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Abstract: We analytically derived and confirmed by empirical data the following three relations
from the quasi-time-reversal symmetry, Gibrat’s law, and the non-Gibrat’s property observed in
the urban population data of France. The first is the relation between the time variation of the
power law and the quasi-time-reversal symmetry in the large-scale range of a system that changes
quasi-statically. The second is the relation between the time variation of the log-normal distribution
and the quasi-time-reversal symmetry in the mid-scale range. The third is the relation among the
parameters of log-normal distribution, non-Gibrat’s property, and quasi-time-reversal symmetry.

Keywords: urban population; power law; log-normal distribution; Gibrat’s law; non-gibrat property;
quasi-time-reversal symmetry

1. Introduction

In natural science, power-law distributions of various physical quantities are observed
in phase transitions and critical phenomena [1]. In social sciences, power-law distributions
are obtained in various observables, such as urban population, personal income, sales, as-
sets, and the number of employees which represent the size of firms (firm size variables) [2].
Here, the power-law exponent of firm size variables reportedly changes little with time [3].
However, it has not been confirmed whether distribution is actually stable over time in the
event of such huge economic upheavals as World War II, the Great Depression, and the
Covid-19 pandemic because the long-term, historical financial data of firms are difficult to
obtain and cannot be directly observed.

In response to this problem, we observed a temporal change in the power-law dis-
tributions in the large-scale range of land values in Japan [4,5]. We analytically derived
the time-varying, power-law distribution from Gibrat’s law and the quasi-time-reversal
symmetry observed in the system of land values. We derived the analytical relationship
between the inclination of the symmetry axis of quasi-time inversion and the time change
of the power-law exponent and observed it accurately in empirical data. Here, Gibrat’s
law is a property where the growth-rate distribution of the observables (in the present
case, published land prices) does not depend on the initial value [6,7]. We also describe a
quasi-inversion symmetry between different types of firm size variables at the same time [8]
and identify it with an economically important Cobb-Douglas type production function [9].
However, it remains unclear whether there is any consistency between quasi-time-reversal
symmetry and the time change of the power-law exponent in other data in which the
long-term time changes of macroscopic systems are observed.

Therefore, we focused on urban population as data because they are publicly dis-
closed, long-term data that are relatively accessible whose distribution may have changed
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significantly over time, similar to published land prices in Japan. In our previous study [10],
we superimposed data of urban population from eleven census surveys over 110 years
in the United States, Italy, and Spain (period 10) and confirmed that the distribution of
growth rates was regularly dependent on the initial values. We call this initial depen-
dence non-Gibrat’s property. We showed by numerical simulation that the long-term
growth of urban population, which is confirmed in empirical data, can be explained by the
non-Gibrat’s property. In this analysis, the amount of census data on urban populations
was approximately 10,000 per period for each of the three countries, (the United States,
Italy, and Spain), so we superimposed the data to enhance the statistics and capture the
macroscopic nature of the census. No temporal change was observed in the distribution of
the urban population and its growth rate.

This paper newly examines 140 years’ worth of urban population data (30 periods) in
France provided by the French National Institute of Statistical and Economic Research [11].
The database contains around 35,000 urban population data per term, per commune, which
is the country’s smallest administrative division. Such an amount of data makes it possible
to observe changes in urban population distribution and its growth-rate distribution over
time without the need to overlay the data to capture statistical macroscopic properties, as
in our previous study [10]. Therefore, we can confirm the consistency of the time change
of quasi-time-reversal symmetry and power-law distribution which could not be tackled
in our previous study. Furthermore, we can confirm not only the temporal change of
the power-law distribution in the large-scale range but also the consistency between the
temporal changes of the log-normal distribution in the mid-scale range and the quasi-
time-reversal symmetry. In addition, we discussed the consistency of the parameters of
log-normal distribution and non-Gibrat’s property of the mid-scale range in a system in
which the distributions change quasi-statically, which was not captured even in the analysis
of land price data [4,5].

The structure of this paper is as follows. Section 2 describes the urban population data
for France. Then, power-law and log-normal distributions, which were observed in the
large- and mid-scale ranges of the data and their time variations, are discussed analytically.
Quasi-time-reversal symmetry, large-scale Gibrat’s law, and mid-scale non-Gibrat’s prop-
erty are important concepts in this discussion. In Section 3, we first confirm the analytical
results in Section 2 by observing the relationship between the slope of the symmetry axis of
quasi-time inversion and the time variation of the power-law exponent and the logarithmic
standard deviation in the empirical data. Then, we show the consistency between the
parameters of the mid-scale non-Gibrat’s property and those of log-normal distribution
even in a quasi-statically changing system. Finally, Section 4 summarizes this paper and
presents future issues.

2. Materials and Methods
2.1. Data

This paper analyzes the database of the National Institute of Statistical Economics
in France [11], “Detailed Figures-Past Population Series (1876 to 2017)”. In France, the
smallest administrative division is called a commune, and the database contains around
35,000 communes (except those of the French region of Mayotte) from 1876 to 2017 (Table 1
for details). The database includes annual data since 2006. Previously, the observation
intervals of the data were inconsistent, often five year periods. In this paper, we assigned
serial number i to 31 observation years (i = 0, 1, 2, · · · , 30) (Table 1). World War I’s
observation interval was a 10-year period from 1911 to 1921, and World War II’s was
18 years from 1936 to 1954. Table 1 shows a population decrease after World War I and only
a slight increase in the 18 years since the end of World War II. This paper deals with the
changes in the short-term properties of two consecutive periods. For the observations in
Table 1 from 1931 to 1936, 1936 to 1954, and 1954 to 1962, the number of communes changed
in two successive periods. In these cases, we analyzed only communes in both years.
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Table 1. Number of communes and their total population in France between 1876 and 2017, as listed
in database: Observation data are assigned serial numbers i from oldest to newest.

Mark (i) Year (Ti) Communes Population

0 1876 34,500 38,173,561
1 1881 34,500 38,969,724
2 1886 34,500 39,508,491
3 1891 34,500 39,660,067
4 1896 34,500 39,871,028
5 1901 34,500 40,390,113
6 1906 34,500 40,780,507
7 1911 34,500 41,147,539
8 1921 34,500 38,932,989
9 1926 34,500 40,458,773
10 1931 34,500 41,541,494
11 1936 34,860 41,813,397
12 1954 34,946 43,394,688
13 1962 34,972 47,376,787
14 1968 34,972 50,798,112
15 1975 34,972 53,764,064
16 1982 34,972 55,569,542
17 1990 34,972 58,040,659
18 1999 34,972 60,149,901
19 2006 34,972 63,186,117
20 2007 34,972 63,600,690
21 2008 34,972 63,961,859
22 2009 34,972 64,304,500
23 2010 34,972 64,612,939
24 2011 34,972 64,933,400
25 2012 34,972 65,241,241
26 2013 34,972 65,564,756
27 2014 34,972 65,907,160
28 2015 34,972 66,190,280
29 2016 34,972 66,361,658
30 2017 34,972 66,524,339

2.2. Power and Log-Normal Distributions and Their Changes

As typical examples, the probability density functions (PDFs) of urban population
(x) in France in 1962 and 2015 are shown in Figures 1 and 2. In each figure, a power-law
distribution [12–15],

P(x) = Cx−µ−1 for x0 < x , (1)

is observed in the large-scale range. Here, exponent µ parameterizes the spread of the
power-law distribution as 1/µ, and x0 is the lower limit of the large-scale range. At the
same time, a log-normal distribution,

P(x) = Cx−µ−1 exp
[
−α ln2 x

x0

]
for xmin < x < x0 , (2)

is also observed in each mid-scale range [6,16,17]. xmin is the lower limit of the mid-scale
range. α is a parameter that is related to logarithmic standard deviation σ of the log-normal
distribution described in the standard way:

α =
1

2σ2 . (3)
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Figure 1. Urban population (x) distribution in France in 1962: Power law (1) is applied to top 10%
of data, and the exponent is µ = 1.05± 0.00. However, we excluded top 0.1% of fluctuating data.
Logarithmic standard deviation, calculated by fitting mid-scale range to log-normal distribution
(2) with xmin = 10 and x0 = 3, 100, is σ = 0.70± 0.02. Here, we estimated µ and σ using least-
square method.
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Figure 2. Urban population (x) distribution in France in 2015: Power law (1) is applied to top 10% of
data, and power exponent is µ = 1.15± 0.00. However, we excluded the top 0.1% of fluctuating data.
Logarithmic standard deviation, calculated by fitting mid-scale range to log-normal distribution
(2) with xmin = 10 and x0 = 3, 100, is σ = 0.78± 0.01. Here, we estimated µ and σ using least-
square method.

Power-law exponents µ of the large-scale range and log-normal standard deviation σ
of the mid-scale range are different in both years. This is not a special case; both constantly
changed between 1881 and 2017 (Figure 3). Power exponent µ varies from approximately
1 to 1.5, where the smallest value is µ = 1.02± 0.00 in 1968. The extent of the large-scale
range following the power-law distribution is characterized by 1/µ. Figure 3 shows that
the spread of urban population in the large-scale range was greatest in 1968 during a period
of riots, strikes, and demonstrations in Paris, which became known as “May 1968”. The
French economy was experiencing high economic growth. The power-law index continued
to increase as rapid economic growth ended and the population that was concentrated in
large cities spread to rural areas after the strikes and riots ended. Logarithmic standard
deviation σ varied from about 0.6 to 0.8, with the smallest in 1881 at σ = 0.60± 0.01 and the
largest value in 2017 at σ = 0.78± 0.01. This indicates that the expansion of the mid-scale
urban population distribution grew year by year, especially in the years following 1968. The
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population moved from large cities to rural areas, as described above. Here, we estimated
µs and σs, applying the same least-square methods in Figures 1 and 2.
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Figure 3. Temporal changes in power-law index µ and logarithmic standard deviation σ of urban
population in France from 1881 to 2017.

2.3. Quasi-Time-Reversal and Changes

Next, we observe the fluctuation in urban population that affected the change in the
exponent and the logarithmic standard deviation in the previous subsection (Figure 3) by a
scatter plot of urban population at successive measurement points. Figure 4 is a scatter plot
of the urban population of (xi) in 1962 and (xi+1) in 1968 with i = 13 in Table 1. Figure 5
is a scatter plot of the urban population of (xi) in 2015 and (xi+1) in 2016 with i = 28 in
Table 1. The dots in each figure represent cities. Figure 4 shows the changes in the urban
population during the six-year period when the survey was conducted, and its population
changes are larger than those in Figure 5, which shows them over 1 year. In Figures 4 and 5,
cities with unchanged population are on the dotted line: log10 xi+1 = log10 xi. Cities with
increasing populations are above the dotted line; cities with decreasing populations are
below it. Urban populations, unlike firm size variables, rarely grow by 10 fold or 1/10 in
the short term. Therefore, the urban population plotted in Figures 4 and 5 is distributed
symmetrically with respect to the line along which the vertical and horizontal axes are
approximately equal.

If this symmetry is strictly true, the system is in equilibrium. Fujiwara et al. found
that firm size variables were in such a state and called it time-reversal symmetry: xi ↔
xi+1 [18,19]. However, as seen in Table 1, the urban population increases in almost every
period, and strictly speaking, no time-reversal symmetry was established. In our previous
work [4,5], we found that posted land prices in Japan are in a similar situation. Assuming
that the system’s time evolution is quasi-static, the system is symmetric with respect to
the following line: log10 xi+1 = θ log10 xi + log10 a. Here, θ and log10 a are the slope and
intercept of the line (axis of symmetry).

When a system, composed of a large number of variables, changes quasi-statically, it
is symmetric with respect to time inversion: axi

θ ↔ xi+1. This is a quasi-static extension of
time-reversal symmetry, which we call quasi-time-reversal symmetry and express using
the following joint PDF:

PJ(xi, xi+1) dxi dxi+1

= PJ

(( xi+1

a

)1/θ
, a xi

θ

)
d
(( xi+1

a

)1/θ
)

d
(

a xi
θ
)

. (4)
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Figure 4. Scatter plots of urban population (xi, xi+1) for 1962 (= Ti) and 1968 (= Ti+1) with i = 13
in Table 1.
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Figure 5. Scatter plots of urban population (xi, xi+1) for 1962 (= Ti) and 1968 (= Ti+1) with i = 13
in Table 1.

Figure 6 shows a time transition in the large- and mid-scale ranges of slope θ of the
axis of symmetry of the quasi-time inversion. θL is the slope of the symmetry axis in
the large-scale region measured with x0 < xi, xi+1, and θM is the slope of the symmetry
axis in the mid-scale region measured with xmin < xi, xi+1 < x0. Linear regression
analysis was used to measure the parameters in the large- and mid-scale regions. This
step is approximately allowed when the data’s scatter plots are concentrated on the axis of
symmetry, such as urban populations and land prices. Conversely, if the scatter plot has a
very large variance, such as firm size variables, it is inappropriate to use regression analysis
to identify the axis of symmetry because the results are different when the explanatory
and objective variables are interchanged. In such cases, the axis of symmetry can be
captured not by regression analysis but by the index of surface openness [20–22] used in
geomorphology [8,23]. Figure 6 shows that the slope of quasi-time-reversal symmetry axis
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θ often fluctuates slightly above 1. This reflects an overall increase in urban population. As
an exception, θL fell well below 1 between 1968 and 1999, reflecting that a large amount of
the city population moved to mid-sized cities.

0.9

1

1.1

1.2

1880 1900 1920 1940 1960 1980 2000 2020

	t
h
e
ta

Year	Ti+1

θL

θM

Figure 6. Slope of quasi-time-reversal-symmetry axis θ in large- and mid-scale ranges: Large-
and mid-scale parameters θL and θM were evaluated by linear regression analysis for regions of
xi, xi+1 > x0, x0 > xi, xi+1 > xmin.

2.4. Gibrat’s Law and Non-Gibrat’s Property

In this paper, we discuss the time variations of the power-law and log-normal distri-
butions in the large- and mid-scale ranges. The distribution’s temporal variation is caused
by the quasi-time-reversal symmetry introduced in the previous subsection. On the other
hand, the basis of the power-law and log-normal distributions is Gibrat’s law and the
non-Gibrat’s property introduced in this subsection. As mentioned in the Introduction,
Gibrat’s law is a property where the growth-rate distribution of the variables of a system is
independent of the initial value. Gibrat’s law resembles Gibrat’s process in the multiplica-
tion stochastic process [2], except that it can be observed in empirical data. Fujiwara et al.
showed analytically that by combining Gibrat’s law with time-reversal symmetry, a power
law in an equilibrium state can be derived and confirmed by empirical data [18,19]. An
extension to a system that changes quasi-statically is the quasi-time-reversal symmetry
described in the previous subsection. The non-Gibrat’s property discussed here extends
this discussion to mid-scale log-normal distribution [24,25].

Figures 7 and 8 show the distributions of the logarithmic growth rate of the urban
population from 1962 to 1968 (i = 13) and from 2015 to 2016 (i = 28): r = log10 R =
log10 xi+1/xi. Each figure observes conditional PDFs: Q(R|xi), where the initial value of xi

is placed in 5 bins: xi ∈ [101+0.5(n−1), 101+0.5n) (n = 1, 2, · · · , 5). q(r|xi), which is a PDF of
logarithmic growth rate r, is related to Q(R|xi) by the following relation:

log10 q(r|xi) = log10 Q(R|xi) + r + log10(ln 10) . (5)

In Figures 7 and 8, we confirm that the width of the growth-rate distributions decreases
in both the right and left directions as n increases, that is, as initial value xi increases. At
the same time, we also confirm that as initial value xi increases, the dependency of the
growth-rate distribution on the initial value decreases. When the initial value dependency
is negligible, we call the property Gibrat’s law, which can be expressed as follows [18,19]:

Q(R|xi) = Q(R) for x0 < xi . (6)
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At the same time, from Figures 7 and 8, we assume that the shape of the growth-rate
distribution can be approximated on both logarithmic axes by the following equations with
a curvature convex downward:

log10 q(r|xi) = c− t+(xi) r + ln 10 u+(xi)r2 for r > 0 , (7)

log10 q(r|xi) = c + t−(xi) r + ln 10 u−(xi)r2 for r < 0 . (8)

Here, we assume that r has an appropriate cut-off, rc, and that the PDF’s integral does not
diverge. However, rc is not explicitly expressed in Equations (7) and (8). This approxima-
tion was first proposed for the sales growth-rate distributions of firms [26,27]. In many
cases, downward convex growth-rate distributions are observed on both the logarithmic
axes for such non-negative observations as firms’ sales, number of employees, or each
country’s GDP [28]. Figures 7 and 8 differ greatly in the range of r. The width of the
growth-rate distribution calculated from the scatter plot in Figure 4 is −1 < r < 1, while
that in Figure 5 is −0.1 < r < 0.1. This is because the time interval in the former scatter
plot is six years, but, in the latter, it is only one year, resulting in a difference in the growth
width. In spite of this difference, the curvature of the downward convex growth-rate
distribution is observed in both figures.
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Figure 7. Conditional PDFs q(r|xi) or q(r|n) of log growth rate of urban population r = log10 xi+1/xi,
calculated using data plotted in Figure 4 for 1962 and 1968 (i = 13): Initial value xi is contained in
five logarithmically equal-sized bins: xi ∈ [101+0.5(n−1), 101+0.5n) (n = 1, 2, · · · , 5). The data range
shown here is 101 ≤ xi < 103.5 (population).
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Figure 8. Conditional PDFs q(r|xi) or q(r|n) of log growth rate of urban population r = log10 xi+1/xi,
calculated using data plotted in Figure 5 for 2015 and 2016 (i = 28): Initial value xi is contained
in five logarithmically equal-sized bins: xi ∈ [101+0.5(n−1), 101+0.5n) (n = 1, 2, · · · , 5). Data range
shown here is 101 ≤ xi < 103.5 (population).

Figures 9 and 10 depict the dependency of c, t±, and u± on log10 xi by applying
Equations (7) and (8) to Figures 7 and 8. From Figures 9 and 10, we confirm that the
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approximation that c has no dependency on xi is valid in Equations (7) and (8) of the
growth-rate distribution.

-10

-5

0

5

10

15

20

25

1 2 3 4

c
	(

x
i),

		
t	

(x
i)	

	,
		

u
	(

x
i)

log
10
xi

c

t+

t−

u+

u−

Figure 9. log10 xi dependencies of t±, u±, and c are evaluated by applying Equations (7) and (8)
to conditional growth-rate distributions in Figure 7 for 1962 and 1968 (i = 13). To simplify graph
comprehension, coordinates of horizontal axis of each point are shifted slightly.
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Figure 10. log10 xi dependencies of t±, u±, and c are evaluated by applying Equations (7) and (8)
to conditional growth-rate distributions in Figure 8 for 2015 and 2016 (i = 28). To simplify graph
comprehension, coordinates of horizontal axis of each point are shifted slightly.

2.5. Quasi-Static Change of Power-Law Distribution

In this subsection, we analytically show that the time variation of the power law (1)
is derived from Gibrat’s law, (6), and quasi-time-reversal symmetry, (4) [4]. In the next
subsection, we analytically show that non-Gibrat’s property, (7), (8), and quasi-time-reversal
symmetry, (4), lead to the time variation of the log-normal distribution, (2) [5].

Quasi-time-reversal symmetry, (4), using extended growth rate R = xi+1/axi
θ , is

rewritten by variables xi, R:

PJ(xi, R)dxidR = PJ(R1/θ xi, R−1)d(R1/θ xi)d(R−1). (9)

This leads to

PJ(xi, R) = R1/θ−2 PJ(R1/θ xi, R−1) . (10)
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Using conditional PDF Q(R|xT) = PJ(xi, R)/P(xi) and Gibrat’s law, (6), this is reduced to

P(xi)

P(R1/θ xi)
= R1/θ−2 Q(R−1|R1/θ xi)

Q(R|xi)
= R1/θ−2 Q(R−1)

Q(R)
. (11)

Here, we assume that Gibrat’s law, (6), holds under a transformation: xi ↔ R1/θ xi
(= (xi+1/a)1/θ). This is valid in a system that has quasi-time-reversal symmetry. Since
the last term in Equation (11) is only a function of R, we signify it by Gθ(R) and expand
Equation (11) to R around 1 as R = 1 + ε (ε� 1). The 0-th order of ε is a trivial expression,
and the 1-st order term yields the following differential equation:

Gθ
′(1)P(xi) +

xi
θ

d
dxi

P(xi) = 0 . (12)

Here, Gθ
′(·) denotes the R differentiation of Gθ(·). No further useful information comes

from the second and higher order terms of ε. The solution to this differential equation is
uniquely given:

P(xi) ∝ xi
−θGθ

′(1) . (13)

This solution satisfies Equation (11), even if R is not near R = 1, when Q(R) = R−Gθ
′(1)−1

Q(R−1) holds. This is called the reflection law [18,19].
Next, in quasi-static system (xi, xi+1), we identify distribution P(xi+1). Here, Pxi (xi),

Pxi+1(xi+1) are collectively written as P(xi), P(xi+1), for simplicity. From Equation (13) and
P(xi)dxi = P(xi+1)dxi+1, P(xi+1) can be expressed:

P(xi+1) = P(xi)
dxi

dxi+1
∝ xi+1

−Gθ
′(1)+1/θ−1 . (14)

Here, we denote power-law indices at i, i + 1 by µi, µi+1 and represent P(xi), P(xi+1)
as follows:

P(xi) ∝ xi
−µi−1 , P(xi+1) ∝ xi+1

−µi+1−1 . (15)

Comparing Equations (13) and (14) to Equation (15), we obtain θGθ
′(1) = µi + 1, Gθ

′(1)−
1/θ + 1 = µi+1 + 1 and conclude the relation among µi, µi+1, and θ as follows:

θ =
µi

µi+1
=

1/µi+1

1/µi
. (16)

From this expression, we understand that the slope of the symmetry axis of time inversion
θ represents the rate of the change of Pareto indices µi, µi+1 at i, i + 1. This idea is
geometrically consistent since the width of the power law at i, i + 1 can be expressed as
1/µi, 1/µi+1 on the logarithmic axis.

2.6. Quasi-Static Change of Log-Normal Distribution

Next, we consider a mid-scale range governed not by Gibrat’s law, (6), but by the non-
Gibrat’s property in Equations (7) and (8). Since there is no Gibrat’s law, (6), Equation (11)
cannot be transformed from a second expression to a third one. Using Equation (5),
Equations (7) and (8) yield:

Q(R|xT) = d R −1−t+(xi)+u+(xi) ln R for R > 1 , (17)

Q(R|xT) = d R −1+t−(xi)+u−(xi) ln R for R < 1 . (18)
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When R > 1, Equations (17) and (18) rewrite the second expression of Equation (11):

P(xi)

P(R1/θ xi)
= R 1/θ+t+(xi)−t−(R1/θ xi)−

{
u+(xi)−u−(R1/θ xi)

}
ln R . (19)

Expand this equation as R = 1 + ε (ε << 1). In Equation (19), ε0 order term is trivial.
ε1 order term in the expansion from Equation (19) yields[

1 + θ{t+(xi)− t−(xi)}
]

P(xi) + xi
dP(xi)

dxi
= 0 . (20)

Using Equation (20) to rewrite dP(xi)/dx into P(xi), ε2 order term in the expansion from
Equation (19) yields:

xi

{
dt+(xi)

dix
+

dt−(xi)

dxi

}
+ 2θ

{
u+(xi)− u−(xi)

}
= 0 . (21)

If u−(xi) is eliminated using Equation (21), the expansion ε3 order term in Equation (19)
yields:

2
dt+(xi)

dxi
+

dt−(xi)

dxi
+ 6θ

du+(xi)

dxi
+ xi

{
2

d2t+(xi)

d2xi
+

d2t−(xi)

d2xi

}
= 0 . (22)

When u+(xi) is erased using Equation (22), the expansion ε4 order term in Equation (19)
yields:

dt+(xi)

dxi
+

dt−(xi)

dxi
+ 3xi

{
d2t+(xi)

d2xi
+

d2t−(xi)

d2xi

}

+ xi
2

{
d3t+(xi)

d3xi
+

d3t−(xi)

d3xi

}
= 0 . (23)

Solving this differential equation yields:

t+(xi) + t−(xi) =
D+2

2
ln2 xi

x0
+ D+1 ln

xi
x0

+ D+0. (24)

Here, D+2, D+1, and D+0 are integral constants. x0 is a parameter introduced to smoothly
connect the solution to the power-law distribution at x = x0. If t−(xi) is erased using
Equation (24), the expansion ε5 order term in Equation (19) yields:

dt+(xi)

dxi
+ 7xi

d2t+(xi)

d2xi
+ 6xi

2 d3t+(xi)

d3xi
+ xi

3 d4t+(xi)

d4xi
= 0 . (25)

The differential equation yields t+(xi):

t+(xi) =
D−3

3
ln3 xi

x0
+

D−2

2
ln2 xi

x0
+ 2α ln

xi
x0

+ D1 , (26)
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where D−3, D−2, α, and D1 are integral constants. Equations (26), (24), (22), (21), and (20)
determine t−(xi), u±(xi), and P(xi) as follows:

t−(xi) = −
D−3

3
ln3 xi

x0
+

D+2 − D−2

2
ln2 xi

x0
+ (D+1 − 2α) ln

xi
x0

+ D2 , (27)

u+(xi) = −
D−3

6θ
ln2 xi

x0
− D+2 + D−2

6θ
ln

xi
x0

+ D3 , (28)

u−(xi) = −
D−3

6θ
ln2 xi

x0
+

2D+2 − D−2

6θ
ln

xi
x0

+
D+1

2θ
+ D3 , (29)

P(xi) ∝ xi
−µi−1 exp

[
− θD−3

6
ln4 xi

x0

+
θ(D+2 − 2D−2)

6
ln3 xi

x0
− θ(4α− D+1)

2
ln2 xi

x0

]
, (30)

where D3 is an integral constant. In addition, we set D2 = D+0 − D1, µi = θ(D1 − D2).
The above is the result for R > 1, and an identical result was obtained for R < 1. They are
obtained from the necessary conditions in the vicinity of R = 1 in Equation (19). When we
require µi = θ(D1 − D2), these solutions are sufficient, even not in the vicinity of R = 1 of
Equation (19). When the form of the growth-rate distribution is concretely assumed to be
Equations (7) and (8), µi = θ(D1 − D2) becomes the reflection law.

The purpose of this paper is to confirm these analytical results with empirical data.
Therefore, to the extent that as little generality as possible is lost, the simplest form is to
assume that the xi dependency of t±(xi) can be approximated to the first order of ln xi

x0
[29].

In this case, from Equations (26) and (27), D−3 = D±2 = 0, and Equations (26)–(30)
are simplified:

t+(xi) = α+ ln
xi
x0

+ D1 , (31)

t−(xi) = α− ln
xi
x0

+ D2 , (32)

u+(xi) = D3 , (33)

u−(xi) =
α+ + α−

2θ
+ D3 , (34)

P(xi) ∝ xi
−µi−1 exp

[
−αi ln2 xi

x0

]
. (35)

Equation (35) is the log-normal distribution (2) itself, which is assumed to be a distribution
in the mid-scale range, and shows the ease of handling this approximation.

Here, α+ = 2α, α− = D+1 − 2α, and

αi =
θ

2
(α+ − α−) . (36)

Equation (36) is an analytic relationship linking log-normal parameter αi and non-
Gibrat’s parameter α± in a quasi-statically varying system. As described above, to the
best of our knowledge, only the data presented in this paper can empirically validate
Equation (36).

Next, we determine the quasi-static time evolution of log-normal distribution (35). As
in the previous subsection, using P(xi)dxi = P(xi+1)dxi+1, we obtain:

P(xi+1) = P(xi)
dxi

dxi+1
∝ xi+1

−µi/θ−1 exp

[
− αi

θ2 ln2 xi

ax0θ

]
. (37)
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Here, µi/θ = µi+1 from Equation (16), and, denoting α at i + 1 by αi+1, we obtain the
following expression:

θ2 =
αi

αi+1
. (38)

Using Equation (3), this expression can also be written:

θ =
σi+1

σi
. (39)

This geometrically shows that the ratio of mid-scale spread σi, σi+1 in i, i + 1 corresponds
to slope θ of the quasi-time-reversal symmetry axis.

3. Results

In this section, we confirm the relationships between quasi-time-reversal symmetry
and a change in the power-law exponent, between quasi-time-reversal symmetry and a
change in the logarithmic standard deviation, and between non-Gibrat’s property and
log-normal distribution in a quasi-statically changing system with empirical data.

3.1. Consistency between Quasi-Time-Reversal Symmetry and Changes of Power-Law Index

The temporal variations of quasi-time-reversal symmetry parameters θL measured
in the large-scale region are shown in Figure 6. From the discussion in Section 2.5, the
relationship between θL and the time change of exponent µ is given by Equation (16).
Figure 11 juxtaposes µi/µi+1 calculated from Figure 3 and θL. Note that the years in which
urban populations are measured are not evenly spaced (Table 1). This figure confirms
that Equation (16) holds in the empirical data and supports the analytical discussion in
Section 2.5.

0.9
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	m
u

i/
m

u
i+

1

Year	Ti+1

θL

µi/µi+1

Figure 11. Comparison of time course of slope θL of symmetry axis of quasi-time-reversal symmetry
in large-scale region and ratio of power-law index µi/µi+1.

3.2. Consistency of Quasi-Time-Reversal Symmetry and Changes in Logarithmic
Standard Deviation

The temporal variations of quasi-time-reversal symmetry parameters θM measured
in the mid-scale region are shown in Figure 6. Based on the discussion in Section 2.6, the
relationships between θM and the time variation of and logarithmic standard deviation
σ or α are given by Equations (38) or (39). Figure 12 is a side-by-side drawing of αi/αi+1
calculated from Figure 3 and θM

2. As shown in Figure 11, the measured values are not
arranged at regular intervals because the intervals between years where urban population
was measured are not constant (Table 1). This figure confirms that Equation (39) holds in
the empirical data and supports the analytical discussion in Section 2.6.
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Figure 12. Comparison of time course of slope θM
2 of symmetry axis of quasi-time-reversal symmetry

in mid-scale region and ratio of α αi/αi+1.

3.3. Consistency between Non-Gibrat’s Property and Log-Normal Distribution

Finally, in the empirical data, we confirm the relationship between logarithmic stan-
dard deviation αi of the log-normal distribution and parameters α± of the non-Gibrat’s
property, and parameter θM of the quasi-time-reversal symmetry, shown analytically in Sec-
tion 2.6. As noted in Section 2.6, the simplest approximation that retains as much generality as
possible is t±(xi), which becomes a linear function of ln xi, such as Equations (31) and (32),
whose coefficients are α±. c, u± are constants that are independent of xi, including Equa-
tions (7), (8), (33), and (34). Figures 9 and 10 in Section 2.4 show the dependency of t±,
u±, and c on log10 xi for 1962 to 1968 (i = 13) and 2015 to 2016 (i = 28). In these figures,
we first confirmed that c has no xi dependency, as described in Section 2.6. In the range
of 101 < xi < 103.5 at least, we also confirmed the approximation that u± also has no xi
dependency. The regression analyses on range 101 < xi < 103.5 yield α+ = 0.71± 0.52,
α− = 2.12± 0.78 for Figure 9 and α+ = 16.9± 1.7, α− = 15.7± 3.6 for Figure 10. Simi-
larly, applying a log-normal distribution (2) or (35) to Figures 1 and 2 yields parameters
α13 = 0.96± 0.04 and α28 = 0.82± 0.01. In Figures 4 and 5, the mid-scale quasi-time-
reversal symmetry parameters are estimated as θM = 1.03± 0.00 and θM = 1.00± 0.00.
The time variation over the entire period of each parameter is shown in Figure 13.

The horizontal axis of Figure 13 is not a year but a label (i+ 1) that simplifies observing
the points after 2006 and 2007 (i + 1 = 20) where the data interval is 1 year. In this figure,
2αi/θM continues to decrease until around 1968 (i + 1 = 14), and thereafter it remains
almost constant. However, in Figure 13, the change is inconspicuous and the error is small
because the scale on the vertical axis is large. By comparison, α± changes significantly. The
values after 2007 (i + 1 = 20), where the observation years are separated by one year, are
especially different from the values before 2007. However, difference α+ − α− in any year
is small and often within the error of 2αi/θM. These observations confirmed the analytical
conclusion of Section 2.6, Equation (36), in the empirical data.

-10

-5

0

5

10

15

20

25

0 5 10 15 20 25 30	a
lp

h
a

,	
2
a

lp
h

a
i/t

h
e

ta
M

,	
a

lp
h

a
+
−
a

lp
h

a
−

Label	i+1

α+

α−

2αi/θM

α+−α−

Figure 13. Comparison of time course of α±, 2αi/θM, and α+ − α−.
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4. Discussion

We analytically derived the following three relations among the quasi-time-reversal
symmetry, Gibrat’s law, and the non-Gibrat property, all of which were observed in the
urban population data of France, and confirmed them in the empirical data. The first
is the relation between the time variation of the power law and the quasi-time-reversal
symmetry in large-scale range (µi/µi+1 = θL). The second is the relation between the time
variation of the log-normal distribution between the quasi-time-reversal symmetry in the
mid-scale range (αi/αi+1 = θM

2). The third is the relation among the parameters of the
non-Gibrat’s property, the log-normal distribution, and the quasi-time-reversal symmetry
(α+ − α− = 2αi/θ).

This paper addressed the non-Gibrat’s property of the growth-rate distribution with
a convex downward curvature on both logarithmic axes. A previous study on published
land prices assumed that the growth-rate distribution was linear on both logarithmic
axes. We struggled to directly observe the changes of the growth-rate distribution in the
mid-scale range, because of a data shortage in one period. However, using France’s urban
population data, we directly observed them in a quasi-statically changing system and
confirmed the consistency between the parameters of the non-Gibrat’s property and the
log-normal distribution. This observation is the first research result on empirical data, to
the best of our knowledge.

On the one hand, the evaluation of power-law exponent µ becomes the regression
analysis of one parameter. On the other hand, since the evaluation of the non-Gibrat’s
property becomes the estimation of three parameters, c, t±, and u±, the error must be
larger than the exponent. Therefore, it was difficult to observe temporal changes in the
relationship between the non-Gibrat’s property and the log-normal distribution. However,
we confirmed that the non-Gibrat’s parameter (α±) increased as the interval of the mea-
surement period decreased and that the difference (α+ − α−) coincided with the parameter
(2αi/θM) of the log-normal distribution and the quasi-time reversal symmetry predicted by
the analytical argument at many measurement points within the error range. This research
result is important because, even when the non-Gibrat’s form is more complicated, we can
confirm the consistency between analytical discussion and empirical data.

Finally, we discuss how this paper can be viewed from the perspective of urban spatial
networks. According to the urban population distribution in France, power-law index µ
gradually decreased from 1876 to 1968, indicating that the disparity among cities in the
large-scale range widened during this period. This means that France’s population became
concentrated in large cities. After 1968, power-law index µ started to increase, suggest-
ing that the population concentration in large-scale cities was gradually being diffused.
Concentrated populations in large-scale cities must move to mid-scale cities, as evidenced
by the acceleration of mid-scale city spread σ since 1968. In this way, we can understand
the micro-scale phenomenon as the population moving from large-scale to mid-scale cites
based on the change of macroscopic distributions. When constructing a microscopic model
of population movement between cities, a model must be designed in such a way that it is
consistent with this macroscopic nature, which will shape its construction.
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