in this paper, we revisit the conventional RDH algorithms
and propose a general framework of RDH. Meanwhile, we propose a fast and efficient
parameter optimization algorithm for HS-based embedding. Two RDH methods based
on the proposed framework are further introduced to demonstrate the superiority and
applicability of the proposed work. In summary, the main contributions of this paper can
be described as follows:

• We propose a general framework dividing the PE-based RDH design into four parts
so that we can easily design or improve an RDH system. The four parts are named as
binary-map generation, content prediction, content selection, and data embedding.
To ensure the security, we use a secret key to control the binary-map generation,
and a dynamic predictor for content prediction. For content selection, we use a
local-complexity evaluation function to preferentially use smooth elements.

• We propose a fast histogram shifting optimization algorithm to determine the near-
optimal embedding parameters for HS-based RDH. A significant advantage is that the
embedding performance can be kept sufficient, while the computational cost is low.

• We present two detailed RDH methods to demonstrate the generalization ability of
the proposed framework. Extensive experiments are also conducted to verify the
superiority and applicability of the proposed work.

The rest of this paper is organized as follows. The proposed framework is first
introduced in Section 2. Then, we study each part of the introduced framework in Section 3.
Thereafter, in Section 4, two RDH algorithms and experimental results are presented to
demonstrate the efficiency and applicability of the proposed work. Finally, we conclude
this paper in Section 5. This work extends [14,15] to a general case.

Entropy 2021, 23, 917 3 of 20

2. Sketch of Proposed Framework

As shown in Figure 1, the proposed framework (at the data hider sider) has four
parts: binary-map generation, content prediction, content selection, and data embedding.
The binary-map generation produces a binary matrix with the same size of the cover, in
which “0”s are elements used for content prediction or storing parameters, and “1”s are
elements to be probably embedded. The proposed framework does not specify the type of
the cover. It indicates that both the binary matrix and the cover elements could be arbitrary
dimensional. Unless mentioned, we use a grayscale image as the cover, i.e., one may
imagine that the binary matrix is 2D, and the elements are corresponding to image pixels.

Figure 1. Sketch for the proposed framework. For the data hider, there are four key steps, i.e.,
binary-map generation, content prediction, content selection, and data embedding. For the data
receiver, the key steps include binary-map generation, content prediction, content selection, data
extraction, and cover recovery.

The content prediction enables us to use elements marked as “0” to predict those
marked as “1”. In this way, the PEs of elements marked as “1” can be obtained. The
PEs will be used to carry a payload. The PEs are noise-like, which would not introduce
obvious artifacts. After content prediction, one may use a content selection method to
preferentially use the cover elements that can benefit the payload-distortion performance.
For example, smooth pixels in an image will be preferred for RDH since their PEs are often
smaller than the PEs of complex pixels. Finally, HS or its variants can be used for data
embedding. Though some methods may not use HS directly, they can also be generalized
by this framework. In the following, we revisit typical RDH algorithms and point out that
they can be generalized by this framework.

2.1. LC-Based RDH

We analyze the simplest case that uses lossless compression. The pixels in an image
are divided into two sets S0 and S1, where |S0| << |S1|. The LSBs of pixels in S0 will carry
the system parameters, such as the key. The LSBs of pixels in S1 are losslessly compressed.
The compressed code, original LSBs of S0, and secret data are embedded into S1 by LSB
substitution. S0 can be marked as “0” and S1 for “1”. Though there is no intuitive content
prediction process, all prediction values can be treated as zero. The data hider can use
a key to control the embedding order, which is equivalent to content selection. The LSB
substitution is a special case of HS. Clearly, we first empty the LSBs of S1. The prediction
values of S1 are all zero. Thus, if we only use the LSBs of S1, the corresponding PEH has
only occurrence at zero bin. By shifting “0” to “0/1”, the secret bits can be embedded.

2.2. Ni et al’s Method

Ni et al. [2] use the bin-pairs of the histogram directly determined from an image.
Though there are not intuitive binary-map generation, content prediction, and content
selection, one can mark a part of pixels as “1” and consider their prediction values as zero.
To hide secret data, we self-embed some parameters into specific pixels. The LSBs of these
pixels are replaced by the parameters, and the original LSBs are recorded as a part of the

Entropy 2021, 23, 917 4 of 20

secret data. These pixels are unchanged in subsequent procedure. They could be marked
as “0” in the binary-map. Thus, Ni et al.’s method can be generalized by the proposed
framework.

2.3. Tsai et al.’s Method

Tsai et al. [8] divide an image into disjoint blocks. The central pixel for each block
serves as the prediction of adjacent pixels within the block. The central positions of all
blocks are marked as “0”, and the others are “1”. Though there has no intuitive content
selection process, one can randomly generate a value for each pixel so that the pixels can
be orderly embedded with the HS operation.

2.4. Sachnev et al.’s Method

In Reference [10], the authors divide the pixels into two sets named as dot set and cross
set. The pixels in the dot set are used to predict that in the cross set, which are thereafter
used for data embedding. In this case, one can set the dot-pixel-positions as “0” and the
others as “1”. Then, with their introduced local-complexity function, the data hider can
select relatively smooth pixels for RDH using the HS. When the dot pixels are used for data
embedding, the process is similar. Sachnev et al.’s work exactly matches our framework.

2.5. Transformed Domain-Based RDH

With an image, we may not embed data in the spatial domain, but embed data in the
transformed domain. In this case, we may determine the binary-map in the transformed
domain. We can adjust the boundary pixels into the reliable range in the spatial domain in
advance so as to avoid the underflow/overflow of pixels. Thereafter, the content prediction,
content selection, and data embedding are applied to the transformed domain.

2.6. Expansion-Based RDH

With a prediction-error or difference d, we may not shift d to d + 1 or d− 1 to carry
a message bit, but expand d to 2d and replace the LSB with the secret bit. This operation
(called expansion) can be treated as a variant of HS, in that we are actually shifting d to 2d
or 2d + 1, which looks like a “jump”. Therefore, some expansion-based RDH algorithms
can be described by the proposed framework, as well.

It can be inferred that our framework can generalize many RDH systems. It is quite
helpful in practice since one can easily design, implement, and improve an RDH system.
We will give detailed descriptions and analysis in the subsequent sections.

3. Details of Proposed Framework

In this section, we analyze each part of proposed framework in detail, and reliable
techniques are introduced to achieve better performance. Furthermore, relationships
between different parts and other perspectives are provided for better generalization.

3.1. Binary-Map Generation

The conventional methods often use a fixed binary-map, such as first-row-first-column [11],
parity-column [16], chessboard [10], and block [8]. For example, Figure 2 shows the chessboard
binary-map, where the pixels in the black region are kept unchanged to predict the pixels in
the white region. Referring to Figure 2, one can mark the pixels in the black region as “0” and
the rest as “1”. Since the subsequent procedure relies heavily on the binary-map, different
binary-maps result in different payload-distortion performance. Regardless of the embedding
performance, using a fixed binary-map may allow an unauthorized decoder to reconstruct the
directly embedded data.

Entropy 2021, 23, 917 5 of 20

Figure 2. The chessboard binary-map, where pixels are divided to two disjoint sets: a set of pixels
marked as white and a set of pixels marked as black.

To this end, we propose to use a key-controlled binary-map. It implies that the binary-
map will always change due to a key, ensuring that an unauthorized receiver cannot
produce the correct binary-pattern. Obviously, the traditional method is a special case
of the proposed key-controlled binary-map. One may use a content-adaptive operation
to generate the binary-map. Namely, with an initialized binary-map, one may further
optimize it for improving performance. Algorithm 1 provides the pseudocode. Actually,
with an initialized binary-map, one may just randomly select more elements to produce a
new binary-map, which also ensures the system security.

Algorithm 1 Binary-map generation procedure

Input: A cover and a secret key.
Output: A binary-map and the side information (if any).

1: Initialize a binary-map
2: while need optimization do
3: Optimize the binary-map
4: end while
5: return final binary-map and side information (if any)

3.2. Content Prediction

With a binary-map, the elements marked as “0” are used to predict those marked as
“1”. The elements to be embedded may be randomly or content-adaptively distributed in
the binary-map. We cannot directly use a fixed predictor depending on fixed neighbors.
We propose to use a dynamic predictor for prediction. It means that a cover element is
predicted from an indefinite number of its neighbors, e.g., a pixel is predicted from its four
neighbors, and another one is predicted with its eight neighbors. There are two advantages:
the security can be ensured, and the prediction accuracy may be improved.

For the latter, we take Figure 2 for explanation. If P has been predicted from {x, y,
z, w}, instead of {z, w, u, v}, Q could be predicted from {P, z, w, u, v}. It is seen that the
traditional predictors could be considered as a special dynamic predictor. Accordingly, a
most important problem for content prediction is to design the dynamic predictor. It is
necessary to find an efficient method to orderly predict the cover elements. One may predict
the cover elements by a row-by-row manner, which, however, has limited generality. We
propose a method called degree-first prediction (DFP), which consists of element-wise selection
and element-wise prediction, to orderly predict the elements. As shown in Algorithm 2, in
each time, the first step selects an element out according to its degree. The second step
determines its prediction value with a dynamic predictor. The degree of an element is a
scalar that denotes the prediction priority. A larger degree means a higher priority. The
degree of a cover element relies on its local context.

Entropy 2021, 23, 917 6 of 20

Algorithm 2 Degree-first prediction (DFP) procedure

Input: A cover, a binary-map and a secret key.
Output: A prediction version of the cover.

1: Initialization
2: while exist an element to be processed do
3: Choose an unprocessed element that has a largest degree
4: Find the prediction value (with a dynamic predictor)
5: Record the prediction value
6: Mark the element as processed
7: Update the degrees of the rest elements to be processed
8: end while
9: return the prediction version of the cover

3.3. Content Selection

The content selection aims to identify the embedding order. In image-based algo-
rithms [10,17], the content selection is also named as pixel selection or sorting. For content
selection, one has to define a local-complexity function to evaluate the prediction accuracy.
Usually, a smaller local-complexity value implies better prediction accuracy. Thus, the
cover elements can be orderly collected by sorting their local-complexities and then be
orderly embedded. Algorithm 3 shows the pseudocode. In some methods, e.g., in Refer-
ence [17], a threshold, rather than sorting, may be used to take advantage of the smooth
elements as much as possible. And these methods are in a sense the same as the method
using sorting.

Algorithm 3 Local-complexity-based selection procedure

Input: A cover, a binary-map, the corresponding prediction version of the cover and the
secret key.

Output: An ordered element sequence.
1: Initialization (e.g., empty the sequence)
2: while exist an element to be processed do
3: Find/update all required local-complexity values
4: Select an element with a smallest complexity value
5: Append the element to the sequence
6: Mark the element as processed
7: end while
8: return the ordered sequence

3.4. Data Embedding

After content selection, the data hider would perform data embedding. It is desirable
to use HS or its variants to embed secret data since they can lead to superior payload-
distortion performance. In detail, after generating an ordered pixel sequence, the data
hider can determine out the corresponding PE sequence (PES). Thereafter, by using suitable
histogram bin-pairs, the secret data can be easily embedded into the corresponding PEH.
The traditional methods often empirically tune the shifting parameters, which is not
desirable in applications. For a single-layer embedding, one may easily reproduce the
reported simulation results. However, when adopting multi-layer embedding, it is actually
time consuming and makes it hard for a reader to do the simulation due to the large
space for searching suitable embedding parameters. To deal with this problem, in this
paper, we propose a fast histogram shifting optimization (FastHiSO) algorithm to find
near-optimal parameters. There are three advantages for the FastHiSO comparing with
traditional operations: (1) the time complexity is relatively low; (2) a better payload-
distortion performance can be achieved; and (3) the FastHiSO is deterministic, rather
than empirical. In the following, we use digital image as the cover for detailing the
FastHiSO algorithm.

Entropy 2021, 23, 917 7 of 20

Mathematically, we define x(t)(t ≥ 0) as the cover image after embedded with t times.
For simplicity, let x(t) = (x1

(t), x2
(t), . . . , xn

(t)) ∈ X = {I}n be an n-pixel cover image
with the pixel range I , e.g., I = {0, 1, . . . , 255} for 8-bit grayscale images. For a given
message, we use x(0) and x(t) to generate the marked image x(t+1)(t ≥ 0) by HS. Our goal
is to find such HS parameters that both the distortion D between x(0) and x(t+1) and the
computational cost can be kept low at the same time. We limit ourselves to a commonly
used additive-distortion measure, i.e., mean squared error (MSE):

D(x(0), x(t+1)) =
1
n
·

n

∑
i=1

(xi
(0) − xi

(t+1))2. (1)

Let h(v) represent the frequency of the PEH bin with a value of v, where −|I| <
v < |I|. To embed data, with the generated PEH, we shift some PEs to vacate empty
positions, and then embed secret bits by shifting the peak bins to the empty positions. Let
c(t) = (c1

(t), c2
(t), . . . , cnt

(t)), nt ≤ n, be all the pixels to be embedded. We, respectively,
denote the prediction of c(t) and its marked version by ĉ(t) = (ĉ(t)1 , ĉ(t)2 , . . . , ĉ(t)nt) and
s(t) = (s1

(t), s2
(t), . . . , snt

(t)). Thus, we can determine the PEs e(t) = (e1
(t), e2

(t), . . . , ent
(t))

as follows:
ei
(t) = ci

(t) − ĉ(t)i , (1 ≤ i ≤ nt). (2)

For data embedding, we first select two peak points (lp
(t), rp

(t)) and two integers
(Tl

(t), Tr
(t)), where lp

(t) < rp
(t), Tl

(t) > 0, Tr
(t) > 0. Then, secret bits can be embedded by

using the HS operation, namely

si
(t) = ĉ(t)i + ê(t)i = ĉ(t)i + ei

(t) + ∆(ei
(t)), (3)

where

∆(ei
(t)) =

−Tl
(t), if ei

(t) ≤ lp
(t) − Tl

(t);
Tr

(t), if ei
(t) ≥ rp

(t) + Tr
(t);

ei
(t) − rp

(t) + b, else if ei
(t) ≥ rp

(t);
ei
(t) − lp

(t) − b, else if ei
(t) ≤ lp

(t);
0, otherwise.

(4)

Here, b ∈ {0, 1} is the current bit to be embedded.
We use o(t) = (o1

(t), o2
(t), . . . , ont

(t)) to denote the original pixel values of c(t) in x(0).
For the pixels not belonging to c(t), the introduced distortion can be roughly considered as
fixed since we will not embed secret data into these pixels (though we may alter some pixels
prior to embedding, e.g., we may empty some LSBs to store the secret key). Therefore, for
(t + 1)-layer (t ≥ 0) embedding (i.e., to generate x(t+1)), our optimization task is

D(x(0), x(t+1)) = min
lp
(t),rp(t),Tl

(t),Tr
(t)

1
n
·

nt

∑
i=1

(si
(t) − oi

(t))2 +
1
n
· C, (5)

where C is a constant. We further have

nt

∑
i=1

(si
(t) − oi

(t))2 =
nt

∑
i=1

(ĉ(t)i + ê(t)i − oi
(t))2

=
nt

∑
i=1

(ci
(t) − oi

(t) + ê(t)i − ei
(t))2

=
nt

∑
i=1

(αi
(t) + βi

(t))2,

(6)

where αi
(t) = ci

(t) − oi
(t) and βi

(t) = ê(t)i − ei
(t) = ∆(ei

(t)).

Entropy 2021, 23, 917 8 of 20

Therefore, it is inferred that our final optimization task is

J(x(0), x(t+1)) = min
lp
(t),rp(t),Tl

(t),Tr
(t)

nt

∑
i=1

(αi
(t) + βi

(t))2. (7)

Obviously, all αi
(t) (1 ≤ i ≤ nt) are constants before embedding, meaning that they

can be determined in advance. It can be seen that |βi
(t)| = |∆(ei

(t))| ≤ max{Tl
(t), Tr

(t)} for
all 1 ≤ i ≤ nt, which gives us the chance to quickly determine J(x(0), x(t+1)) for fixed c(t),
o(t) and e(t). In detail, we use a 2D histogram-matrix H = {Hu,v| − |I| ≤ u, v ≤ |I|} to
record the occurrence of every possible integer-pair (u, v) in advance, where u represents
the possible value of αi

(t), and v shows the possible value of ei
(t). In this way, Equation (7)

is equivalent to

J(x(0), x(t+1)) = min
lp
(t),rp(t),Tl

(t),Tr
(t)

∑
u,v

Hu,v · (u + ∆(v))2. (8)

According to Equation (4), we further have

∑
u,v

Hu,v · (u + ∆(v))2 = ∑
u

∑
v

Hu,v · (u + ∆(v))2 = ∑
u

∑
v≤lp

(t)−Tl
(t)

Hu,v · (u− Tl)
2

+ ∑
u

∑
v≥rp(t)+Tr

(t)

Hu,v · (u + Tr)
2 + ∑

u
∑

lp
(t)−Tl

(t)+1≤v≤lp
(t)

Hu,v · (u + v− lp
(t) − b)2

+ ∑
u

∑
rp(t)≤v≤rp(t)+Tr−1

Hu,v · (u + v− rp
(t) + b)2 + ∑

u
∑

lp
(t)+1≤v≤rp(t)−1

Hu,v · u2

, (9)

where b is the corresponding bit to be embedded.
Since the embedded bits are always encrypted, to keep the computational cost low,

we will consider

∑
u

∑
lp
(t)−Tl

(t)+1≤v≤lp
(t)

Hu,v · (u + v− lp
(t) − b)2 ≈

∑
u

∑
lp
(t)−Tl

(t)+1≤v≤lp
(t)

Hu,v

2
· (u + v− lp

(t))2

+ ∑
u

∑
lp
(t)−Tl

(t)+1≤v≤lp
(t)

Hu,v

2
· (u + v− lp

(t) − 1)2,

(10)

and

∑
u

∑
rp(t)≤v≤rp(t)+Tr−1

Hu,v · (u + v− rp
(t) + b)2 ≈

∑
u

∑
rp(t)≤v≤rp(t)+Tr−1

Hu,v

2
· (u + v− rp

(t))2

+ ∑
u

∑
rp(t)≤v≤rp(t)+Tr−1

Hu,v

2
· (u + v− rp

(t) + 1)2.

(11)

Algorithm 4 shows the FastHiSO procedure. In Algorithm 4, the 2D histogram-
matrix H can be determined with a time complexity of O(nt), which is linear with re-
spect to the number of cover elements to be embedded. For Line 6 in Algorithm 4, ac-
cording to Equation (9), the time complexity is O(|I|2) at the worst case for the fixed
(lp

(t), rp
(t), Tl

(t), Tr
(t)). Since the PEH is Gaussian-like [17], the optimal values of lp

(t) and
rp

(t) should be close to zero. It indicates that, from the empirical point of view, the absolute
values of lp

(t) and rp
(t) can be limited to a small range, e.g., max{|lp

(t)|, |rp
(t)|} ≤ 64. The

Entropy 2021, 23, 917 9 of 20

values of Tl
(t) and Tr

(t) can be also limited to a small range, as well, e.g., max{Tl
(t), Tr

(t)} ≤ 4.
In this way, the near-optimal parameters can be quickly determined, and the correspond-
ing complexity can be approximately expressed as O(knt), where k << nt is a relatively
small integer.

With the proposed FastHiSO algorithm, one can easily embed secret data into the
cover pixel-sequence. The embedding process is described in Algorithm 5. To avoid the
underflow/overflow problem, we need to adjust the pixels with boundary values into the
reliable range in advance. The preprocessed pixels should be recorded as side information,
which will be self-embedded.

Algorithm 4 Fast histogram shifting optimization (FastHiSO)

Input: The ordered cover sequence c(t), the original sequence o(t), the prediction sequence
ĉ(t), and the payload size ρ.

Output: (lp
(t), rp

(t), Tl
(t), Tr

(t))
1: Empty H
2: for 1 ≤ i ≤ nt do
3: Find u = αi

(t) and v = ei
(t)

4: Set Hu,v ← Hu,v + 1
5: end for
6: Find the near-optimal (lp

(t), rp
(t), Tl

(t), Tr
(t)) with Equations (8)–(11), subject to the

payload size ρ.
7: return (lp

(t), rp
(t), Tl

(t), Tr
(t))

Algorithm 5 Data embedding procedure

Input: The ordered cover sequence c(t), the original sequence o(t), the prediction sequence
ĉ(t), the required payload L, and the secret key kemb.

Output: The marked pixel-sequence s(t).
1: Call FastHiSO to find near-optimal HS parameters
2: Embed L into the corresponding PEH
3: Construct the marked pixel-sequence s(t)

4: return s(t) {thereafter, we further generate x(t+1)}

3.5. Data Extraction and Cover Recovery

Once secret data is successfully embedded, the resulting marked object will be sent to
the desired receiver, who should be able to reconstruct the original cover and extract the
embedded data without error according to the secret key. The data extraction and cover
recovery procedure can be considered as an inverse process to the data hider.

3.6. Relationships between Different Parts

There may exist interactions between the different parts. We present two different
relationships for better generalization.

3.6.1. Relationship between Binary-Map Generation, Content Prediction, and
Content Selection

With an initialized binary-map, we can optimize it for realizing better payload-
distortion performance. We may use the procedure similar to content prediction and selec-
tion, e.g., Algorithm 6 shows an example of optimizing a binary-map using
Algorithms 2 and 3.

Entropy 2021, 23, 917 10 of 20

Algorithm 6 Binary-map generation using Algorithms 2 and 3

Input: A cover and a secret key.
Output: A binary-map.

1: Initialize a binary-map
2: while need optimization do
3: Call Algorithm 2 to predict the cover
4: Call Algorithm 3 to generate a sequence
5: Choose a certain number of elements (which are marked as “1”) out from the ordered

sequence
6: Mark them as ”0” and update the binary-map
7: end while
8: return the final binary-map

3.6.2. Relationship between Content Prediction and Content Selection

For content prediction, the data hider has to identify the prediction order. As men-
tioned above, each time, the data hider chooses an element with a largest degree for predic-
tion. For content selection, the data hider uses a local-complexity function to choose an
element with the lowest complexity in each time. It indicates that every to-be-processed el-
ement will be associated with a local-complexity value. As the degree and local-complexity
are scalars, they may affect each other. e.g., in Algorithm 2, after executing Line 7, one can
directly append the processed element to a sequence. Thus, an ordered element sequence
presented in Algorithm 3 can be also generated after content prediction.

3.7. Other Perspectives

Next, two different types of dynamic predictors, i.e., raw-content-independent (RCI)-
based predictor and raw-content-dependent (RCD)-based predictor are considered. RCI-
based predictor uses the marked or predicted values of the neighbors of the present element
as the prediction context. It means that the prediction process for an element may not affect
the prediction process of another one directly. Thus, the content prediction order for a data
receiver is probably identical to the sender. In contrast, RCD-based predictor uses the raw
content, which can benefit prediction accuracy. Thus, we should ensure that the raw values
of the context have been obtained before prediction.

Intuitively, a dynamic predictor enables us to predict different cover elements from
different contexts. Actually, a general dynamic predictor also implies that:

• Fusion of multiple subpredictors: The conventional methods use a single predictor.
Actually, they can be treated as a fusion of multiple subpredictors. We take median
edge detector (MED) [13] for explanation, i.e.,

x̂ =

min{v1, v3}, if v4 ≥ max{v1, v3},
max{v1, v3}, if v4 ≤ min{v1, v3},
v1 + v3 − v4, otherwise,

(12)

where v1, v3, and v4 are specific neighbors of x. It can be seen that the MED essentially
uses three subpredictors, i.e., min{v1, v3}, max{v1, v3}, and v1 + v3 − v4. Therefore, it
is inferred that a dynamic predictor corresponds to a fusion of multiple subpredictors.
A key work is to choose the suitable subpredictor according to the local context.

• Fusion of multiple subhistograms: The histogram to be embedded also can be regarded as
a fusion of multiple subhistograms as a subpredictor corresponds to a subhistogram.
Though we may not directly use the subhistograms separately, it inspires us to divide
a histogram into multiple subhistograms for payload-distortion optimization, which
has been exploited by Li et al. [18].

• Fusion of multiple subcovers: Different subhistograms are corresponding to different
subcovers even though the elements belonging to a subcover may be widely or near-
randomly distributed in the original cover. In other words, we may divide the cover

Entropy 2021, 23, 917 11 of 20

into subcovers for payload-distortion optimization since different subcovers may have
different texture characteristics. For example, a cover image may be divided into
disjoint blocks. Notice that this perspective no longer focuses on only the dynamic
predictor, but rather the design of an RDH system, e.g., as in Reference [19].

In addition, by default, we consider the cover element to be embedded as a single
value for better understanding. Actually, the “element” can be a vector. For example, in
Reference [20], two pixels are grouped as a pair to carry the secret data.

4. Two Examples Based on Proposed Framework

In this section, we will present two novel RDH algorithms based on the proposed
framework to show the efficiency and applicability of the proposed framework.

4.1. Prediction-Error of Prediction Error (PPE)-Based RDH

Due to the spatial correlations between neighboring pixels, many existing works use
PEs to carry the secret data. Actually, there also exist correlations between neighboring
PEs. An evidence can be found in the prediction mechanism of video lossy compression.
For example, in intra prediction, the prediction block for an intra 4× 4 luma macroblock is
generated with 9 possible prediction modes. Then, to improve the coding efficiency, the
prediction mode of a luma macroblock is predicted from the prediction modes of neigh-
boring luma macroblocks since correlations also exist between the neighboring prediction
modes. The success of steganalysis by modeling the differences between neighboring
pixels with low-order Markov chains [21] also reveals that correlations exist between the
neighboring PEs if we consider the differences as a kind of PEs. Based on this perspective,
we here present a prediction-error of prediction error (PPE)-based RDH algorithm, which
is an extension of Reference [14].

With a cover image x ∈ {0, 1, . . . , 2d − 1}n1×n2 and a binary-map bmap ∈ {0, 1}n1×n2 ,
we define a neighbor-set D0(xi,j) for each xi,j ∈ x corresponding to bi,j = 1 (∈ bmap).
D0(xi,j) includes the neighboring pixels of xi,j that are marked as “0” in bmap. We first
use the pixels in D0(xi,j) to predict xi,j, i.e., x̂i,j = f0(D0(xi,j)), from which we can obtain
the PE, denoted by ei,j = xi,j − x̂i,j. Then, ei,j is further predicted by exploiting the PEs of
the pixels in D0(xi,j) ∪D1(xi,j), i.e., êi,j = f1(D0(xi,j) ∪D1(xi,j)). Here, D1(xi,j) represents
the pixels adjacent to at least one pixel in D0(xi,j). Note that the definition of D0(xi,j) and
D1(xi,j) may be different from each other. The PPE of xi,j is described as:

e◦ i,j = ei,j − êi,j = xi,j − f0(D0(xi,j))− f1(D0(xi,j) ∪D1(xi,j)). (13)

We use the chessboard pattern to construct bmap. As shown in Figure 3, D0(xi,j) =
{xi−1,j, xi,j+1, xi+1,j, xi,j−1} is first utilized to predict xi,j. Then, the PEs of the pixels
in {xi−1,j, xi,j+1, xi+1,j, xi,j−1} are used to predict the PE of xi,j. The prediction process
of neighboring pixels is different from xi,j, e.g., xi,j+1 is predicted from {xi−1,j, xi−1,j+2,
xi+1,j, xi+1,j+2} since the cross set is to be embedded and the dot set for unchanged.

As shown in Figure 3, we first predict xi,j along the horizontal and vertical directions.
The two directional predictors are:

xi,j
′
=

xi,j−1 + xi,j+1

2
, xi,j

′′
=

xi−1,j + xi+1,j

2
. (14)

Then, x̂i,j is determined by:

x̂i,j = Round(wi,j · xi,j
′
+ (1− wi,j) · xi,j

′′
). (15)

Here, Round(·) returns the nearest integer, wi,j is defined as:

wi,j =
σi,j
′′

σi,j
′ + σi,j

′′ , (16)

Entropy 2021, 23, 917 12 of 20

where

σi,j
′
=

1
3
· ∑

v∈{xi,j−1,xi,j
′ ,xi,j+1}

(v−
xi,j
′
+ xi,j

′′

2
)2. (17)

σi,j
′′
=

1
3
· ∑

v∈{xi−1,j ,xi,j
′′ ,xi+1,j}

(v−
xi,j
′
+ xi,j

′′

2
)2. (18)

It is straightforward to process other pixels in the cross set and the dot set with the
similar procedure, e.g., xi,j+1 will be predicted from the two diagonal directions. Thereafter,
we use the average value of the PEs of pixels in D0(xi,j) as the prediction of ei,j, i.e., êi,j.
And, the corresponding PPE can be determined according to Equation (13). Therefore, all
PPEs of pixels in the cross set can be determined. By defining a local-complexity function,
the PPEs can be sorted in a decreasing order of the prediction accuracy, which can benefit
embedding performance. Here, the local-complexity function is defined as:

εi,j =

[
1
6
·

6

∑
s=1

($i,j
(s) −

6

∑
t=1

$i,j
(t)/6)2

]1/2

, (19)

where $i,j
(1) = |xi−1,j − xi,j+1|, $i,j

(2) = |xi−1,j − xi+1,j|, $i,j
(3) = |xi−1,j − xi,j−1|, $i,j

(4) =

|xi,j+1 − xi+1,j|, $i,j
(5) = |xi,j+1 − xi,j−1|, and $i,j

(6) = |xi+1,j − xi,j−1|. Accordingly, an or-
dered PPE sequence can be generated. We sincerely refer the readers to References [14,22]
for more details. Note that one may use other efficient binary-maps, pixel prediction proce-
dures, and local-complexity functions. Finally, for a payload, by applying the proposed
FastHiSO algorithm, one can quickly find the near-optimal parameters and embed the se-
cret bits into the PPE histogram according to the operation similar to Equations (3) and (4).
For a receiver, data extraction and image recovery correspond to a reverse operation.

Figure 3. The pixel prediction pattern. xi,j is predicted from four neighbors in the dot set, and xi,j+1

is predicted from four neighbors still in the dot set.

We present some experimental results to show the efficiency of PPE-based RDH
method. Six standard test images, from smooth to complex (http://sipi.usc.edu/database/,
accessed on 10 January 2021): Airplane, Lena, Baboon, Tiffany, Peppers, and Sailboat (i.e.,
Fishing boat); all are grayscaled with a size of 512× 512 used. During data embedding,
we set max{|lp

(t)|, |rp
(t)|} ≤ 255 and max{Tl

(t), Tr
(t)} ≤ 1. Figure 4 shows the payload-

distortion performance comparison between some prediction-based RDH works and the
proposed method. It is seen that, for relatively low embedding rates, the proposed method
significantly outperforms the related works, meaning that the data embedding performance
can benefit from the cover PPEs and the FastHiSO algorithm. On the other hand, in
Figure 4, when the embedding payload increases, the PSNR improvement is not significant,
even slightly bad (e.g., Airplane). It means that the generated PPE histogram (PPEH) has
its limitation. Overall, the proposed method can still provide better payload-distortion
performance compared to a part of related works and maintain satisfactory trade-off
between the embedding payload and the distortion.

http://sipi.usc.edu/database/

Entropy 2021, 23, 917 13 of 20

Figure 4. The payload-distortion performance comparison between the state-of-the-art methods of Tsai et al. [8], Sachnev et
al. [10], Hong et al. [11], Luo et al. [12], Hsu et al. [23], Dragoi et al. [24], and the proposed method (PPE).

In this subsection, we use the PPEs to carry a payload. It is straightforward to apply
higher-order PEs to hide the secret data. It can be inferred that both the PPEs and the
higher-order PEs essentially correspond to a kind of calibration operation to improve the
prediction accuracy so as to provide better performance. Any predictor can be written as a
form of predicting a pixel itself, so that PE-based RDH and PPE-based RDH, as well as the
higher-order PE-based RDH, are all generalized by the proposed framework.

Therefore, a core work for prediction-based RDH system is to keep the calibration
operation as accurate as possible. In this paper, we will not study the prediction accuracy
in depth since it is not the main interest of this paper. The traditional methods usually have
no calibration term (or are considered as constant).

4.2. Dynamic Selection-and-Prediction (DSP)-Based RDH

The aforementioned algorithm uses a fixed pattern to construct bmap, providing
better embedding performance compared to the related works. According to Kerckhoffs’s
principle, this previously specified pattern may allow one to successfully reconstruct the
marked histogram, and extract the directly embedded information, which is not desirable
for applications. To overcome this drawback, we here use a key to initialize the binary-map
generation such that the final bmap is always changing due to the key.

For RDH, smooth regions often correspond to better payload-distortion performance.
To improve the performance, we can optimize the initialized bmap to select smooth regions
out for data embedding as long as the smooth pixels can carry the payload. However,
since all “1”s in bmap will be randomly or content-adaptively distributed due to the key,
we cannot directly use such predictors that rely on the specified neighbors. To deal with
this problem, we propose to use a dynamic predictor for pixel prediction. That is why
we call it as dynamic selection-and-prediction (DSP)-based RDH method. Thereafter, with a
well-defined local-complexity function and the FastHiSO algorithm, the secret data can
be embedded into the corresponding PEH. It can be seen that DSP-based RDH meets

Entropy 2021, 23, 917 14 of 20

the requirement of our framework. In the following, we will describe the details of the
proposed DSP-based RDH, which is an extension version of Reference [15].

For self-contained, let X be an image with n = h× w pixels; for compactness, we
sometimes consider X as the set including all pixels and say “pixel xi,j” meaning a pixel
located at position (i, j), whose grayscale value is xi,j. We first use a secret key to initialize
bmap, where “0”s are pseudo-randomly distributed. For simplicity, we use S0 to denote the
pixel-set containing all pixels marked as “0” in the initialized bmap. Then, we optimize bmap
by selecting more complex pixels out, denoted by S1. Here, S0 ∩ S1 = ∅ and S0 ∪ S1 ⊂ X .
Note that the pixels in S0 ∪ S1 will be marked as “0”, and that in X \ (S0 ∪ S1) correspond
to “1”. The generation of S1 involves two steps, namely the degree-first prediction (DFP) and
the complexity-first selection (CFS).

DFP Procedure: We collect all pixels in S0, and only exploit these pixels to predict the
pixels in X \ S0. The pixels are orderly predicted according to the associated degrees. The
degree of a pixel is defined as the size of its degree-set, which is a subset of its neighbor-set.
The neighbor-set of a pixel xi,j is defined as:

Ni,j =
{

xi+u,j+v|1 ≤ u2 + v2 ≤ r2; u, v ∈ Z
}

. (20)

By default, r =
√

2. Thus, except for boundary positions, the neighbor-set of a pixel
consists of eight pixels. The degree-set of xi,j is then determined by:

Di,j = Ni,j ∩ (S0 ∪A), (21)

whereA represents the pixel-set consisting of the pixels that have been previously predicted.
We always have S0 ∩A = ∅.

A pixel with a larger degree will be predicted prior to that with a smaller degree.
The reason is, only pixels in the degree-set are utilized to predict a pixel. Thus, a pixel
with a larger degree can be predicted from more pixels, meaning that the pixel can be
well predicted as more context are provided. That is why we consider the prediction as
“degree-first prediction”. In this paper, the prediction of xi,j is defined as:

x̂i,j =

∑
xu,v∈(Ni,j∩A)

x̂u,v + ∑
xu,v∈(Ni,j∩S0)

xu,v

|Di,j|
. (22)

Based on the above description, we describe the proposed DFP procedure as follows.
(Step 1) Set A = ∅. For all xi,j ∈ X \ S0, compute Di,j with Equation (21). Mark all

xi,j ∈ X \ S0 as unprocessed.
(Step 2) Select such a unprocessed pixel xi,j ∈ X \ S0 that has the largest degree in

X \ (S0 ∪A). If there are multiple pixels that have the largest degree, choose one according
to a key or a specified rule. Find x̂i,j with Equation (22).

(Step 3) Mark xi,j as processed and update A as A ∪ {xi,j}, and further update Di,j
with Equation (21).

(Step 4) Terminate the procedure if all pixels in X \ S0 are processed; otherwise, go to
(Step 2).

CFS Procedure: After all required pixels are predicted, we are to select a part of the
predicted pixels out to constitute S1. It relies on the local complexities of the pixels. Here,
we define the local complexity of a predicted pixel xi,j as:

ρi,j =

∑
xu,v∈Pi,j

(xu,v − x̂i,j)
2 + ∑

xu,v∈Qi,j

(x̂u,v − x̂i,j)
2

|Ni,j|
, (23)

where Pi,j = S0 ∩Ni,j, Qi,j = Ni,j \ S0.

Entropy 2021, 23, 917 15 of 20

A larger local complexity indicates that the pixel is likely to be located at a more
complex region. Every predicted pixel is associated with its local complexity. We sort
the pixels by their local complexities in an increasing order. In this way, the |S1| pixels
with largest complexity-values are chosen to constitute S1, and the selected pixels are
likely located at relatively complex regions. Since we only use the original values of pixels
in S0, both the data hider and receiver should be able to construct the identical S0 ∪ S1
with the key. Thereafter, we use the pixels in S0 ∪ S1 to predict the pixels in X \ (S0 ∪ S1)
by applying the proposed DFP procedure. An ordered pixel-sequence together with the
corresponding PEs can be generated according to the proposed CFS procedure. With the
resulting PEH and the FastHiSO, the secret data can be sucessfully embedded.

We present some experimental results to show the embedding performance. The
system parameters mainly include |S0|, |S1| and the secret key. For a payload, it is free
to choose |S0| and |S1|. For convenience, we consider |S0| = |S1| in default, which may
be not optimal. Figure 5 shows the distribution of S0 and S0 ∪ S1 (black regions) tested
on Lena image due to proposed binary-map generation procedure. It is seen that the
proposed binary-map generation procedure can auto-capture the relatively smooth pixels
(white regions) for data hiding, which is quite desirable for practice.

Figure 5. An example of the proposed binary-map generation procedure tested on Lena: r =
|S0∪S1|
|X | × 100% = 80% (black regions in optimized version).

4.2.1. Evaluation on Standard Images

We test the above algorithm on the standard images mentioned previously. Since it is
free to set r (please refer to Figure 5), for a payload, we generate the marked image with the
highest PSNR by varying r from 0.01 to 0.99 with a step value of 0.01 since the data hider
always has the freedom to generate a marked image with a better quality. Figure 6 shows
the corresponding payload-distortion performance comparison. It is inferred that the used
data hiding operation can benefit from the pixel selection and prediction procedure and,
therefore, provide relatively good embedding performance. In Figure 6, with relatively low
embedding rates, the proposed scheme significantly outperforms the related works. For
example, for Airplane embedded with 0.1× 103 bits, the PSNR value of proposed method is
74.97 dB, which is extremely close to the theoretical uniform-embedding bound 75.33 dB (=
10× log10

2552

0.5×1000/512/512). It indicates that the proposed algorithm indeed has the ability
to well-capture the smooth pixels out for data hiding. Note that, here, “uniform-embedding”
means all PEs are shifted to carry a message that “0/1” are evenly distributed.

It can be also observed that, when the embedding payload increases, the PSNRs are
likely to be relatively lower than some of the related works. For example, the proposed
RDH scheme has a weaker performance for the Baboon image after embedded with more
than 0.7× 104 bits. The reason is that the proposed algorithm aims to select the complex
pixels for prediction and smooth pixels for data hiding, while the amount of smooth pixels
within an image is actually limited due to the image content. The Baboon image is full
of complex content so that many complex pixels are finally selected out for data hiding.

Entropy 2021, 23, 917 16 of 20

However, the complex pixels are likely to be predicted with a larger PE, which, therefore,
cannot keep a good payload-distortion performance. It also implies that the proposed pixel
predictor should be further improved when a larger payload is required or the number of
smooth pixels is limited.

In addition, to provide better performance, it is necessary to apply the optimization
operation for binary-map generation (i.e., further using S0 to generate S1). The reason
is that, for an embeddable payload, S0 ∪ S1 provides more original image context for
pixel prediction than only S0, which could benefit prediction accuracy. Meanwhile, the
optimization operation can select regions of interest (RoI) for RDH, which can result in
better payload-distortion performance. Figure 7 shows the content degradation comparison
(with MSE measure) between only using S0 and using S0 ∪ S1 for the Lena and Airplane
image. It can be seen that an optimized binary-map would be better than a completely
random binary-map in terms of payload-distortion performance.

Figure 6. The payload-distortion performance comparison between the state-of-the-art methods of Tsai et al. [8], Sachnev et
al. [10], Hong et al. [11], Luo et al. [12], Hsu et al. [23], Dragoi et al. [24], and the proposed method (DSP).

Entropy 2021, 23, 917 17 of 20

Figure 7. The MSE comparison between using a random binary-map (namely, using only S0 for
prediction) and using an optimized binary-map (namely, using S0 ∪ S1 for prediction) for the Lena
and Airplane image.

4.2.2. Evaluation on Special Images

Unlike the traditional methods that often embed secret data according to a specified
order or fully controlled by the local-complexity, the proposed DSP-based method first
pre-selects relatively complex pixels out for pixel prediction and smooth pixels for data
hiding. To further show its efficiency, we provide some experimental results on special
images. Figure 8 shows three test images. Figure 9 shows the generated binary-maps due
to the proposed binary-map generation procedure. It can be observed that the proposed
method indeed can well-capture the smooth regions out for data embedding.

Figure 8. Three special test images and their histograms (all grayscaled with a size of 512 × 512): (a) Circle, (b) Dollar,
(c) Wall.

Entropy 2021, 23, 917 18 of 20

Figure 9. The corresponding binary-maps (r = 60%) due to proposed binary-map generation procedure: (a) Circle, (b) Dollar,
(c) Wall.

We also use the special images to compare the performance between related works
and the proposed method. As shown in Figure 10, the proposed method shows superior
performance compared to the related works. It is worth noting that the PSNR values shown
in Figure 10 of the proposed method for the Circle image are optimal from the viewpoint
of “uniform-embedding”. For example, for a payload of 1.5× 104 bits, the PSNR value
is 63.60 dB, while the theoretical uniform-embedding bound is 10× log10

2552

0.5×15000/512/512
= 63.57 dB. The reason is that the proposed binary-map generation procedure can select
the circle-edges of the Circle image out such that the pixels within a connected area are
all with the same value. It results in that all the prediction values are all the same as the
original ones. Figure 11 shows the generated PEHs due to the different r for the Circle
image. It can be observed that both the two PEHs are very sharp. Moreover, Figure 11a
indicates that all the PEs of the pixels to be embedded are all with a value of zero, meaning
that, for an embeddable payload, the proposed method can achieve the corresponding
theoretical bound. Our experiments have shown that, even for a payload of 1.79 × 105 bits,
the PSNR of the proposed method for the Circle image is 52.41 dB, which is rather close to
the theoretical bound 10× log10

2552

0.5×179000/512/512 = 52.80 dB.

Figure 10. The payload-distortion performance comparison between the state-of-the-art methods of Tsai et al. [8], Sachnev
et al. [10], Hong et al. [11], Luo et al. [12], Hsu et al. [23], Dragoi et al. [24], and the proposed method (DSP): (a) Circle,
(b) Dollar, and (c) Wall.

Entropy 2021, 23, 917 19 of 20

Figure 11. The generated PEH due to the different r for the Circle image.

5. Conclusions and Discussion

In this paper, we present a framework for prediction-based RDH technologies by
revisiting a part of reported works. The proposed framework divides an RDH system at the
data hider side into four parts so that one can design or improve an RDH system easily. We
propose to use a key to generate a binary-map to improve the security, which is required in
practice. Since the binary-map is always changing due to the key and the pixel prediction
relies on the used binary-map, we propose to use a dynamic predictor for prediction. We
also introduce a fast and efficient optimization algorithm, which can be equipped into the
design of RDH or the existing works, to find the suitable HS parameters. Two novel RDH
algorithms based on the proposed framework are also presented. Experimental results
have shown that both the two novel RDH algorithms outperform a part of state-of-the-art
works in terms of payload-distortion performance. Moreover, the proposed DSP-based
algorithm can even achieve the theoretical bound of the uniform-embedding on special
images. In the future, based on the proposed framework, we will focus on designing
new RDH algorithms and also on improving the payload-distortion performance and the
security of the existing works.

Author Contributions: Conceptualization, L.Z.; methodology, L.Z. and H.W.; software, L.Z. and
H.W.; validation, H.H. and H.W.; supervision, H.W.; project administration, H.H. and H.W.; fund-
ing acquisition, L.Z. and H.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was partly supported by the National Natural Science Foundation of China
(Grant Nos. 61901096 and 61902235), the Shanghai “Chen Guang” Project (Grant No. 19CG46), and
the Science and Technology Foundation of Guangdong Province (Grant No. 2021A0101180005).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tian, J. Reversible data embedding using a difference expansion. IEEE Trans. Circuits Syst. Video Technol. 2003, 13, 890–896.

[CrossRef]
2. Ni, Z.; Shi, Y.Q.; Ansari, N.; Su, W. Reversible data hiding. IEEE Trans. Circuits Syst. Video Technol. 2006, 16, 354–362.
3. Wu, H.T.; Wu, Y.; Guan, Z.H.; Cheung, Y.M. Lossless contrast enhancement of color images with reversible data hiding. Entropy

2019, 21, 910. [CrossRef]

http://doi.org/10.1109/TCSVT.2003.815962
http://dx.doi.org/10.3390/e21090910

Entropy 2021, 23, 917 20 of 20

4. Lu, T.C.; Yang, P.C.; Jana, B. Improving the reversible LSB matching scheme based on the likelihood re-encoding strategy. Entropy
2021, 23, 577. [CrossRef] [PubMed]

5. Fridrich, J.; Goljan, M.; Du, R. Invertible authentication. In Proceedings of the SPIE Security Watermarking Multimed Contents,
San Jose, CA, USA, 20–26 January 2001; pp. 197–208.

6. Celik, M.U.; Sharma, G.; Tekalp, A.M. Lossless watermarking for image authentication: A new framework and an implementation.
IEEE Trans. Image Process. 2006, 15, 1042–1049. [CrossRef] [PubMed]

7. Dragoi, I.; Coltuc, D. Local-prediction-based difference expansion reversible watermarking. IEEE Trans. Image Process. 2014, 23,
1779–1790. [CrossRef] [PubMed]

8. Tsai, P.; Hu, Y.; Yeh, H. Reversible image hiding scheme using predictive coding and histogram shifting. Signal Process. 2009, 89,
1129–1143. [CrossRef]

9. Thodi, D.M.; Rodríguez, J.J. Expansion embedding techniques for reversible watermarking. IEEE Trans. Image Process. 2007, 16,
721–730. [CrossRef] [PubMed]

10. Sachnev, V.; Kim, H.J.; Nam, J.; Suresh, S.; Shi, Y.Q. Reversible watermarking algorithm using sorting and prediction. IEEE Trans.
Circuits Syst. Video Technol. 2009, 19, 989–999. [CrossRef]

11. Hong, W.; Chen, T.S.; Shiu, C.W. Reversible data hiding for high quality images using modification of prediction errors.
J. Syst. Softw. 2009, 82, 1833–1842. [CrossRef]

12. Luo, L.; Chen, Z.; Chen, M.; Zeng, X.; Xiong, Z. Reversible image watermarking using interpolation technique. IEEE Trans. Inf.
Forensics Secur. 2010, 5, 187–193.

13. Li, X.; Yang, B.; Zeng, T. Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection.
IEEE Trans. Image Process. 2011, 20, 3524–3533. [PubMed]

14. Wu, H.Z.; Wang, H.X.; Shi, Y.Q. PPE-Based Reversible Data Hiding. In Proceedings of the ACM Workshop Inf. Hiding Multimed.
Security (Two-Page Summary, On-Going Work), Vigo Galicia, Spain, 20–22 June 2016; pp. 187–188.

15. Wu, H.Z.; Wang, H.X.; Shi, Y.Q. Dynamic content selection-and-prediction framework applied to reversible data hiding. In Pro-
ceedings of the IEEE International Workshop on Information Forensics and Security, Abu Dhabi, United Arab Emirates, 4–7
December 2016.

16. Yang, C.; Tsai, M. Improving histogram-based reversible data hiding by interleaving prediction. IET Image Process. 2010, 4,
223–234. [CrossRef]

17. Li, X.; Li, B.; Yang, B.; Zeng, T. General framework to histogram-shifting-based reversible data hiding. IEEE Trans. Image Process.
2013, 22, 2181–2191. [CrossRef] [PubMed]

18. Li, X.; Zhang, W.; Gui, X.; Yang, B. Efficient reversible data hiding based on multiple histogram modification. IEEE Trans. Inf.
Forensics Secur. 2015, 10, 2016–2027.

19. Wu, H.Z.; Wang, W.; Dong, J.; Wang, H.X. Ensemble reversible data hiding. In Proceedings of the International Conference on
Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; pp. 2676–2681.

20. Ou, B.; Li, X.; Zhao, Y.; Ni, R.; Shi, Y. Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans.
Image Process. 2013, 22, 5010–5021. [CrossRef]

21. Pevny, T.; Bas, P.; Fridrich, J. Steganalysis by subtractive pixel adjacency matrix. IEEE Trans. Inf. Forensics Secur. 2010, 5, 215–224.
[CrossRef]

22. Wu, H.Z.; Wang, H.X.; Shi, Y.Q. Prediction-error of prediction error (PPE)-based reversible data hiding. arXiv 2016,
arXiv:1604.04984.

23. Hsu, F.; Wu, M.; Wang, S. Reversible data hiding using side-match predictions on steganographic images. Multimed. Tools Appl.
2013, 67, 571–591. [CrossRef]

24. Dragoi, I.; Coltuc, D.; Caciula, I. Gradient based prediction for reversible watermarking by difference expansion. In Proceedings
of the 2nd ACM Workshop on Information Hiding and Multimedia Security, Salzburg, Austria, 11–13 June 2014; pp. 35–40.

http://dx.doi.org/10.3390/e23050577
http://www.ncbi.nlm.nih.gov/pubmed/34066646
http://dx.doi.org/10.1109/TIP.2005.863053
http://www.ncbi.nlm.nih.gov/pubmed/16579388
http://dx.doi.org/10.1109/TIP.2014.2307482
http://www.ncbi.nlm.nih.gov/pubmed/24808346
http://dx.doi.org/10.1016/j.sigpro.2008.12.017
http://dx.doi.org/10.1109/TIP.2006.891046
http://www.ncbi.nlm.nih.gov/pubmed/17357732
http://dx.doi.org/10.1109/TCSVT.2009.2020257
http://dx.doi.org/10.1016/j.jss.2009.05.051
http://www.ncbi.nlm.nih.gov/pubmed/21550888
http://dx.doi.org/10.1049/iet-ipr.2009.0316
http://dx.doi.org/10.1109/TIP.2013.2246179
http://www.ncbi.nlm.nih.gov/pubmed/23399962
http://dx.doi.org/10.1109/TIP.2013.2281422
http://dx.doi.org/10.1109/TIFS.2010.2045842
http://dx.doi.org/10.1007/s11042-012-1047-7

	Introduction
	Sketch of Proposed Framework
	LC-Based RDH
	Ni et al's Method
	Tsai et al.'s Method
	Sachnev et al.'s Method
	Transformed Domain-Based RDH
	Expansion-Based RDH

	Details of Proposed Framework
	Binary-Map Generation
	Content Prediction
	Content Selection
	Data Embedding
	Data Extraction and Cover Recovery
	Relationships between Different Parts
	Relationship between Binary-Map Generation, Content Prediction, and Content Selection
	Relationship between Content Prediction and Content Selection

	Other Perspectives

	Two Examples Based on Proposed Framework
	Prediction-Error of Prediction Error (PPE)-Based RDH
	Dynamic Selection-and-Prediction (DSP)-Based RDH
	Evaluation on Standard Images
	Evaluation on Special Images

	Conclusions and Discussion
	References

