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Abstract: The principle of degressively proportional apportionment of goods, being a compromise
between equality and proportionality, facilitates the application of many different allocation rules.
Agents with smaller entitlements are more interested in an allocation that is as close to equality
as possible, while those with greater entitlements prefer an allocation as close to proportionality
as possible. Using relative entropy to quantify the inequity of allocation, this paper indicates
an allocation that neutralizes these two contradictory approaches by symmetrizing the inequities
perceived by the smallest and largest agents participating in the apportionment. First, based on
some selected properties, the set of potential allocation rules was reduced to those generated by
power functions. Then, the existence of the power function whose exponent is determined so as to
generate the allocation that symmetrizes the relative entropy with respect to equal and proportional
allocations was shown. As a result, all agents of the apportionment are more inclined to accept the
proposed allocation regardless of the size of their entitlements. The exponent found in this way shows
the significant relationship between the problem under study and the well-known Theil indices of
inequality. The problem may also be seen from this viewpoint.

Keywords: apportionment problem; degressive proportionality; fair division; relative entropy;
Theil index

1. Introduction

Allocation problems are derived from many practical issues. They concern the alloca-
tion of rights, resources, costs or burdens that are at the common disposal of participants
in a given group. The object of distribution can be goods and burdens. However, the issue
is often referred to as the allocation of goods, treating the release from burden as a kind of
good. The goods themselves can be divisible, such as natural resources, or indivisible, such
as seats in parliament or other collegiate bodies. The participants of the division, called
agents, are characterized by certain attributes, called entitlements. These features deter-
mine the result of division, that is, an allocation, and are quantified but may be represented
in different units depending on the nature of the problem.

Social role and the significance of allocation problems have led to many theories. These
theories concern various areas of allocation problems. Examples of such areas are claims
problems, cost allocation problems or apportionment problems. In a classical example of
claims problems, i.e., bankruptcy issues, the value of the shared good is the bankruptcy
mass expressed in currency units. Agents, also called claimants, are natural or legal persons
who also have entitlements expressed in currency units, which in this case are claims such
as, for example, the amount of a lost bank deposit or an unpaid liability.

Cost allocation problems concern, for example, the issue of allocating the cost of a
common investment expressed in units of currency. Agents are the investors, and their
entitlements can vary in size within different entities. The most common situation in
practice is the presentation of entitlements in the form of opportunity costs expressed in
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currency units, i.e., the costs of independent action. If the result of a joint investment is to
be used jointly by investors, a common definition of entitlements is the number of users on
the part of each investor.

Apportionment problems originate from the division of seats in collegial bodies, for
example, in the U.S. House of Representatives. In this case, agents are constituent states.
The entitlement of each one is the number of its inhabitants, and the divided goods are
mandates that represent legislative power.

In general, theories of allocation problems originate from common, universally ac-
cepted principles of social justice such as absolute equality or equal representation, meaning
proportionality. Depending on the problem, however, various questions are formulated,
and responses are given with respect to the underlying conditions that are specific to
the issue. Thus, modifications of absolute equality and proportionality are allowed to
take into account the underlying conditions. For example, the claims problems involve
the difficulty that the resource of allocated goods does not cover the sum of the claims
of the agents. Hence one assumes that the sum of claims is larger than the amount of
allocated goods. This implies that the proposed implementations of the general principles
underlying the distribution, as well as the rules developed on their basis, must be subject
to such conditions. Therefore, the proposed rules often modify these universal principles
(for example, Maimonides’ rule [1] modifies absolute equality and the contested garment
rule [1] attempts to combine absolute equality with proportionality).

In problems of dividing the cost of common investments, the allocation must respect
the interests of all investors and all investor coalitions. Therefore, no allocation can be
proposed where one investor or their group would have to pay more than when not
cooperating with others. This results again in an adjustment of the proposed allocation
rules to existing assumptions and a search for equal or proportional allocations resulting
from cooperation. In apportionment problems, the difficulty comes from the indivisibility
of goods being allocated. As a result, the most well-known methods, such as the largest
remainder method or divisor methods [2], are modifications of the principle of equal
representation aiming at finding the integer allocation that respects the generally accepted
rule of proportionality.

In some cases, legal regulations cause a deviation from the assumptions of absolute
equality and proportionality. A well-known case is the division of seats in the European
Parliament, where, if the numbers of members of the European Parliament were determined
proportionally, the smallest countries of the European Union would have no representation,
or the total size of the Parliament would have to be much greater than is organizationally
feasible. Therefore, a degressively proportional division was decided, with deputies from
more populated countries representing more citizens than those from less populated
countries. This idea was regarded as so significant that it was incorporated into the Treaty
of Lisbon.

Many current electoral systems can be characterized as degressively proportional
either directly or indirectly. When, in political systems with bicameral legislatures, one of
the chambers is elected proportionally while the other equally, then the comprehensive
legislative power—being a combination of proportionality and absolute equality—can be
considered degressively proportional, as in the United States Congress.

Degressive proportionality is also supported by optimization conditions. A classical
case in favor of this concept is based on statistical reasoning that leads to the Penrose (square
root) law, which states that the weight of a given representation should be proportional to
the square root of the population represented, not to the population itself [3]. It results from
the assumption that the decisions of electors in respective groups are independent random
variables (see [4–7]). The reasoning presented by Theil [8] leads to similar conclusions.
Based on some introduced assumptions, Theil derives a measure of frustration and shows
that its minimum is attained by the allocation, which is proportional to the square root
of agents’ claims. More general conclusions result from paper [9]. The utility function
considered in this paper is built under the assumption that utilities of individual agents are
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nonnegative, increasing and concave. However, it does not suffice to uniquely determine
the optimal allocation at which such a function attains its maximum. Rather, searching for
the optimum is reduced to a class of degressively proportional allocations, different from
proportional allocations.

Dealing with the idea of degressive proportionality in representation problems locates
it near apportionment problems, whose assumptions emphasize the indivisibility of al-
located goods. Even though a proportional allocation always exists, this does not mean
that an integer proportional allocation exists. In a degressively proportional division of
seats, we also certainly deal with the indivisibility of allocated goods, but, compared to the
proportional apportionment problems, a new issue emerges, as even among non-integer
divisions, there may exist more than one degressively proportional allocation. Moreover,
even though there exists exactly one, mostly non-integer, the proportional allocation for
every problem, still, for the same problem, there may exist infinitely many non-integer
degressively proportional allocations.

This lack of uniqueness is studied in papers dealing with the so-called unrounded
degressive proportionality (UDP), which examine the non-integer degressively proportional
allocations (see for example [10–13]). In this paper, the authors mainly draw on the
approach of degressively proportional allocations of divisible goods. This means that in
our theoretical reflections, we do not analyze that part of the UDP problem that focuses
on finding an integer representation of a given allocation, but we try to find one out of
many feasible degressively proportional non-integer divisions that can be considered as
satisfying a postulate of fair distribution in the best way. Integer allocation will only play
its role in Section 5, devoted to the empirical validation of the proposed solution.

In Section 2, the notation used in this paper is introduced, and some basic concepts
are recalled that are necessary to formulate and solve the problem, proposed in Section 3,
of finding an allocation that can be regarded as fair by all agents in apportionment. In
Section 4, we show that any allocation rule satisfying three properties common to equal
and proportional allocation—i.e., pairwise consistency, homogeneity with respect to entitle-
ments and homogeneity with respect to the amount of goods—can be uniquely expressed
by a multiplicative function. According to a theorem proved by, among others, Theil in [14],
it follows that the only nontrivial continuous multiplicative functions are power functions.
Hence, the allocation problem can be reduced to an analysis of such functions.

In the area of degressively proportional allocations, we deal with one additional
constraint, namely the requirement for the exponent of a power function. It turns out
that it must be a number between zero and one, whereas with an exponent equaling zero,
we get a rule of equal division, and with an exponent equaling one, a proportional rule.
By symmetrizing the relative entropy, we get a value of the exponent that generates the
allocation equally distant, in a sense, from the equal and proportional allocations, i.e.,
two extreme degressively proportional allocations. One can note that these two cases
will be of interest to extreme groups of agents—those with the greatest entitlements will
be interested in an allocation as close to proportional as possible, while agents with the
smallest entitlements in an allocation as close to equal allocation as possible. By interpreting
relative entropy as a measure of the inequity of two allocations, symmetrization of relative
entropy leads to such an allocation that levels agents’ frustration due to throwing away
the allocations they are most interested in. Therefore, the largest feasible reduction in
discrimination of the smallest agents is achieved that can be accepted by the largest agents.
A discussion and summary of the results are given in Section 6.

The idea to apply entropy in apportionment problems comes from Theil [14], who
proposed considering it as a measure of distributional inequality. Although such an
approach seems sound, in the beginning, it did not gain general acceptance. In the 21st
century however, apportionment problems are again perceived through entropic eyes.
Paper [15] mentions the relationship between relative entropy and well-known standard
divisor methods. In paper [16], the relationship between the entire class of apportionment
methods and the entire class of inequality measures was thoroughly analyzed, proving that
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allocations that minimize a generalized entropy are equivalent to allocations generated by
divisor methods based on generalized logarithmic means.

Finally, the reader will find a deep analysis of relationships between relative entropy
and apportionment problems in paper [17], where an allocation minimizing relative entropy
is considered to be optimal because it is “nearest” to the proportional allocation. However,
to the best of our knowledge, there are no research papers on the application of relative
entropy and its symmetrization with respect to extreme feasible divisions. Hence, this is an
original paper belonging to an existing strand of research.

2. Notation and Basic Definitions

Throughout the paper, we use the following notations. By N we denote the set of all
positive natural numbers, and by R+ we denote the set of all positive real numbers. Finite
sequences are denoted with the use of parentheses for their explicit representation, e.g.,
(p1, p2, . . . , pn), or by bold letters, e.g., p = (p1, p2, . . . , pn). The ith element of the sequence
p is denoted by pi.

We consider allocation problems in which some amount of homogeneous goods (rights,
costs, burdens, etc.) has to be divided among a finite set of n participants in the allocation,
n ∈ N. The participants of the allocation are simply called agents. The amount of allocated
goods is denoted by h and we always assume that there is some amount of goods to be
allocated, i.e., h > 0. We consider problems where agents are characterized by one attribute
pi, expressed as a positive real number. This attribute is called entitlement and represents
diverse attributes in various allocation problems, e.g., populations expressed in the number
of inhabitants in the apportionment problems, or claims expressed in units of currency or
savings in cost allocation problems.

We use the following notions.
An allocation problem is a pair (p, h), where p is a sequence of entitlements of agents

and h is the amount of goods to be allocated. For a given (p, h) an allocation is a sequence
s = (s1, s2, . . . , sn) such that ∑n

i=1 si = h and for each i ∈ {1, 2, . . . , n} there is si > 0.
An allocation rule is a function ϕ :

(
Un∈NRn

+ ×R+
)
→ Un∈NRn

+ , i.e., a function as-
signing a unique solution s = ϕ(p, h) ∈ Rn

+ to every allocation problem (p, h) ∈ Rn
+ ×R+.

One can also grasp the allocation rule as an infinite, countable family of functions ϕi,
i = 1, 2, . . ., such that ϕn : Rn

+ ×R+ → Rn
+ . Finding the allocation in this context re-

quires two stages. First, the number of agents is determined as the length of sequence p,
and then, an appropriate function ϕi is selected. If rule ϕ assigns an allocation s to the
fixed sequence p, then the amount of goods allocated to an agent with entitlements pi,
will be denoted by ϕ(p, h)(pi) and likewise for any subgroup of agents. For example, if
ϕ((1, 3, 4), 20) = (5, 7, 8), then ϕ((1, 3, 4), 20)(3) = 7 and ϕ((1, 3, 4), 20)(1, 4) = (5, 8).

Rule ϕ satisfies pairwise consistency, if the amount of goods allocated to any two
agents with fixed entitlements depends exclusively on the sum of goods allocated to them:

ϕ(p, h)
(

pi, pj
)
=
(
si, sj

)
⇒ ϕ

((
pi, pj

)
, si + sj

)
=
(
si, sj

)
(1)

for all p, s ∈ Rn
+ and h ∈ R+.

This property, in a sense, is universal because it is postulated in many allocation prob-
lems, for example, in apportionment problems, claims problems, cost allocation problems
and bargaining problems in game theory. It concerns a situation where a certain division
was accomplished, and some agents leave with an amount of goods allocated to them.
If the allocation of the remaining goods among the remaining agents assigns to each of
them the same amount of goods as in the initial division, such a rule is called consistent.
In the paper, we consider pairwise consistency, which requires this for any pair of agents.
It should be emphasized that not all rules are consistent, even often used in practice. For
example, in the case of apportionment problems, divisor methods are consistent but the
largest remainder method, employed in the Empirical Verification section, is not consistent.
The reader will find an exhaustive analysis of consistency together with its applications
in [18].
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Rule ϕ satisfies homogeneity with respect to entitlements, if a proportional shift in
the sequence of entitlements does not alter its value:

ϕ(λp, h) = ϕ(p, h) (2)

for all p, s ∈ Rn
+ and λ, h ∈ R+.

Rule ϕ satisfies homogeneity with respect to the amount of goods, if a shift in the
amount of goods under allocation causes a subsequent change in its value:

ϕ(p, λh) = λϕ(p, h) (3)

for all p, s ∈ Rn
+ and λ, h ∈ R+.

The two latter properties imply that a proportional change in all entitlements should
not modify the allocation, while the change in the amount of goods under allocation should
adjust the allocation proportionally. In apportionment problems, the homogeneity with
respect to entitlements is called briefly, homogeneity, and is naturally imposed by the idea
of proportionality—if a proportional change of entitlements does not alter the agents’
shares in the amount of distributed goods, then it should not change the allocation [2].
Homogeneity with respect to the total amount of goods in a general case (λ ∈ R+) is
pointless for integer allocations, but, for the same reasons as in the case of homogeneity
with respect to entitlements, is also natural in apportionment problems if limited to positive
integer shifts in the amount of goods.

The allocation rule that is pairwise consistent, homogeneous with respect to the
amount of goods and homogenous with respect to entitlements, i.e., the rule satisfying the
conditions (1)–(3), will be denoted by ϕ∗.

Rule ϕ satisfies the condition of degressive proportionality if

pi ≤ pj ⇒
(

ϕ(p, h)(pi) ≤ ϕ(p, h)
(

pj
)
∧ ϕ(p, h)(pi)

pi
≥

ϕ(p, h)
(

pj
)

pj

)

for all i, j = 1, . . . , n.
A degressively proportional rule is defined by two inequalities. Substituting the first

one by equality, one gets the rule of equal division, whereas after replacing the second one
by equality, the rule becomes the proportional rule. Thus, the degressive proportionality is
situated between equality and proportionality. For this reason, symmetrization of entropy
in this paper will be considered with respect to equal allocation and to proportional
allocation.

Given the two allocations s′ =
(
s′1, s′2, . . . , s′n

)
and s′′ =

(
s′′1 , s′′2 , . . . , s′′n

)
, the relative

entropy from s′′ to s′ is defined as

dKL
(
s′, s′′

)
=

n

∑
i=1

s′i
h

log

(
s′i
s′′i

)
. (4)

For a given allocation problem (p, h) the allocation s = (s1, s2, . . . , sn) symmetrizes the
relative entropy with respect to the allocation s′ =

(
s′1, s′2, . . . , s′n

)
and s′′ =

(
s′′1 , s′′2 , . . . , s′′n

)
,

if dKL(s′, s) = dKL(s′′ , s).
The relative entropy from s′ to s′′ can be interpreted as a measure of inequity between

s′ and s′′ . In cases where the allocation s is sought regarding a single allocation s′, the
literature recommends minimization, subject to certain conditions, of the relative entropy
from s′ to s [17]. On the other hand, when the two different allocations s′ and s′′ are
used as points of reference, then minimizing relative entropy regarding only one point,
for example s′, can result in a situation, following the use of such allocation, when the
inequity perceived by agents mostly interested in the allocation s′′ will be so great that
they decline to approve it. In this context, a symmetrizing allocation can be considered
the fairest one because it minimizes the inequity perceived by a group of agents mostly
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interested in allocation s′, given the maximum level of inequity tolerated by a group of
agents mostly interested in allocation s′′ and otherwise. Moreover, the less focused the
preferences of given agents are on just one allocation, the less frustration they feel after the
use of an allocation that symmetrizes the relative entropy to s′ and to s′′ .

3. Problem Statement

In allocation problems, one searches for the allocation rules that conform to generally
accepted principles of fair distribution. Fairness can certainly be comprehended in various
ways and is typically defined by a set of properties (sometimes called premises or axioms)
that are required for the rules applied to a given allocation problem. These properties are
not universal and depend on the nature of the problem (e.g., apportionment problems,
claims problems, cost allocation problems). One distinguishes some desired features that
have to be satisfied by the rules recognized as fair in terms of a given, actual problem, and
therefore a property postulated in the apportionment problems may perhaps be pointless
in the case of claims problems, etc. In claims problems, by assumption, the sum of claims
exceeds the sum of goods to be distributed, and therefore it is not reasonable to propose, for
example, homogeneity of the rule with respect to the amount of goods or its homogeneity
with respect to entitlements, whereas these properties are required in apportionment
problems. In claims problems, it is required that a simultaneous proportional shift, on
a similar scale, of claims and amount of goods, should result likewise in a proportional
change of the allocation sequence. It is also worth emphasizing that whether certain
properties of allocation rules are considered desirable or not also depends on the individual
preferences of agents or their groups. For example, it is known that postulating that several
conditions are met simultaneously may narrow the circle of potential allocation rules to a
proportional rule. Such a solution, compared even to an equal allocation, favors agents of
greater power and is not in line with agents of lesser power. Hence, it is possible to limit
the application of rules with certain properties and consider them inappropriate for solving
a specific allocation problem due only to the individual preferences of specific participants
of the division.

In the paper, we consider the three properties that should be satisfied. We find
these properties very natural in the allocation problem under study. They are close to
apportionment problems and, therefore, the required properties to be satisfied by the
allocation rules, which we analyze, are derived from the solutions recognized as fair in
this problem. The main principle underlying the practical solutions of apportionment
problems is that of equal representation. It translates into the rule of proportional division
with modifications made necessary by the condition that sequence s must be an integer.
Whenever legal regulations, social solidarity or other external conditions in apportionment
problems impose the replacement of a proportionality rule by another one, maintaining
certain properties of a proportional division brings the proposed rule closer to standard
proportionality. The choice of properties proposed in this paper is subjective. Still, it may
be seen that it is justified as it leads to allocations with an attribute defined in [14] as
weak proportionality, which means that the quotient of the amount of goods of every two
agents is a fixed, not necessarily identity, function of the quotient of their entitlements, as
in the case of proportionality. In addition, these properties are characteristic not only of a
proportional allocation but also an equal allocation, which represents the other extreme
case of degressive proportionality.

The problem addressed in this paper is to find a degressively proportional allocation
that can be recognized as fair, or at least as non-harming to agents, taking into account
the amount of goods allocated to other agents. This problem can be reduced to finding
the exponent β ∈ [0, 1] of a power function that determines the allocation. The analysis of
power functions in this context is not a new approach. For example, in papers [3,19,20],
the exponent β = 0.5 is proposed for the use in allocation. Interestingly enough, the
arguments in favor of the fairness of such a solution are not the same. Penrose [3] employs
an assumption of voters’ independent decisions, Theil and Schrage [19] minimize the
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average number of citizens represented by the Parliament members from each country,
whereas Dniestrzański [20] examines the conditions to be satisfied by the derivative of the
allocation function in degressively proportional division.

As can be seen, the fairness of a solution is demonstrated using diverse properties
from different theoretical concepts and methods from various areas of mathematics. These
proposals typically locate fair division in the middle of the interval [0, 1], i.e., they find the
solution precisely in the middle of the examined interval that symmetrizes, in a sense, the
set of feasible solutions. The idea of how to find the fair division proposed in this paper is
similar. As a criterion for selecting the exponent β we assume the postulate of symmetriza-
tion of the relative entropy, also called the Kullback–Leibler divergence measure with
respect to the distance between equal and proportional allocations. The symmetrization
refers to the above-mentioned proposals, with the emphasis put on the equality of the
relative entropies with respect to the extreme allocations, equal and proportional, achieved
for β = 0 and β = 1, respectively—instead of the absolute center.

4. Results

The assumptions of pairwise consistency, homogeneity with respect to entitlements
and homogeneity with respect to the amount of goods significantly reduce the range
of potential allocation rules. We shall prove that each allocation rule ϕ∗ generates a
multiplicative function g : R+ → R+ , defined on quotients of agents’ entitlements, where
a multiplicative function means any function satisfying the relationship

g(xy) = g(x)g(y). (5)

Moreover, a reverse implication also holds, namely, each multiplicative function
determines precisely one allocation rule ϕ∗ in such a way that if its argument is a quotient
of entitlements of any two agents, then its value equals the quotient of goods allocated
to them by this rule. As a result, the allocation problem satisfying the three mentioned
properties of the fair distribution, which are derived from the proportionality rule, can be
reduced to an analysis of multiplicative functions.

Proposition 1. For each rule ϕ∗ there exists a multiplicative function fϕ∗ : R+ → R+ such that

if ϕ∗(p, h) = s then si
sj
= fϕ∗

(
pi
pj

)
for any indices i, j.

Proof. For given p,h let ϕ∗(p, h) = s and ϕ∗(p, h)
(

pi, pj
)
=
(
si, sj

)
. Then

si
sj
= ϕ∗(p,h)(pi)

ϕ∗(p,h)(pj)
=

ϕ∗((pi ,pj) ,si+sj)(pi)

ϕ∗((pi ,pj) ,si+sj)(pj)
=

(si+sj)ϕ∗((pi ,pj) ,1)(pi)

(si+sj)ϕ∗((pi ,pj) ,1)(pj)

=
ϕ∗
((

1, pi
pj

)
,1)(1)

ϕ∗
((

1, pi
pj

)
,1)
(

pi
pj

) = fϕ∗
(

pi
pj

)
.

The second equality results from pairwise consistency, the third one from homogeneity
with respect to the amount of goods, the fourth one from homogeneity with respect to the
entitlements.

Since fϕ∗
(

pi
pj

)
=

ϕ∗((1,pi/pj),1)(1)
ϕ∗((1,pi/pj),1)(pi/pj)

, fϕ∗ is a uniquely determined function. Addi-

tionally, if ϕ∗ assigns the amount of goods si, sk, sj to agents with entitlements pi, pk, pj,
respectively, then for x = pi

pk
and y = pk

pj
we have

fϕ∗(xy) = fϕ∗

(
pi
pk

pk
pj

)
= fϕ∗

(
pi
pj

)
=

si
sj

=
si
sk

sk
sj

= fϕ∗

(
pi
pk

)
fϕ∗

(
pk
pj

)
= fϕ∗(x) fϕ∗(y),

and hence, fϕ∗ is multiplicative. �
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Note that fϕ∗(1) = 1 holds for each allocation rule ϕ∗, as well as the continuity of fϕ∗

results from continuity of ϕ∗.

Proposition 2. Let g : R+ → R+ be a multiplicative function. Let ϕ be a rule that assigns an
allocation s = (s1, s2, . . . , sn) to each allocation problem (p, h), so that si

sj
= g

(
pi
pj

)
holds for any

i, j ∈ {1, 2, . . . , n}. Then the rule ϕ satisfies the conditions (1)–(3) and is of the form

ϕ(p, h) = s =
h

∑n
i=1 g(pi)

(g(p1), g(p2), . . . , g(pn)). (6)

Proof. Since si
sj
= g

(
pi
pj

)
and g is a multiplicative function, we have si = g

(
pi
p1

)
s1 = g(pi)

g(p1)
s1.

Hence s = (s1, s2, . . . , sn) =
s1

g(p1)
(g(p1), g(p2), . . . , g(pn)). It suffices to take s1 = hg(p1)

∑n
i=1 g(pi)

so as to get the sum of the elements of this sequence equal to h and hence the rule is well
defined. Thus, the rule is of the form

ϕ(p, h) = s =
h

∑n
i=1 g(pi)

(g(p1), g(p2), . . . , g(pn)).

The quotient si
sj

is a function of the quotient pi
pj

, hence it is constant for a given p, which
implies pairwise consistency. Homogeneity with respect to the amount of goods follows
from the relationship

ϕ(p, λh)(pi) =
λh

∑n
i=1 g(pi)

g(pi) = λ
h

∑n
i=1 g(pi)

g(pi) = λϕ(p, h)(pi).

Since the quotients of appropriate elements of the sequences p and λp are equal, we have
ϕ(λp, h) = ϕ(p, h), which proves the homogeneity with respect to entitlements. �

Let us denote by ϕ∗g the rule defined by formula (6). If g(x) ≡ 1, then ϕ∗g is the rule
of equal allocation, and when g(x) = x the rule is proportional. From Proposition 1 and
Proposition 2 it follows that one can consider the rules ϕ∗ in two ways. On the one hand
each rule ϕ∗ generates a certain multiplicative function fϕ∗ , while on the other hand, each
multiplicative function g : R+ → R+ uniquely generates a certain rule ϕ∗g. This function
will be called a generating function of allocation ϕ∗g. Rule ϕ∗g preserves the ordering of
entitlements, i.e., a greater agent is allocated more goods than a smaller agent if, and only
if, g is an increasing function, otherwise, the rule ϕ∗g for a decreasing function reverses the
ordering of entitlements. As will be seen subsequently, if function g is continuous, it is
either monotonic or constant, therefore rule ϕ∗g either preserves the ordering of entitlements
or reverses it, or it is the rule of equal allocation. Certainly, the continuity of function g
implies continuity of rule ϕ∗g generated by this function.

The continuity of allocation rules is emphasized in many papers. In case of a claims
problem or division of burdens, e.g., taxes, continuity is especially highlighted. The rules
applied to these issues should not, for obvious reasons, lead to incremental changes of
burdens [1,21]. In practice, minor changes in the size of entitlements of individual agents
involve minor changes in the amount of goods received by them or in imposed burdens.
This, in turn, means that small changes in the quotients of entitlements will cause small
changes in the quotients of the amount of distributed goods and chores.

After analyzing allocations as being a function of the quotients of entitlements, Theil
defined a so-called weak proportionality condition (see [14]). In this paper, Theil also
proved the proposition that follows.

Proposition 3 (Theil 1969). The only continuous solutions to a functional equation g(xy) =
g(x)g(y) are functions of the form (x) = xβ, where β ∈ R or g ≡ 0.
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It follows from Proposition 3 that the only generating functions for the pairwise
consistent rules—homogeneous with respect to the amount of goods and homogenous
with respect to entitlements—are power functions. We get a more restrictive constraint in
degressively proportional rules. This constraint is shown in Corollary 1.

Corollary 1. The rule ϕ∗g generated by the function g(x) = xβ satisfies the condition of degressive
proportionality if and only if 0 ≤ β ≤ 1.

Proof. It follows from Proposition 2 that ϕ(p, h)(pi) = si =
pβ

i

pβ
1+pβ

2+...+pβ
n

holds for any

i ∈ {1, 2, . . . , n}. Set i, j ∈ {1, 2, . . . , n} so that pi ≤ pj. The condition of degressive
proportionality means that si ≤ sj and si

pi
≥ sj

pj
. We have

si ≤ sj ⇔
pβ

i

pβ
1 + pβ

2 + . . . + pβ
n
≤

pβ
j

pβ
1 + pβ

2 + . . . + pβ
n
⇔ pβ

i ≤ pβ
j ⇔ β ≥ 0

and
si
pi
≥

sj

pj
⇔ si

sj
≥ pi

pj
⇔

pβ
i

pβ
j

≥ pi
pj
⇔
(

pi
pj

)β

≥ pi
pj
⇔ β ≤ 1 . �

Let g(x) = xβ be a generating function of rule ϕ∗g. Notice that for β = 0 rule ϕ∗g yields
an equal allocation and for β = 1 a proportional allocation. Hence the conclusion that each
degressively proportional rule generated by the function g is, in a sense, an intermediate
solution between equality and proportionality. The exponent β shows whether it is closer
to equality or to proportionality. With no additional indications concerning the practical
use of a given exponent, one may search for compromise solutions that symmetrize the
problem under study. Justifying such proposals based on fair division is usually allowed.
One of the possible proposals in this spirit is the symmetrization of relative entropy.

Proposition 4. For any allocation problem (p, h) there exists exactly one value of parameter β,
such that the allocation s = h

∑n
i=1 pβ

i

(
pβ

1 , pβ
2 , . . . , pβ

n

)
symmetrizes a relative entropy with respect

to equal and proportionality allocations. Moreover,

β =
TT(p)

TT(p) + TL(p)
, (7)

where p = 1
n ∑n

i=1 pi, TT(p) = 1
n ∑n

i=1
pi
p log

(
pi
p

)
is the Theil entropy index and TL(p) =

− 1
n ∑n

i=1 log
(

pi
p

)
is the mean log deviation index (MLD).

Proof. One can note that s = h
c

(
pβ

1 , pβ
2 , . . . , pβ

n

)
, where c = ∑n

i=1 pβ
i . Let sequal =

h
n (1, 1, . . . , 1) and sprop = h

∑n
i=1 pi

p = h
np p be equal and proportional allocations for the

allocation problem (p, h). Formula (4) yields the following:

dKL

(
sequal , s

)
= ∑n

i=1
1
n log

(
h
nc p−β

i

)
= log(h)− log(n)− log(c)− β 1

n ∑n
i=1 log(pi),

dKL
(

sprop, s
)
= ∑n

i=1
pi
np log

(
hpi
npc p−β

i

)
= log(h)− log(n)− log(c) + 1

n ∑n
i=1

pi
p log

(
pi
p

)
− β 1

n ∑n
i=1

pi
p log(pi).
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It is easily seen that equation dKL

(
sequal , s

)
= dKL

(
sprop, s

)
with respect to β has exactly

one solution:

β =
1
n ∑n

i=1
pi
p log

(
pi
p

)
1
n ∑n

i=1
pi
p log(pi)− 1

n ∑n
i=1 log(pi)

=
1
n ∑n

i=1
pi
p log

(
pi
p

)
1
n ∑n

i=1
pi
p

(
log
(

pi
p

)
+log(p)

)
− 1

n ∑n
i=1

(
log

(
pi
¯
p

)
+log

(
¯
p
))

=
1
n ∑n

i=1
pi
p log

(
pi
p

)
1
n ∑n

i=1
pi
p log

(
pi
p

)
+log(p)− 1

n ∑n
i=1 log

(
pi
p

)
−log(p)

=
1
n ∑n

i=1
pi
p log

(
pi
p

)
1
n ∑n

i=1
pi
p log

(
pi
p

)
− 1

n ∑n
i=1 log

(
pi
p

) = TT(p)
TT(p)+TL(p)

.�

Since 0 ≤ TT(p)
TT(p)+TL(p)

≤ 1, the allocation determined in this way is degressively
proportional.

It should be mentioned that relative entropy is not symmetric, i.e., dKL(s′ , s′′ ) 6=
dKL(s′′ , s′). An allocation symmetrizing relative entropy with respect to equal allocation
and to proportional allocation could also be considered as an allocation-satisfying condition
dKL

(
s, sequal

)
= dKL

(
s, sprop

)
, but the solution of this equation can only be obtained with

the use of sophisticated numerical methods.

5. Empirical Verification

The allocation symmetrizing relative entropy with respect to equal and proportional
allocation was applied to distribute the seats in the European Parliament of the ninth term,
2019–2024. Following the withdrawal of the United Kingdom from the European Union in
this period, the computation was performed for the state after Brexit. This means that the
total number of seats to be distributed among 27 countries was 705. Sequence p (Table 1,
column 2) describing the populations of member states was taken from [22].

For this sequence of populations, exponent β was found to be approximately 0.4476,
and the allocation is of the form s = (s1, . . . , s27), where si =

705

∑27
i=1(

pi
434403 )

0.4476 ·
( pi

434403
)0.4476

(see Table 1, column 4). The problem of seat division in the European Parliament is an
integer division problem, and hence this allocation is merely a starting point to indicate its
integer representation. Table 1 presents a proposed integer allocation (s) that minimizes
relative entropy with respect to allocation s, i.e., from all integer allocations whose sum
is 705, allocation (s), such that its relative entropy with respect to s is minimal, has been
chosen. In this case, it turns out that it is identical to the allocation obtained from the largest
remainder method.
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Table 1. Non-integer allocation of seats in the European Parliament determined by the allocation s
and its integer representation (s).

Country Population Current s (s)

Malta 434,403 6 6.18332642 6
Luxemburg 576,249 6 7.0169732 7

Cyprus 848,319 6 8.34301268 8
Estonia 1,315,944 7 10.1547553 10
Latvia 1,968,957 8 12.1618042 12

Slovenia 2,064,188 8 12.4216568 12
Lithuania 2,888,558 11 14.4376944 14

Croatia 4,190,669 12 17.0541533 17
Ireland 4,664,156 13 17.8911687 18

Slovakia 5,407,910 14 19.1161103 19
Finland 5,465,408 14 19.2068166 19

Denmark 5,700,917 14 19.5729496 20
Bulgaria 7,153,784 17 21.6663191 22
Austria 8,711,500 19 23.6635581 24

Hungary 9,830,485 21 24.9787507 25
Sweden 9,998,000 21 25.1683791 25
Portugal 10,341,330 21 25.5516204 25

The Czech Republic 10,445,783 21 25.6668173 26
Greece 10,793,526 21 26.0458098 26

Belgium 11,289,853 21 26.5752358 27
The Netherlands 17,235,349 29 32.1154864 32

Romania 19,759,968 33 34.1418052 34
Poland 37,967,209 52 45.7334937 46
Spain 46,438,422 59 50.0477943 50
Italy 61,302,519 76 56.6715708 57

France 66,661,621 79 58.8378237 59
Germany 82,064,489 96 64.575114 65

It has to be noted that this allocation satisfies the boundary conditions imposed by
the Treaty of Lisbon, i.e., the number of seats allocated to the smallest country (Malta) is
not less than six and the number of seats allocated to the largest country (Germany) does
not exceed 96. Hence this solution can be accepted from the legal viewpoint. In addition,
it properly renders the idea of European solidarity because it represents the interests of
less populated EU member states to a greater degree than the current allocation. Table 1
shows that medium-populated countries would mostly gain (from four to six seats, with
the largest gain realized in the case of Belgium—six seats), if the current division of seats
were replaced by the solution determined from the allocation symmetrizing the relative
entropy with respect to equal and proportional allocations. The number of allocated seats
would decrease only in the case of the five largest countries, with the greatest losses in the
number of seats allocated to France, Italy and Germany. The only country that would not
feel any change is Malta.

Note that the final integer allocation depends on the choice of the rounding method.
Moreover, fulfillment of the condition of degressive proportionality is guaranteed at the
level of non-integer division, the rounding of which may violate this condition. This is the
case in the given example for the country pairs Finland–Denmark and Portugal–The Czech
Republic. In the context of the European Parliament, however, this is without prejudice to
the findings in the European Parliament Resolution. According to them, the condition of
degressive proportionality is to be met before rounding to integers, i.e., in the analyzed
case for sequence s.

6. Discussion and Conclusions

Many allocation rules in the literature and in practice are based on two core notions of
justice: equality and proportionality. When the agents’ entitlements are undisputed, an
equal or proportional allocation is the simplest and most applied solution to the problem,
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depending on the nature of the problem and possible constraints resulting, e.g., from the
legal environment or prior arrangements accepted by agents. Another significant group of
rules embraces all sorts of intermediary solutions that are a compromise between equality
and proportionality, e.g., Maimonides’ rule, Aumann–Maschler rule [1], or the adjusted
proportional rule [1]. In this area, we deal with, for example, methods where a part of goods
are equally distributed among agents, with another part being allocated proportionally. Yet
another approach is based on the assumption that not only the benefits are to be distributed,
but also the losses, which are defined as the differences between entitlements and actual
allotments assigned to the agents as a result of division.

Degressive proportionality likewise walks a line between equality and proportionality.
Its basic advantage consists in accurately defining what this “in-between” status means:
that the quotient of the amount of allocated goods and entitlements is nonincreasing with
respect to the increasing sequence of agents’ entitlements. On the other hand, accurately
positioning the degressive proportionality between equality and proportionality does not
provide a unique solution to the problem of goods apportionment. In many instances,
there may exist a lot of degressively proportional allocations, even, in the case of divisible
goods, infinitely many.

It has been proven in the paper that the three basic properties of equal and propor-
tional allocation rules (pairwise consistency, homogeneity with respect to entitlements and
homogeneity with respect to the amount of goods) determine a coherent class of allocation
rules generated by the power functions, i.e., the unique continuous and multiplicative
generating functions. Constraining the exponent of the power function to the unit interval
(i.e., the interval whose endpoints determine the equal allocation rule and proportional
allocation rule), rules satisfying the condition of degressive proportionality were obtained.
In such a constrained class, an allocation that reconciles the contradictory interests of agents
with discrepant entitlements participating in distribution was indicated. This was done by
leveling the inequity that can be a result of the discrepancies and disparities in the amount
of allocated goods. In addition, it has been proven in this paper that the exponent of the
relevant power function, in this case, is closely linked with two Theil indices. The results
obtained have the prospect to be applied in many problems involving the distribution of
divisible and indivisible goods. In the case of indivisible goods, such as the distribution
of seats in collegial bodies, the method of determining an integer representation of the
indicated allocation remains an open question. The solution proposed in this paper consists
of indicating an allocation that minimizes relative entropy, and it is identical with the
solution obtained by means of the largest remainder method, i.e., the minimization of the
Euclidean distance. That is not always the case, however, and the examples given are not
the only ways to solve this problem, thus implying a possible extension of the research into
integer allocations. More research could also embrace a deeper analysis of the relationships
between the results obtained here and the Theil or other indices of inequality.

Another interesting topic for further research is an analysis of symmetrization of the
complementary dual function of relative entropy, that is, relative extropy introduced in [23].
Since entropy and extropy are dual, including extropy in considerations about the inequity
of allocation seems to be appropriate and promising in the context of potential results,
similarly for other types of relative entropy based on generalized entropies [24].
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