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Abstract: Current physics commonly qualifies the Earth system as ‘complex’ because it includes
numerous different processes operating over a large range of spatial scales, often modelled as
exhibiting non-linear chaotic response dynamics and power scaling laws. This characterization is
based on the fundamental assumption that the Earth’s complexity could, in principle, be modeled
by (surrogated by) a numerical algorithm if enough computing power were granted. Yet, similar
numerical algorithms also surrogate different systems having the same processes and dynamics,
such as Mars or Jupiter, although being qualitatively different from the Earth system. Here, I argue
that understanding the Earth as a complex system requires a consideration of the Gaia hypothesis:
the Earth is a complex system because it instantiates life—and therefore an autopoietic, metabolic-
repair (M,R) organization—at a planetary scale. This implies that the Earth’s complexity has formal
equivalence to a self-referential system that inherently is non-algorithmic and, therefore, cannot be
surrogated and simulated in a Turing machine. I discuss the consequences of this, with reference to
in-silico climate models, tipping points, planetary boundaries, and planetary feedback loops as units
of adaptive evolution and selection.

Keywords: Earth’s climate system; global circulation models; complex system; autopoiesis; (M,R)-
system; closure to efficient causation; self-reference

1. Introduction

It is generally agreed that the Earth system is complex and that this complex char-
acter must be appreciated when modelling it and taking decisions that may influence
its evolution.

In present-day physics that which is called a ‘complex system’ is often the one that
exhibits a large range of spatial scales, and often modelled as exhibiting non-linear chaotic
response dynamics, turbulence, and power-scaling laws. It is also often assumed that
this ‘complex’ character emerges from the non-linear interactions between the system’s
components, and that adding more components into the system may gradually increase its
complexity. At the core of this idea of complexity is the Von Neumann argument that there
are degrees of complexity and that the transition from less to more complex dynamics is
essentially a matter of degree of nonlinearity, connectivity, and size: “there exists a critical
size below which the process of synthesis is degenerative, but above which the phenomenon of
synthesis, if properly arranged, can become explosive (complex) . . . ” [1] (p. 66).

In relational biology and the biology of cognition, however, the complexity is not
a matter of degree of nonlinearity, connectivity, and size. As the mathematical biologist
Robert Rosen argued, complexity “has nothing to do with more complication, or with counting
of parts or interactions; such notions, being themselves predicative, are beside the point...Just as
‘infinite’ is not just ‘big finite,’ impredicativities are not just big (complicated) predicativities. In
both cases, there is no threshold to cross, in terms of how many repetitions of a rote operation
such as ‘add one’ are required to carry one from one realm to the other, nor yet back again” [2]
(p. 124). That is, the complexity of natural systems depends whether they have or involve
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‘impredicativities’ in their causality or causal organization rather than on whether they
have a higher or lower dynamical order, such properties, being themselves predicative. In
mathematics or formal systems, something that is impredicative (in casual terms: it knows
itself) is a self-referencing definition or self-referring formal system, i.e., systems whose
definitions in set theory would have to invoke what is being defined, or other things that
contain the thing being defined. It turns out that self-referential systems are essentially
non-syntactic (non-algorithmic) and, therefore, cannot be implemented (simulated), even
in an advanced Turing machine [3].

In science and, in general, in biology, self-referentiality is expressed in the living orga-
nization as the cause and effect of itself, or more specifically, as self-production by closure
to efficient causation. An efficient cause is that which constrains or drives changes. The
closure to efficient causation is key to modeling the self-referential causal organization of
the living systems, which is embodied in autopoiesis (auto = self, poiesis = production) and
is modeled by the (M,R)-system (M = metabolism, R = repair). These are complementary
explanations of the same self-referential causal organization of the living systems (see the
next section). It turns out that autopoiesis and the (M,R)-system are self-referential systems
and therefore are non-syntactic (non-algorithmic) as well.

In this article, I will argue that the Earth system qualifies as a complex system because
it instantiates autopoietic organization and therefore the closure to efficient causation at
the planetary scale. That is, the Earth systems, as a physical system, realize the formal
pattern of an impredicative system. Some consequences of this approach are discussed
in reference to in-silico climate models, tipping points, planetary boundaries, resilience,
and the notion that adaptive evolution and selection operates on non-reproducing self-
perpetuating planetary feedback loops.

2. The Road to Complexity: The Protein Folding Paradox and Living Organization

The autopoietic characterization of living systems organization is based on processes
of molecular production that result in the constitution of the system itself . . . “a network of
processes of production . . . of components which . . . through their interactions and transformations
continuously regenerate and realize the network of processes (relations) that produced them” [4]
(p. 78). The basic idea is that a molecular metabolic network generates its own semi-
permeable boundary; and hence, its limit, which maintains the metabolic network occurring
inside far from dissipation (Figure 1a). Both the metabolic network and the semi-permeable
boundary are interdependent on each other, as part of the same self-production process.
This self-production is the realization of a self-referential system in the sense that it...
“involves an iteration of the very process that generates it [ . . . ] with enough entailment to close
the realization process up on itself ” [2] (p. 203).

While in autopoiesis this causal organization is described as self-production by opera-
tional closure, as an (M,R)-system it is modeled as self-fabrication by closure to efficient
causation. It turns out that this causality of biological systems implies a non-syntactic
(non-algorithmic) character, and thus one that cannot be implemented (i.e., simulated) in
a Turing machine [2,5]. In addition, it constitutively involves cognition, autonomy, and
anticipation [4,6,7].

One of the most concrete examples of living systems being complex because they are
non-computable is the protein-folding problem. The three-dimensional form of the protein
shape (its molecular phenotype) cannot be obtained from the ‘information’ in the DNA
sequence. Even knowing the translated polypeptide sequence and the potential physico-
chemical landscapes of the folding configuration, the right phenotype of a folded protein
given by experimental crystallization cannot be computed, and hence simulated, in silico.
This is because the folding protein problem is, indeed, impredicative or ‘paradoxical’ in the
syntactic, predicative world of the computable approach to complexity. However, if we
frame it in terms of self-production by closure to efficient causation, the folding protein problem
disappears in the self-referentiality of the biological causal organization (Figure 1b).
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Figure 1. (a) The autopoietic system is an open system in the sense that it selects which matter and energy enter and exit the
system (dotted right arrows). The operational closure occurs when a molecular reaction network produces a semipermeable
boundary and this specifies the topological dynamics (molecular concatenation) of the metabolic reaction network (arrows
in both directions); that is, when there is an interrelation between the metabolic network and the boundary; (b) The protein
folding only takes place as a self-referential relation of cell–protein, such that cells cannot operate with defective protein
shapes and the right folding only takes place within cells. Notice that the interaction with environmental energy and matter
does not determine the protein folding either.

Therefore, the only way to obtain the three-dimensional form of the protein shape is
essentially non-syntactic (non-algorithmic) in character. In what follows, I will argue that
both the autopoietic and the (M,R)-system are sufficiently general to provide a possible
road to showing how the Earth qualifies as a complex system and what this implies for the
future evolution of the system.

3. The Autopoietic Complexity of the Earth System Organization

I consider that the Earth’s complexity resides in its causal organization, which is
self-referential. The road to demonstrating that the Earth qualifies as a complex system
thus passes through a consideration of the Gaia hypothesis: that the Earth is an instance of
life and therefore an instance of biological organization at a planetary scale.

Numerous authors agree that autopoiesis is a plausible scenario for the instantiation
of life organization on a planetary scale [8–17]. Recent work showed that this is plausible in
a formal syntactic framework, using a proof-of-concept based on the chemical organization
theory and the zero deficiency theorem applied on a simple but representative Earth molec-
ular reaction network [18]. These results show that the Earth is an organized system, and
this organization may approximate to an autopoietic system, making the Gaia hypothesis
tractable from this standpoint.

An intuitive but reasonable road to elucidate the Earth’s organizational system and
whether this organization is autopoietic is derived from two rationales:

• At whatever scale, the physical embodiment of autopoiesis, either in the cellular,
metacellular, or in this case, in the planetary domain, must always be molecular:
“There are autopoietic systems of higher order (metacellulars or Gaia), integrated by (populated
by) lower order autopoietic unities that may not be the components realizing them as autopoietic
systems... there are higher order autopoietic systems whose components are molecular entities
produced through the autopoiesis of lower autopoietic unities” [19] (p. 53, brackets and
underline are mine). This is also indicated elsewhere [20,21].

• Autopoiesis must involve an interdependence between a metabolic network and a
semi-permeable boundary. On the planetary scale, this can be interpreted as the
biosphere (involving the lithosphere and hydrosphere) being the metabolic network,
and the atmosphere being the semi-permeable boundary, respectively.

The early systematization of observations already shows that most, if not all, the
atmospheric molecular components of the troposphere and stratosphere, key atmospheric
layers for climate dynamics, are metabolically produced [22,23]. Morowitz points out a



Entropy 2021, 23, 915 4 of 13

self-evident truth: “all organisms interact through the gas-phase components that they take up
from and give off to the atmosphere . . . ” [24] (p. 5). That is, the biosphere depends across time
on the atmospheric composition, upon which it metabolically operates. This metabolic
production involves the lithosphere and hydrosphere [25]. Therefore, throughout the
history of the Earth there has been a molecular interdependence between the biosphere and
atmosphere, and this is self-referential in the sense that the continuous metabolic fabrication
of atmospheric molecular components takes place in the same domain which allows
metabolism to continuously operate (Figure 2a). The mutual specification of the atmosphere
and the metabolic reaction network offer an explanatory account of a self-producing
organization that amounts to a self-referential system on the planetary domain, thus a form
of planetary autopoiesis. This is also reflected in the co-definition (co-specification and
co-production) of the cell–Earth system.
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Figure 2. (a) Planetary-scale autopoietic organization takes place in the interdependence between the geo-hydro-metabolic
network and the atmosphere (Earth’s semipermeable boundary), in the sense that the geo-hydro-metabolic reaction network
produces the main components of the atmosphere, and the atmosphere specifies and allows the dynamics of the geo-
hydro-biospheric metabolic network (solid horizontal arrows). The Earth system, as an open system, exchanges matter
and energy with its space environment (solid vertical arrow in the left of the earth); (b) the organism (cell) and the Earth
(bioenvironment) coupling is also an impredicative system, similar to the cell–protein folded self-reference, in the sense that
both exists thanks to each other.

The Earth’s complexity as such is precisely reflected in the challenge posed by the
projects of planetary terraforming. It is considered that planets such as Venus or Mars
could be bombarded in order to produce an Earth-like atmosphere. However, there is no
guarantee that any biosphere could thrive there and maintain such an atmosphere. On the
other hand, bringing to Mars biosphere-like stations, such as in Biosphere 2, in order to
produce a ‘habitable’ atmosphere within them is considered. Yet, these stations are, for
some extent of time, closed-sustainable systems and there is no clear idea how to open
up them to connect with the non-habitable Martian atmosphere, in order to accomplish
the situation described by Morowitz above. There is an idea to ‘seed’ the exo-planets with
extremophiles microbes and let them to ‘colonize’ it. However, the autopoietic organization
of the Earth system and experiments with extremophiles in space strongly suggest that
living systems need not just an environment but a bioenvironment in order to persist,
which involves a form of organism–bioenvironment self-reference (Figure 2b). This is what
is meant by the “organism-niche unity” [26].

The fact, at least mathematically, is that there is no passage from systems that are not
self-referential to systems that are. That is to say, it is a causal impossibility to generate a
system that in principle is closed to efficient causation (operational closure), and therefore
complex, from algorithmic (non-self-referential) systems. With that said, now we will turn
to providing further opportunities to show how the Earth’s complexity as an instantiation
of autopoiesis at the planetary scale can be compared with in-silico climate simulations, as
if the Earth was modeled by (surrogated by) what in Robert Rosen’s mathematical biology
is called the (M,R)-system.
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4. The (M,R)-System and the In-Silico Earth’s Climates of Global Circulation ‘Models’

The notion of complexity is much used in Earth climate science. Differently from what
I have exposed so far, that is, that the complexity resides in the system self-referentiality or
impredicativity, in present-day physics, it is generally considered that it even resides in
deceptively simple (but non-linear) systems, which may exhibit sensitivity dependence
to initial conditions. In this case, the tiniest uncertainty in initial conditions propagates
in time so that predictions are limited to a narrow window of time, because predictive
capacity decays exponentially. However, large non-linear dynamical systems are expected
to be chaotic, which also produces unpredictability. Paradoxically, though, a closer look at
that which present-day physics considers ‘complexity’, but in reality is only algorithmic
and therefore only complicated, comes to the rescue.

Complicated systems have been proven to display structures at different spatial-
temporal scales. It is therefore generally possible to describe the evolution of macro-
structures without knowing exactly the state trajectory of the system’s state at the smallest
scale. This argument has been well described, and formalized mathematically, based on
the time-scale separation assumption, and it provides formal support for the idea that it
is reasonable to attempt to predict, for example, the next glacial inception, even though
mid-latitude weather cannot be predicted precisely beyond two weeks (as demonstrated
by any weather forecast).

There is however nothing in this description that challenges the idea that the dynamics
of the system can, at least in principle, be deduced from the laws of mechanics at the
smallest scale, hence from algorithmic programs. This important assumption justifies the
character of programs of research and prediction using general circulation models (GCM).
A state-of-the-art GCM is a dynamical system with a state vector of well over 106 variables,
and the rules for the transition of these state vectors from one-time step to the next are
encoded in algorithmic programs that include hundreds of thousands of lines of code
(see the IPCC reports). Thus, GCMs are, in essence, very large systems of time-difference
equations that are translated as algorithms and executed by ‘supercomputers’. That is, it is
an in-silico climate simulation. Standard GCMs produce models of the form F(A) = B, and
this approach has been successful in introducing several important concepts.

• A non-linear dynamical system may have sensitive dependence on initial conditions.
The B is then a “strange attractor”, which indeed has a non-trivial topology.

• It may also happen that small changes in the system parameters (included in A) result
in changes in the topology (the “shape”) of B. This is a bifurcation.

• In turbulence theory, one exploits symmetries in the equations governing mechanical
flows to deduce that B should have properties of scale invariance.

• In the broader setting of statistical mechanics, one seeks quantities that are conserved
globally (energy, entropy), applying principles of statistical inference (typically, the
maximum entropy principle) to deduce distributions. Hence, B, the output, takes the
form of distribution functions.

• In a GCM, the computing of F on a supercomputer takes long (it may take months),
and the output B is stored in mass storage facilities of terabytes of data. Climate
observers need time to analyze them, identify “mechanisms” (like sea-ice feedback),
and discuss them.

Although such a program of climate simulation is well-established, there is a concern
about the conclusion that the principal limit to the accuracy of the description of the
Earth’s complexity is resolution; hence, computing power. That is, it is assumed that the
Earth’s complexity could, in principle, be surrogated by a numerical algorithm if enough
computing power were granted. However, as I have shown, the Earth’s complexity resides
rather in its autopoietic (self-referential) organization, and therefore the Earth may escape
algorithmic representations. Let me clarify this further.

The (M,R)-system is a formal model and theory to capture the self-producing causal
organization of biological systems based on the mathematical language of category the-
ory [27]. The (M,R)-system has been shown to generalize the causality behind the autopoi-
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etic organization of living systems. However, the (M,R)-system theory is very different
to that used in GCMs. Thus, to compare in-silico climate simulations with the Earth’s
complexity, as surrogated by the (M,R)-system I, will introduce some basic concepts and
notations by reference to the GCM iteration xi+1 = F(xi). To make the discussion a bit
smoother, we will drop the reference to the parameter ψ, and consider it as part of the
specification of F. When we mention a modification of F, we mean either a modification of
the equations of the simulation, or of its parameters.

When we claim that we are ‘modeling’ climate dynamics, we claim that xi, xi+1, and F,
which are defined as mathematical objects, have their counterparts in the climate system.
This means that at least some components of xi can be observed (perhaps indirectly, via an
observation operator). We also consider that there is a relationship between what can be
observed at time ti, and at time ti+1, and that this relationship can be computed with the
algorithm F. We can rephrase this by stating that if the space of possible states for xi is
Xi, then F defines a range of possible states for xi, and this range can be noted Xi+1. The
standard notation is F:Xi → Xi+1. However, in the (M,R)-system model, Rosen used a
non-standard notation: F → Xi Xi+1. The notation is a proxy for the efficient (→) and
material () causes, which allows us to clarifying the system’s causal categories.

In the biological context surrounding the development of the (M,R)-system model,
F is identified as a material efficient cause (it can represent the active site of an enzyme;
however, the principle is general enough to apply to other physical instantiations) and in a
given environment, constrains a material transformation such that it selects elements of the
environment A and transforms them into B. Following the above notation, this reads F→
A B. In in-silico computation, for example, the function F is coded in memory as a suite
of binary states which, in the syntactic of the programming language (which provides a
context), generates the mapping of Xi onto Xi+1. This describes what materially happens
when the numerical simulator is run. At this point, the object F may be seen either as a
material structure or as a function.

The point of the ‘R’ in the (M,R)-system is that the metabolism F is undergoing wear
and tear, and therefore needs to be repaired. The organism does this, and the (M,R)-system
models this as a repair function, which is symbolized by introducing a new repair function
ϕ. This function takes B as a material cause to produce the F, notated as ϕ → B F. In
a standard GCM this might appear as an incongruity: F is first seen as a “function” or
efficient cause, which produces the transformation A B, but next it is seen as the material
cause or initial product of a transformation of B. GCMs are not designed to support this
double entailment, but there are mathematical formalisms, like lambda calculus, that would
support it. In functional programming a function can also be the output of a function.
However, the components of the (M,R)-system, such as F for example, serve not just as
the efficient cause of B, but also as the material and the result (final cause, output, or
anticipation) of ϕ, which does not have a parallel in any syntactic functional programming
of in-silico simulations. For example, an enzyme or an organ can simultaneously be seen as
a constraint (efficient cause), as a component that needs to be repaired or replaced (material
cause), and as a functional element (result).

Usually, when a version of a GCM or any dynamical representation of the climate
system is released, F is frozen. This is so, because in the specification of F, the processes
that may affect climate change in the future are ignored. Therefore, to some extent, F may
become unsuitable or unacceptably inaccurate at some stage, and processes that have been
overlooked may appear to become important in the future. Computing B (which is the
model “output”) does not pose any specific mathematical difficulty when F is specified as
an algorithm and frozen. The one who specifies an F is the climate modeler(s). The output
B depends on (reasonable) adjustments to F to bring B into closer alignment with a desired
target (e.g., hypothetical climatic-change scenarios). These adjustments are classically
justified as part of the quality control process (bug tracking and fixing) and model tuning.
Yet, the climate modeler(s) can implement a procedure of automatic tuning of F, designed
such that B matches observations about the climate system. In that case, we could say that
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ϕ is a computer code that implements an algorithmic process that implements automatic
tuning. However, ϕ still needs to be produced/defined (and corrected), perhaps by a
statistician or a numerical analyst, an external agent at the end. We could keep iterating in
this way, without changing the nature of the conclusion: at some point we need someone
external to the system who specifies F.

The situation is different in the (M,R)-system model, which entails closure to efficient
causation of F. The metabolism function F and the repair function ϕ are generated from
the inside, rather than specified from the outside. To make this argument concrete, the
autopoietic organization of living systems is self-referential. In other words, a subset of the
organism has to play the role of β. It generates ϕ using internal information (or anticipative
model) of what B should be, using a subset of the metabolism F. Stated mathematically, β is
a function that satisfies the definition β: (B, F)→ ϕ. It is possible to review this definition by
invoking a formal mathematical act called “currying”, common in functional programming:
β is redefined as a function of B, which generates a function of F, the output of which is ϕ.
That is: β: B→ F→ ϕ. Equivalently, as β(B) is a function, we can write: β(B): F→ ϕ. Now
using the Rosen notation, this gives β(B)→ F ϕ. This notation carries the meaning that B
provides the structural information (such as active sites of enzymes) for the production of ϕ.
This is represented in the (M,R)-system by a synthesized relational mapping with a closed
directed graph that uses the two categories of entailment defined by→ and (Figure 3).
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On the (M,R)-system graph, B and β(B) occupy the same node, and this assumes
implicitly that β is a well-defined function. B is an output (final cause) of F, and is also a
material cause of F and efficient cause of ϕ. Such a concatenation of entailments generates
a global stability that may be thought of as if B were a goal function. It is in this sense that
the system has acquired a quality of “autopoietic unity” that distinguishes it from systems
that do not achieve closure to efficient causation, such as GCMs.

Observe that if β is strictly surjective, the destination of the inverse function of β(B),
denoted b, is a strict subset of B. Only a subset B may be involved in the production of ϕ. In
this case, the subset b is sufficient (contains enough information) to imply F. The conclusion
is that b implies a set that contains itself. Put in colloquial language, a subset of B needs to
be “aware of” (informative about) the whole of B and how it is being produced. This is
where impredicativity comes in. We can see it at work: B depends on F, which is constantly
being replaced, by processes which are critically dependent on ϕ. Yet, as we just noted, ϕ
depends on only a subset of B.

The dynamical realization of the (M,R)-system model cannot be implemented in the
algorithmic language of dynamical systems [28]. Thus, in general we reach the same
conclusion when analyzing a GCM under the prism of the (M,R)-system. If the F, for
example, is seen as the specification of a dynamical system, then B would be its time-
invariant measure (roughly said, the attractor) and A would represent an external forcing.
Specifying what ϕ is less straightforward: we need a mapping ϕ of attractor measures onto
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some coded specification of F, but also a function β(B) that will produce ϕ. At this point
the dynamical system turns out to be open to efficient causation.

In this sense the (M,R)-system model provides us with further opportunities to formal-
ize the proposal that the complex condition of the Earth system can only be explained by
the instantiation of closure to efficient causation at the planetary domain. This expression
of the Gaia hypothesis, although tentative, gives us the opportunity to illustrate some of
the theoretical aspects underlined above. A potential (M,R)-system model of the Earth
system would have to be consistent with the observation that whatever B can be in the
Earth system, it is itself involved in a chain of entailments that cause F, which is out of the
scope of GCM models of the form F(A) = B.

The key to Rosen’s views on complexity is that the properties of a natural system
are subsequently discussed in terms of the models that a natural system can have. Con-
sequently, complex systems are ones that have complex models and the (M,R)-system
is postulated to be one of them [29–31]. Thus, we can ask whether the Earth system is
implementing the (M,R)-system, and therefore qualifies as a complex system; a question
which is not addressed by the current appraisals of Earth-system complexity.

Turbulence, nonlinearity and chaos are often seen as synonymous with Earth’s com-
plexity; however, by definition they are mathematical images that are implementable in a
Turing machine, and are therefore simulable. Beyond technical controversies, impredicativ-
ity in the (M,R)-system cannot be dealt with by classical methods of programming [32]. This
implies that one cannot (easily) provide an iteration which satisfies the causal entailments
of the (M,R)-system. Conversely, the (M,R)-system is richer in entailments (causation),
to the extent that it cannot be implemented in a Turing machine, is non-simulable, and
therefore is complex [5,33]. The proposal opens the possibility of an entirely new research
program to understand the Earth’s complexity in terms of organization, allowing us to
understand the fundamental difference between what we should call Earth’s complexity,
and the situation of complication described by GCMs. Having suggested this, in the fol-
lowing section, I will discuss the properties and consequences of the Earth’s complexity
in terms of the autopoietic, (M,R)-system organization, and what this implies for tipping
points, planetary boundaries and resilience, and for the proposal that adaptive evolution
and selection operates on non-reproducing self-perpetuating planetary feedback loops.

5. Properties and Consequences
5.1. Earth Complexity Is All or Nothing

The analysis above implies that biological organization is all or nothing. Autopoiesis
happens or not [19]; thus complexity either occurs or it does not, and there are not interme-
diate degrees of complexity. The system realizes self-production or the system falls apart.
However, the molecular embodiment of autopoiesis does not mean that organization may
be reduced altogether to the molecular phenomena of chemical reaction networks. Rather,
it simply points out a fundamental distinction about what should be the Earth’s complexity
in reference to the question of size, degree, and connectivity compared with impredicative
systems. It is in this precise sense that the realization of the autopoietic organization on a
planetary domain could allow us to claim that the Earth system needs to be qualified as
complex and not merely complicated, i.e., having neither increasing degrees of, nor more
or less, complexity.

5.2. Earth Complexity Implies Conservation of Organizational across Structural ‘Tipping’ Changes

One of the implications for understanding the Earth’s complexity from the charac-
terization of autopoietic systems is the difference between structure and organization of
the system [4,34]. This difference between structure and organization is related, in formal
terms, to the fact that biological systems are open to material cause, yet closed to efficient
causation. The first relates to the dynamic and thermodynamic, while the second relates to
the organization of biological systems.
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Structural change and organizational conservation are the keys to complex system
dynamics and modeling. The structure may undergo changes as long as the autopoietic
organization is preserved [19,26,34]. Different structures (scenarios of Earth’s history)
correspond to the structural change, but with conservation of the Earth’s self-producing
organization. Structural change is closely associated with stability and it is usually assumed
to be a general property of dynamical systems. Some authors understand the stability of
the Earth system as self-organization, alternate states (multistability), thresholds, and early
signals of change [35–38]. One might conjecture that under this understanding, the so-
called “tipping points” [39], including the potential cascades, may be regarded as structural
changes that so far have not caused the loss of the Earth’s organization. In other words, the
Earth system can go through different structural changes (extreme, abrupt, catastrophic)
while preserving its autopoietic organization, and hence its complexity; these “tipping
points” can be, so to speak, non-fatal. Indeed, Earth’s history has been punctuated by
several “catastrophic” structural changes, such as the transition from reductive to oxidative
atmosphere [40], the mass extinction (diminished biosphere) of 50 to 90% of diversity [41],
planetesimal impacts, and geomorphological changes. Yet, the complex (living) character
of the Earth system has persisted.

5.3. Earth Complexity Implies Multiple Structural Relations Carried out by Multiple Components

Many of the components of an (M,R)-system serve as outputs (final cause), as efficient
causes, and also as material causes of other components. Structural changes of the Earth
system understood as an autopoietic system may have many structural interdependencies.
If one structural dimension in the Earth system is changed (e.g., a tipping point of Green-
land ice melting), the complete system may undergo correlative changes in many structural
dimensions (e.g., possible tipping cascades). Such structural changes can suppress, allow,
or create new components and relations (processes and constraints) [19,26,34]. Therefore,
these components may be integrated into the system with different structural relations,
either as processes or as components realizing the constraints on the processes. That is,
components may have multiple structural relations, and structural relations may be carried
by multiple components. For example, ice-sheets have multiple structural relations with
different processes and components of the Earth system, linked as they are to climate
dynamics, the nutrient cycle, the ocean crust, and the water cycle [42–46].

Nevertheless, there may be structural changes that could make the Earth system lose
its organization and thus enter into an ‘autopoietic oscillator death’ [47]. This touches on the
definition of what could be a ‘critical’ perturbation for the complexity of Earth’s organiza-
tion that may break down its autopoiesis and thus be fatal, and whether the thresholds of
the ‘planetary boundaries’ [48] are critical for the planetary self-producing organization.

5.4. Earth Complexity Is More Than Input–Output Control Feedback Systems

Recent proposals suggested that adaptive evolution and selection operates through
non-reproducing self-perpetuating planetary feedback loops [49,50] and that in general
feedback loops are key for climate dynamics, and hence Earth complexity. However,
mechanisms of feedback self-regulation have been described on so-far lifeless planets, such
as Mars [51,52], and seen as stabilizing the surface temperature of a lifeless Earth [53].

Feedback loops are a legacy of the first order cybernetics and control theory [54–56]
that was developed as a mathematical framework for what Walter Cannon named the
error-correcting theory of regulation or ‘homeostasis’; stability through constancy [57]. The
underlying theorem is that ‘every good regulator of a system must be a model of that
system’ [58]. The core idea is that there is an input-output system that reaches stability
through self-regulation by negative and positive feedback loops [54–56]. The feedback loop is an
error-counteracting response, which takes place only when there is external perturbation
(forcing/input) sufficient to make the system’s parameters deviate from pre-defined ‘set
points’. It is said that cybernetic systems behave as goal oriented systems, because they
return to their ‘set points’ once they are perturbed. That is, the error-counteracting response
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is a reactive response. Moreover, the relation of input to output implies that external forcing
determines what happens inside a system, such that a forced system will generally end up
tracking the forcing. The explicit relation between the two is embodied in the engineering
transfer function of the system. That is already suggestive, but it is very risky to simply
extrapolate such ideas of a simple or even a complicated system, that when a system is
fabricated by closure to efficient causation, i.e., it is complex, because the Earth system as
such may entail the absence of input and output controls, and remain organized through
autonomy and anticipation.

5.5. Earth Complexity Involves Autonomy and Anticipation

The autopoietic system is wide open to imposed forces in a time-independent man-
ner and has a structure that changes following a course contingent on the course of its
interactions. However, forcings that may impinge upon the system may trigger structural
changes without specifying them [19,26,34]. Even if a forcing causes continuous structural
changes in the system, the specific nature of these changes may be determined not by the
forcing (input), but rather by the autonomy of the autopoietic system [59]. Indeed, an
autopoietic system may build up predictive or anticipatory models of the forcing in order
to act autonomously and predictively over such forcings.

Autonomy is a property of systems upon which the flows from environment to system,
and from system to environment, are determined by what is inside the system [2,59], and
such that everything that happens in the system or to it is determined in it at every instant by
its structural dynamics at that instant [19,26,34,59]. Anticipation is the behavior of avoiding
a predicted deviation, which is energetically much cheaper than correcting a deviation
(feedback), whether through fluctuation-counteracting or fluctuation-amplifying. This
implies that feedback responses are reactive and cost-ineffective responses. Anticipation
is based on internal predictive models that living systems make of their environment
and themselves, throughout their ontogeny and phylogeny [60,61], which allows changed
behaivour at an instant in accord with the model’s prediction and pertaining to a future
(later) instant [62]. These models involves feedforward loops and are inherent to the causal
entailment organization of self-production by closure to efficient causation [62].

Given that autonomy is a corollary of autopoiesis [59] and that every autopoietic sys-
tem minimizes free energy (active inference) [47], it is plausible that the Earth’s complexity
involves autonomy and anticipation as well [63,64].

5.6. Managing Complex Systems Requires Complex Models

It is important to ask whether dynamical systems or GCMs ‘model’ the complexity
of the Earth system to the extent that the potential intervention (the application of geo-
engineering) is reliable. That is, one must ask how well the mathematical machinery of
non-linear chaotic dynamics, turbulence, power scaling laws, and feedbacks can inform
us about potential chain disruptions and domino effects in the Earth’s organization if
geoengineering is applied.

Based on the arguments about the properties and consequences of complex systems
presented here, it is expected that under a geoengineering perturbation (solar radiation
management or carbon sink), the Earth system may undergo correlative changes in many
structural dimensions. Thus, different Earth components will rearrange in different multi-
ple structural relations in order that the Earth’s organization remains autopoietic. These
rearrangements will be in general a kind of self-structuration, since any Earth response
to any perturbation, including geoengineering, is autonomous, i.e., it goes beyond input–
output feedback loops [18]. Moreover, it is highly plausible that the Earth system will track
such geoengineering, forcing and building up anticipative models of it, and thus there will
be no clear idea about how this self-structuration would take place. It is therefore extremely
important to take into account complex models such as the (M,R)-system to model the
Earth’s system rather than only simulating it.
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6. Conclusions

We understand here that the complexity of the Earth lies in its biological organization
rather than in its manifestation of power scaling laws, nonlinearity, and chaos. The present
terrestrial environment is itself the cause and result of its own fabrication processes, with
no separation, at geological scales, between product and producer, between biotic and
abiotic elements.

This implies that the Earth, when understood as a complex autopoietic, anticipatory
system, features a horizon of indeterminacy that must be distinguished from the horizon
of predictability commonly attributed to algorithmic programs of dynamical systems. This
program may be limited or just a shorthand approximation of the Earth’s complexity. This
may be consistent with the assertion that there exists no equivalent to thermodynamic con-
straints and feedbacks mechanisms by which we can predict the anticipatory autonomous
behaviors of the Earth system. This understanding of Earth complexity may represent,
thus, a step forward from current programs, based as they are on the reactive paradigm of
feedbacks, dynamical systems, and algorithms in general.

It turns out that Earth complexity embodies a unique attempt to prove that the
closure of metabolic networks at the planetary scale must satisfy certain regularities of
organization that go beyond reactive, ‘complicated’ models. These regularities, arising
from Earth complexity, as summarized in the properties listed above, suggest an effective
system fabrication that generates self-referential mathematical objects. In other words, the
relation between Earth complexity and power scaling laws, feedbacks, nonlinearity, and
chaos may be compared to the situation faced by early cartographers, who were attempting
to map the surface of a sphere while armed only with pieces of (tangent) planes. “As long
as they only mapped local regions, the planar approximations sufficed; but as they tried to
map larger and larger regions, the discrepancy between the map and the surface grew as
well. If they wanted to make accurate maps of large regions of the sphere, they had to keep
shifting their tangent planes. The surface of the sphere is in some sense a limit of its planar
approximations, but to specify it in this way requires a new global concept (the topology of
the sphere; i.e., its curvature) that cannot be inferred from local planar maps alone” (Rosen
1985). It turns out that complicated algorithmic simulations are the planar approximations,
and the Earth’s complexity is in some sense a limit of its planar approximations, which
leads us to widen our concept of what Earth’s complexity is, or should be.
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