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Abstract: Despite the remarkable success of Carnot’s heat engine cycle in founding the discipline of
thermodynamics two centuries ago, false viewpoints of his use of the caloric theory in the cycle linger,
limiting his legacy. An action revision of the Carnot cycle can correct this, showing that the heat
flow powering external mechanical work is compensated internally with configurational changes
in the thermodynamic or Gibbs potential of the working fluid, differing in each stage of the cycle
quantified by Carnot as caloric. Action (@) is a property of state having the same physical dimensions
as angular momentum (mrv = mr2ω). However, this property is scalar rather than vectorial, including
a dimensionless phase angle (@ = mr2ωδϕ). We have recently confirmed with atmospheric gases
that their entropy is a logarithmic function of the relative vibrational, rotational, and translational
action ratios with Planck’s quantum of action h̄. The Carnot principle shows that the maximum
rate of work (puissance motrice) possible from the reversible cycle is controlled by the difference in
temperature of the hot source and the cold sink: the colder the better. This temperature difference
between the source and the sink also controls the isothermal variations of the Gibbs potential of the
working fluid, which Carnot identified as reversible temperature-dependent but unequal caloric
exchanges. Importantly, the engine’s inertia ensures that heat from work performed adiabatically
in the expansion phase is all restored to the working fluid during the adiabatic recompression, less
the net work performed. This allows both the energy and the thermodynamic potential to return
to the same values at the beginning of each cycle, which is a point strongly emphasized by Carnot.
Our action revision equates Carnot’s calorique, or the non-sensible heat later described by Clausius as
‘work-heat’, exclusively to negative Gibbs energy (−G) or quantum field energy. This action field
complements the sensible energy or vis-viva heat as molecular kinetic motion, and its recognition
should have significance for designing more efficient heat engines or better understanding of the
heat engine powering the Earth’s climates.

Keywords: Carnot cycle; caloric; specific heat; entropy; Gibbs potential; vortical entropy; reversible
cycle; working fluid; quantum field; relative action; heat engine

1. Introduction

“Partout où il existe une differénce de temperature, il peut y avoir production de
puissance motrice.”

Sadi Carnot’s authoritative statement regarding the dependence of power in heat en-
gines to a gradient in temperature founded modern thermodynamics. The fully reversible
cycle for ideal gases as working fluid in a heat engine, proposed by Carnot in 1824 [1,2],
led to a revolution in our understanding of heat, energy, entropy, and their relationships.
This reversible cycle requires both efficient heat flows during isothermal processes and
perfect insulation during adiabatic processes when no heat flows occur. For maximum
efficiency, all heat input to the cycle is considered to be at the temperature of the source,
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while heat rejected is considered to be at the temperature of the sink. Carnot recognized
that it is impossible for all the heat taken from the hot source to be converted to external
work; part of the input heat must be dissipated at the colder sink to allow a cyclic process
that restores the system to its original state. In modern terms, it is essential that the entropy
of the working fluid, as a property of state, be restored to its original value once each cycle
is completed. In practice, the working fluid of a heat engine does not cycle ideally between
these two temperatures because of the limited speed of temperature equilibration between
the heat source or sink and the working fluid. The ideal Carnot cycle is the most efficient
possible because heat is transferred reversibly and isothermally only while the working
fluid is at the same temperature as the source or the sink. Furthermore, Carnot proposed
that the motive power of the engine is also a function of product of the volume of the
working vapor and its pressure at the extremes of temperature. Note that his cycle actually
estimates the maximum work possible thermodynamically rather than the motive power
or rate of work.

However, he also claims that the rate of work performed in the cycle is not defined by
differences in kinetic energy or pressure of the working fluid at the temperature extremes
but by internal forces related to the varying content of caloric. These changes during
isothermal and adiabatic expansions and compressions exactly compensate each other
as required to complete the cycle. Yet the pressure and volume changes in the cycle are
essential, providing the forces required to allow the conversion of heat to work isothermally.

2. Revisiting the Carnot Cycle

The reversible Carnot cycle [3,4] consists of the following four stages.
Stage 1=>2. An isothermal expansion at the temperature (Tsource) of a hot source

(such as a coal fire in a steam engine) during which heat is transferred from the source to
the working fluid and external work is done. This stage provides heat isothermally (we
identify as Carnot’s caloric a) with equivalent work performed as a logarithmic function of
the expansion in volume.

Stage 2=>3. An adiabatic expansion of the working fluid to the lower temperature of
a heat sink (Tsink) during which further external work is done at the expense of the heat
content of the gases (consistent with Carnot’s caloric b′), but no heat enters or leaves the
piston chamber.

Stage 3=>4. An isothermal recompression at the lower temperature of the heat sink
during which work is done on the working fluid and heat is transferred from the working
fluid to the cold sink (Carnot’s caloric a′).

Stage 4=>1. An adiabatic compression during which further work is done on the
working fluid (Carnot’s caloric b) as it is reheated to the original temperature of the
hot source.

Possibly never discussed subsequently, we state that Carnot in 1824 concluded that
(a + b) must equal (a′ + b′) and that therefore, the maximum work possible is determined by
(a − a′) or (b′ − b) [2]. In doing so, Carnot ruled out the equality of the heat transferred into
the engine in stage 1=>2 from the hot source with that transferred out in stage 3=>4 to the
colder sink, although Clapeyron wrongly quoted Carnot (see Dover edition [2]) as claiming
equality. Carnot’s principle regarding the need for a temperature gradient is made clear in
the following equation giving the maximum efficiency possible from the work cycle:

[R ln(V2/V1)(Tsource − Tsink)]/[R ln(V2/V1)(Tsource)] = (Tsource−Tsink)/(Tsource). (1)

Thomson [5,6] pointed out from Clapeyron’s account of Carnot’s conclusions that the
efficiency of a heat engine was given by the following ratio:

(Qsource − Qsink)/Qsource = (Tsource − Tsink)/(Tsource). (2)

Yet, however well-known these conclusions from Carnot’s cycle are, the full content
of Carnot’s memoir on the cycle is rarely understood, lacking his appreciation of internal
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changes in the working fluid and the significance of the energy field he referred to as caloric
on the morphology of the system. We present here a revision of the Carnot cycle informed
by our developing theory of action mechanics.

3. Action and Entropy

The action resonance theory [4] includes a set of explanatory statements, which
are based on the quantum of action as described by Planck and extended by Einstein.
According to Planck, whenever a quantum of energy is absorbed, there is an equivalent
increase in entropy. Einstein confirmed that the momentum of quanta is particulate,
absorbed, and emitted whenever quanta are exchanged. The impulses of quanta interact
within the conformation of molecular systems, sustaining its configuration in an energy
field consisting of resonant quanta. Although the impulses from quanta are relatively
small compared to those between heavier molecules, the greater speed of photons as
quanta allows a greater frequency of impulses, compensating momentum exchange on
variable radii. For ideal systems, the theory assumes no interactions between molecules
of gas except in collisions; they move in independent trajectories defined by their radial
separation. Kinetic or internal energy is a product of field interactions, which is in effect a
result of torques exerted by the specific energy field that increases per molecule if work is
done, increasing volume at constant temperature and compensating for the greater radius.
This action revision has been developed from statistical mechanics, reinterpreting phase
space (dq.dr) as differentials for action space (mrv). The partition functions of statistical
mechanics have been reinterpreted as action ratios relative to Planck’s quantum of action
(mrv/h̄), allowing exact calculations of thermodynamic properties such as entropy and
free energy [7]. A feature is that at lower density, the field energy per molecule increases,
reflecting the greater radial separation and molecular action. By comparison, at high
molecular density, action per molecule is minimal as radius declines, corresponding to
increased Gibbs and chemical potential.

A significant revision of the traditional approach to the Carnot cycle to include com-
plementary variations in Gibbs potential in the cycle is proposed. Ignoring this comple-
mentarity between matter and energy that was understood by Carnot may have hampered
the beneficial application of thermodynamics to the natural world. A focus on the kinetic
heat and the vis-viva of the working fluid was adopted by Lord Kelvin [5], presumably to
discard all traces of the caloric theory of heat as a permanent fluid. Carnot’s theory of heat
engines was far more nuanced, rejecting calorique as permanent in heat value in the cycle
but still having an essential quantitative role. Indeed, his insistence that the quantity of
calorique (a) contributed from the heat source at higher temperature differed in magnitude
from that absorbed by the colder heat sink (a′) foreshadows statistical mechanics and
quantum theory, as this paper will show.

An alternative but consistent approach to the classical treatment of the Carnot cycle
involves the calculation of entropy using the quantum property of action [4]. According
to Kennedy et al. [7], the entropy (S) is naturally partitioned as translational (@t), rota-
tional (@r), and vibrational forms (@v) forms of relative motion as action. This approach
allows easier calculation of the entropy of ideal gases and the Gibbs energy, as shown in
Sections 5 and 6. To obtain the total entropic heat energy required to reversibly bring a gas
from absolute zero (where the entropy is zero) to the current temperature, it is sufficient to
multiply each of these partitioned entropies by the temperature T and then to take their
sum (ST). This includes the heat required for all isothermal phase changes such as melting
and vaporizing as well as for other forms of disaggregation. For simplicity of expression,
each partition for entropy contains within the logarithm an exponential term that accounts
for enthalpy (e.g., e3/2, e5/2) depending on the complexity and degrees of kinetic freedom
of the molecule. A relative action ratio (e.g., @t/h̄ = nt) is also included, indicating the
mean quantum state or molecular configuration. The logarithm of this term accounts for
latent heat in ST or negative Gibbs energy that varies with volume and temperature.



Entropy 2021, 23, 860 4 of 27

This approach seeks to simplify and generalize the complex statistical mechanical
functions for entropy. In his book on elementary statistical mechanics of 1902, Gibbs [8]
established the principle of conservation of extension in phase for systems in statistical
equilibrium. He remarked that the differential product dp.dq for momentum and position
has dimensions of energy multiplied by time. “Hence an extension-in-phase has the
dimensions of the nth power of the product of energy and time. In other words, it has
the dimensions of the nth power of action, as the term is used in the ‘principle of Least
Action’”. He also defined the coefficient of probability or entropy as “the reciprocal of
the extension-in-phase, that is the reciprocal of the nth power of the product of time and
action”. Schrödinger [9] drew attention to the canonical partition function (Z) or sum
over states (Σe−Ej/kT), indicating the total occupation number of different energy states
as a fraction of the total number of possible molecular systems N. Then, klnZ is equal
to (S–E/T), and it can be shown that Z equals (nt

3e)N, where nt is the relative molecular
translational action (@/h̄ = mrv = nt) for each of N molecules of a monatomic gas. Note
that quantum numbers nt given are mean values that would be integral for particular
molecules. Furthermore, the microcanonical or molecular partition function (z) is justified,
using statistical mechanics, as equal to Nnt

3 for N molecular systems, in an addendum
attached to this paper. This Supplementary Material also considers the status of vibrational
action comparing N2 to CO2 and how its excitation can be considered as the translational
action of activated molecules.

In his account of statistical mechanics, Hill [10] (Equation 8.37) has expressed the
average entropy per molecule of a diatomic gas such as N2, including the sensible heat or
enthalpy (H) for constant pressure systems, as follows:

S/N = k
{

ln
[(

2πmkT/h2
)3/2

Ve5/2/N
]
+ ln

[(
8π2kTIr/h2

)
e/σ

]
+
[
(hν/kT)/

(
ehν/kT − 1

)
− ln

(
1− ehν/kT

)]}
(3)

Monatomic ideal gases such as helium or argon lack the second and third rotational
and vibrational terms in Equation (3). This partitioned equation can be simplified using
action mechanics [7], ignoring vibrational entropy that need not be considered here, given
its relatively small magnitude for N2, even at the most elevated temperatures. However,
its rotational entropy is highly significant.

S/N = s = k ln[e7/2{(3kTIt/h̄2)3/2/zt}(2kTIr/h̄2σ)] (4)

S/N = s = k ln[e7/2(@t/})3
(

@r/})2
]

(5)

This more holistic expression is composed of thermal (3.5k) and statistical or config-
urational elements for translational action (@t = mrv = mr2ω = Iω) and rotational action
(@r = Iω). The symbol @t represents the relative translational action, which is a functional
property of molecular momentum and radial separation equal to [(3kTIt)1/2/zt

1/3] [7]; It
is a translational moment of inertia calculated for a cubic distribution of molecules, and
zt (zt = 10.2297) is a factor avoiding double counting of molecules and correcting for the
ratio of their mean speed and their root-mean-square velocity. The moment of inertia for
translational motion (It) is equal to mr2—the molecular mass multiplied by the square of
the mean radial separation of similar molecules. The one-dimensional translational action
(@t) varies at each of the four stages of the Carnot cycle as pressure and temperature vary.
The rotational action of two-dimensional molecules such as N2 is obtained as (2kTIr)1/2,
where Ir is the moment of inertia of unvarying radius as in chemically bonded structures.
Then, entropy action partitions are given in (6)–(9).

St = Rln[e5/2(@t/h̄)3] = Rln[e5/2(nt)3] (translation) (6)

Sr = Rln[e(@r/h̄)2] = Rln[e(jr)2] (rotation-diatomic or linear molecule) (7)

Sr = Rln[π1/2e3/2(@A@ B@C/h̄3)] (rotation-polyatomic molecule) (8)
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ΣSvi = Σ[Rx/(ex − 1) − Rln(1 − e−x)], where x = hcνi/kT (vibration of each bond) (9)

Thus, the total entropic energy or heat required at T is governed by the sum below (10).

STotalT = [Σ(St + Sr + Svi)]T (10)

Using this action approach, excellent agreement with standard third-law experimental
measurements of entropy of atmospheric gases is obtained as the integral of heat added
reversibly to reach the standard temperature of 298.15 K. Values correct to four significant
figures at 1 atmosphere pressure for all gases in air have been estimated [7] and at their ac-
tual pressures. This accuracy is adequate for calculating equilibrium constants for gaseous
chemical reactions even at elevated temperatures such as the extent of dissociation of hy-
drogen molecules on the Sun into hydrogen atoms (Kennedy, unpublished). For a Carnot
cycle with a monatomic gas, only translational action need be considered to determine the
entropy. In this paper, a heat engine using gaseous argon as the working substance is ex-
amined. However, the analysis is easily extended to polyatomic molecules [7], also shown
here for dinitrogen, requiring consideration of rotational action as well as translational
action to estimate entropy.

A translational symmetry constant zt in Equation (4) corrects the magnitude of the
translational action to match precisely the field energy required to sustain it; for the
translation of ideal gases at 1 atmosphere pressure, this energy-sparing factor zt is of
constant magnitude of 10.2297 for all species of molecules [7,11]. The correction has now
been logically interpreted [12] as involving inverted sub-factors of (1/2)3 to prevent double
counting of molecular partners and (1/1.0854)3 to correct the root-mean-square velocity
(from kT = mv2/3) to the mean molecular velocity, which is required to calculate the
translational action (mvr = mr2ω). It is noteworthy that this means establishing molecular
entropy in a reversible process as defined by Clausius [13], which requires that the entropy
per molecule is dependent on gas density, increasing logarithmically as the mean volume
(a3) occupied by each molecule increases. Such a relationship with density for heat content
was also proposed by Carnot.

4. Gibbs Energy

Based on the theory above, it is possible to calculate the thermodynamic proper-
ties of the Carnot engine with the following empirical equations, using a monatomic
working substance.

SnTn = RTnln[e5/2(@t/h̄)3] = 2.5RTn + RTnln[(@t/h̄)3] = Hn + RTnln[(@t/h̄)3] (11)

Here, the enthalpy (Hn) is equal to the molar internal energy (En), plus the pressure-
volume function (RTn) for atmospheric work, which is obligatory for a system open to
air, although not in the Carnot cycle where internal pressure varies with volume, which
is reversibly equal to external pressure. Negative signs are given for the two so-called
free energies, which are actually inversed potential energies—the Helmholtz energy (An)
used in constant volume systems and the Gibbs energy (Gn or gn per molecule) used
with systems open to the atmosphere requiring pressure–volume work also affecting heat
content. These calculations shown in (12) and (13) give exact values, not differences.

−An = RTnln[e(@t/h̄)3] = RTnln[e(nt)3] (12)

−Gn = RTnln[(@t/h̄)3] = RTnln[(nt)3] (13)

The mean values of relative action (@/h̄) can be estimated as mean quantum numbers
nt as shown in (12) and (13), which are related to the molecular Gibbs energy (gt) as an
indicator of the field energy at temperature Tn.

−Gn/N = kTnln(nt)3 = −gt (14)
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Thus, we can express these two functions that indicate chemical potential [4] as
positive in the inverse of their negative values, given the logarithmic relationship in (15).

Gn = RTnln[(h̄/@t)3] (15)

An = RTnln[(h̄/@t)3/e] = RTnln[(h̄/@t)3] − RTn (16)

Obviously, these free energies or functions for ideal gases have negative values,
decreasing even further as the heat absorbed to support external work by the ensemble of
molecules in cycle stage 1 increases entropy. From these expressions, we can also write the
following thermodynamic relationships.

Gn = An + RTn (17)

For a monatomic gas where Cv is 1.5R, separating the Gibbs energy from the enthalpy,
we have (18) at constant pressure.

SnTn = RTnln[(@t/h̄)3] + 2.5RTn = −Gn + Hn (18)

Exchanging the terms, we obtain more familiar equations Gn = Hn − SnTn or, to
indicate spontaneous change, we have:

∆Gn = ∆Hn − ∆SnTn. (19)

To include diatomic gases such as nitrogen and oxygen, we need to include rotational
action [7]:

SnTn = RTnln[e7/2(@t/h̄)3(@r/h̄)2] = RTnln[(nt)3(jr)2] + 3.5RTn = −Gn + Hn. (20)

Here, the relative rotational action @r for a diatomic molecule is taken as equal to
(2kTIr/σ)1/2, where Ir is the molecular moment of inertia and σ is a symmetry factor
preventing excess counting of indistinguishable conformations; this factor has the value
of 2 for diatomic molecules such as N2, where each end of the molecule presents the
same but reaches 12 in the case of methane (CH4, σ = 4!/2!). The symmetry indicated
by σ is considered as a statistical factor adjusting for the likelihood of an encounter by a
quantum of energy with an indistinguishable species of molecule that is proportional to its
symmetry. Since there is no way to distinguish one end of an N2 molecule from the other,
except isotopically, the concentration of such symmetric molecules is effectively doubled
by comparison with NO, and the distance and elapsed time between encounters shortened.
Any two systems having the same difference between enthalpy and entropic energy (H-ST)
will have the same Gibbs free energy (G) and will be at equilibrium if opposed to each
other. We should be aware that mechanistically, the negative-entropy energy term (−SnTn)
contains both the other terms, so Equation (19) can be seen as a tautology. Some of the
confusion regarding the nature of molecular entropy results from a lack of awareness of
this fact. Equations (18) and (20) are more informative—they express the heat content of a
polyatomic gas as the sum of the latent or potential heat, a logarithmic function of pressure
or volume and temperature, plus the sensible heat or enthalpy, which is a function of the
temperature alone.

The negative Gibbs energy term (−Gn) expresses the non-sensible heat content,
whereas the enthalpy term expresses the sensible or kinetic heat. The influence of both
these functions was clearly identified by Carnot [1,2]. The Gibbs and Helmholtz functions
are greatest when the internal potential energy is least, conversely to the entropy. Thus,
higher quantum states, achieved as more quanta are absorbed by the field, correspond
to increased entropy and decreased free energy, as stated by Planck [14]. By contrast,
molecules in their ground states at the lowest temperatures have minimum entropy. Para-
doxically, the Gibbs energy or function is only a potential to acquire field energy and is
greatest when the latter is least. Often referred to as free energy—perplexing generations of
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students—this is actually true in the sense of being a measure of a molecule’s inaction and
relative freedom from sustaining field energy. Its alternative name as recommended by the
IUPAC of the Gibbs function is a neutral description, but we prefer Gibbs potential as even
more descriptive. The following Sections 5 and 6 summarize the key results of this paper.

5. An Action-Based Calculation for the Carnot Cycle

Using action mechanics, we can now describe the following action features correspond-
ing to the four stages of the cycle for both argon and nitrogen gases as working fluids.

5.1. Isothermal Stage 1=>2

The traditional expression [3,4] of the isothermal stage 1 of the Carnot cycle (per mole)
is given as Equation (21).

Qsource (1) = −Wrev (1) = RTsource ln(V2/V1); And ∆S (1) = Qsource (1)/Tsource (21)

This is considered as the heat required to perform a reversible expansion against
a variable external pressure. The work done in an expansion is a logarithmic function
of the volume ratio as shown in (21). As discussed above, in an isothermal system, the
translational action per molecule (@t = mr2ω) varies proportional to kln(r3) as the volume
increases. Then, the external work per molecule is equal to the internal configurational or
quantum work—the mean decrease in translational Gibbs energy per molecule (-δgt). The
convention that internal work implies a change in Gibbs potential is applied. We have:

−w = kTsourceln[(r2)3/(r1)3] = kTsourceln[@t2/@t1]3 = kTsourceln[n2/n1]3 = −δgt. (22)

This is the decrease in translational chemical potential during the expansion process.
In the isothermal reversible absorption of heat from the high-temperature source, the
total heat work per molecule (δsT) increases by the amount of heat added. That the work
varied with the logarithm of the volume was clearly identified as operative in the cycle by
Carnot [2]. Since molecular rotation is a function only of temperature and not pressure,
there is no need to assign rotational heat energy as a variable in this process. Isothermally,
pressure varies with volume (i.e., pa3 = kT = mv2/3 where V = Na3 and v is the root-
mean-square velocity), so that in an isothermal expansion, the product of pressure and
specific volume (pv, pa3) remains constant with the increasing volume per molecule, while
the pressure decreases from its maximum. Performing work reversibly requires that the
external pressure or mechanical resistance should always be equal to the internal pressure.

Pressure at constant temperature is a function of kinetic energy per unit volume.
Action resonance states [4] that sustain molecular kinetic energy require sufficient molecular
torque exerted by the intensity of field energy appropriate for the temperature required.
This requirement is a logarithmic function of volume. This stage involves no change in
internal energy (cvδT), as the temperature remains constant and the kinetic energy is a
function of temperature independent of volume for an ideal gas. The intensity of field
quanta required to maintain a constant temperature while external work is being done is a
logarithmic function of the increase in volume, as Carnot stated prominently in his memoir.
The amount of heat Qsource is acquired by the working fluid, and the resultant increase in
entropy is Qsource/Tsource (see also Tables 1 and 2 below). Carnot designated Qsource equal
to an amount of caloric a [2]; the external work performed in his discussion is shown in
Equations (21) and (22).
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Table 1. Thermodynamic properties per molecule of monatomic argon in the cycle.

Thermodynamic
Property (Cgs Units per

Molecule)

Stage 1=>2
Isothermal

Stage 2=>3
Adiabatic or

Isentropic

Stage 3=>4
Isothermal

Stage 4=>1
Adiabatic or

Isentropic

1 Degrees Kelvin 640 K 640 K=> 288 K 288 K 288 K => 640 K

3 Pressure (kT/a3) at to 4.191891 × 107 1.542111 × 107 2.094820 × 106 5.694312 × 106

4 Volume (a3) cm3 at to 2.107880 × 10−21 5.729813 × 10−21 1.898111 × 10−20 6.9827762 × 10−21

4a Relative volume ×2.718 ×3.313 ×1/2.718 ×1/3.313

5 pa3 initial ergs 8.836006 × 10−14 8.836006 × 10−14 3.976203 × 10−14 3.976203 × 10−14

6 δpv ergs 0 −4.8615 × 10−14 0 +4.8615 × 10−14

7 Translational inertia
mr2 = It (g.cm2) 2.749749 × 10−37 5.355780 × 10−37 1.190173 × 10−36 6.110553 × 10−37

8 Action @t (Iω erg.sec) 8.441202 × 10−26 1.178065 × 10−25 1.178065 × 10−25 8.441202 × 10−25

9 Quantum number n = 80.042 n = 111.708 n = 111.708 n =80.042

9 rt = a/2 (cm) 6.410895 × 10−8 8.947125 × 10−8 13.373586 × 10−8 9.556798 × 10−8

10 −g/T (erg/K) 1.815201 × 10−15 1.953263 × 10−15 1.953264 × 10−15 1.815201 × 10−15

11 −δg/T ergs/K +1.38062 × 10−16 0 −1.38062 × 10−16 0

12 −Gibbs energy (-g) 11.617287 × 10−13 12.500888 × 10−13 5.625399 × 10−13 5.227779 × 10−13

13 δGibbs energy (δg) −0.8837× 10−13 a +6.875489× 10−13 b′ +0.39762× 10−13 a′ −6.389508× 10−13 b

14 Energy density
(ergs/cm3) 5.5113594 × 108 2.181727 × 108 2.963682 × 107 7.486693 × 107

15 Total entropy 2.160358 × 10−15 2.298420 × 10−15 2.298420 × 10−15 2.160358 × 10−15

16 δ total entropy +1.38062 × 10−16 0 −1.38062 × 10−16 0

17 Entropic energy ergs
snTn

13.826288 × 10−13 14.709889 × 10−13 6.619450 × 10−13 6.221830 × 10−13

18 δsnTn +0.8836 × 10−13 −8.090439 × 10−13 −0.3976 × 10−13 +7.604458 × 10−13

19 Net heat input +8.839 × 10−14 +8.839 × 10−14 +4.8615 × 10−14 +4.8615 × 10−14

20 Internal energy e 1.325376 × 10−13 1.325376 × 10−13 0.59642 × 10−13 0.59642 × 10−13

21 ∆e 0 −7.28956 × 10−14 0 +7.28956 × 10−14

22 Heat transfer Qf, Qr +0.8839 × 10−13 0 −0.3976 × 10−13 0

23 Entropy change= +1.3812 × 10−16

= Qf/Tf=3kln(@2/@1)
0

− 1.3812 × 10−16

= Qr/Tr
=3kln(@4/@3)

0

Table 2. Thermodynamic properties of diatomic nitrogen Carnot cycle per molecule.

Thermodynamic
Property (Cgs Units)

Stage 1=>2
Isothermal

Stage 2=>3
Adiabatic

Stage 3=>4
Isothermal

Stage 4=>1
Adiabatic

1 Degrees K 640 K 640 K => 288K 288 K 288 K => 640 K

2 Pressure (kT/a3) 4.191891 × 107 1.542111 × 107 9.42669 × 105 2.56244 × 106

3 Volume (a3) (cm3) 2.107881 × 10−21 5.729813 × 10−21 4.21803 × 10−20 1.551725 × 10−20

4 Relative volume ×2.718 ×7.362 ×1/2.718 ×1/7.362

5 pa3 (ergs) 8.836006 × 10−14 8.836006 × 10−13 3.976203 × 10−14 3.976203 × 10−14

6 δpv (ergs) 0 −0.48598× 10−13 0 +0.48598× 10−13
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Table 2. Cont.

Thermodynamic
Property (Cgs Units)

Stage 1=>2
Isothermal

Stage 2=>3
Adiabatic

Stage 3=>4
Isothermal

Stage 4=>1
Adiabatic

8 rt (cm) 6.410895 × 10−8 8.947125 × 10−8 1.740496 × 10−7 1.247120 × 10−7

9 Initial translational
inertia mr2 = I (g·cm2) 1.924824 × 10−37 3.749046 × 10−37 1.4187304 × 10−36 7.2840050 × 10−37

10 Translational action @t
(Iω erg.sec) 7.062416 × 10−26 9.856396 × 10−26 1.118839 × 10−25 9.216142 × 10−26

11 Translational quanta nt = 66.968 nt = 93.462 nt = 121.963 nt = 87.391

12 Translational –gt/T 1.741336 × 10−15 1.879398 × 10−15 1.989642 × 10−15 1.851580 × 10−15

13 −gt (ergs) 1.114455 × 10−12 1.202815 × 10−12 5.730170 × 10−13 5.332550 × 10−13

14 Rotational inertia Irn 1.416704 × 10−39 1.416704 × 10−39 1.416704 × 10−39 1.416704 × 10−39

15 Rotational action @r 1.118839 × 10−26 1.118839 × 10−26 7.505400 × 10−27 7.50540 × 10−27

16 Rotational quanta jr = 10.609 jr = 10.609 jr = 7.117 jr = 7.117

17 Rotational entropy 0.652131 × 10−15 0.652131 × 10−15 0.546600 × 10−15 0.546600 × 10−15

18 Rotational Gibbs energy 4.173639 × 10−13 4.173639 × 10−13 1.560635 × 10−13 1.560635 × 10−13

19 −(gt + gr)/T (erg/K) 2.393467 × 10−15 2.531530 × 10−15 2.531530 × 10−15 2.393467 × 10−15

20 −δg/T 1.38063 × 10−16 0 −1.38063 × 10−16 0

21
−Gibbs energy

ergs/molecule (−gt
−gr)

1.531819 × 10−12 1.620179 × 10−12 7.290805 × 10−13 6.893185 × 10−13

22 δGibbs energy −0.88360× 10−13 a +8.910985× 10−13 b′ +0.39762× 10−13 a′ −8.425005× 10−13 b

24 Energy density 5.287088 × 108 2.099222 × 108 1.358496 × 107 3.436531 × 107

26 Energy density 1.979977 × 108 7.283929 × 107 4.205456 × 106 1.143162 × 107

27 Total entropy ergs/K 2.876686 × 10−15 3.014749 × 10−15 3.014749 × 10−15 2.876686 × 10−15

28 δsn +1.38063 × 10−16 0 −1.38063 × 10−16 0

29 Total entropic energy
ergs/molecule snTn

1.841079 × 10−12 1.929439 × 10−12 8.682476 × 10−13 8.284856 × 10−13

30 Energy density 7.267105 × 108 2.827630 × 108 1.728488 × 107 4.442273 × 107

31 δsnTn +0.8836 × 10−13 −1.031044 × 10−12 −0.39762 × 10−13 +0.983827 × 10−12

32 Net heat input +8.836006 × 10−14 +8.836006 × 10−14 +4.721736 × 10−14 +4.721736 × 10−14

33 Internal energy e 2.208976 × 10−13 2.208976 × 10−13 1.028554 × 10−13 1.028554 × 10−13

34 ∆e 0 −1.180422 × 10−13 0 +1.180422 × 10−13

35 Heat transfer Qf, Qr +8.836006 × 10−14 0 −3.9762 × 10−14 0

36 Entropy change= +1.38063 × 10−16

= Qf/Tf = 3kln(@2/@)1)
0

−1.38063 × 10−16

= Qr/Tr
= 3kln(@4/@)3)

0

For Tables 1 and 2, it is assumed that each cycle operates from a starting cylinder pressure of 40 atmospheres at 640 K and is isothermally
charged with extra heat Qf = 1kT or 0.8836006 × 10−13 ergs per molecule during stage 1 when the piston is released. Then, −0.411427 ×
10−13 ergs per molecule is transferred to the exterior refrigerator at 298 K during stage 3. Pressure is given from the perfect gas law, using
a3 to indicate the cubic volume available to each molecule. The inertial radius r used in It is equal to a/2.

Thermal radiation is not normally considered in the modern Carnot cycle. This
isothermal increase in quantum state is paid for by the heat absorbed from the source Qf,
which can be equated to the internal change in action (@) shown in 3kTfln(@2/@1). This
heat has been absorbed to sustain the working fluid in its new higher quantum state. For a
reversible system, more field energy is needed to sustain molecules with greater spatial
separation if external work is done.
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5.2. Adiabatic Stage 2=>3

The traditional Carnot cycle version for this stage is given simply as a function of the
difference in temperature by the heat capacity. For argon, this is 1.5RT per mole or 1.5kT
per molecule. The external work done is considered as equal to the fall in kinetic energy as
the system expands, reducing the temperature. This results in:

−W (2) = Cv(Tsource − Tsink). (23)

Closer examination reveals that while external work is done according to Equation (23),
there is also an internal compensation of entropy increase from increase in volume matching
the decrease in temperature, giving an overall change in entropy of zero. We have:

R ln(V3/V2) + Cvln(Tsink/Tsource) = ∆S = 0. (24)

In this adiabatic stage, when no heat enters or leaves the system, the external work
performed requires kinetic heat from within the system, thus reducing the temperature
to that of the sink. However, it is clear that the terms involving ratios of volume and
temperature compensate for each other exactly. For argon, the increased volume means
that the molecules are more separated, increasing the action state, while the decrease in
temperature decreases the action state to the same extent. Overall, the action and thus
the entropy remain the same, so there is no change in translational quantum number
(@t/h̄ = nt), despite the fall in temperature. Thus:

δ@ = (mr3
2ω3) − (mr2

2ω2) = 0. (25)

Even though there is no change in action or entropy, the change in temperature causes
a change in Gibbs energy as the internal work shows in Equations (26) and (27).

−winternal = kTsinkln[(mr3
2ω3)/h̄)]3 − kTsourceln[(mr2

2ω2)/h̄)]3 (26)

= k(Tsink − Tsource)ln[(nt)]3 = −δgt (27)

For an ideal diatomic gas such as N2, to include rotation as well as translation in the
reversible adiabatic process, we will have the quantum number product shown in (28).

[(nt)3(jr)2]sink = [(nt)3(jr)2]source (28)

This reflects the fact that more translational and fewer rotational quanta are required
for a gas at the cooler temperature of the sink than at the temperature of the hotter source,
although the associated quanta are smaller for both at the lower temperature. If we restrict
the external work to the change in Gibbs energy for N2, we will have the following equation:

−wtotal = k(Tsink − Tsource)ln[(nt)3(jr)2] = −(δgt + δgr). (29)

External work is possible in both stages 1 and 2, and this was also proposed by Carnot
to occur reversibly to give maximum efficiency. For reversibility, the external back pressure
by the object having work performed on it would need to be continuously equal to that
given by the pressure in the working fluid. In the reverse stages 3 and 4, the heat engine or
an external weight is performing the same pressure–volume work on the working fluid.
Carnot refers to the caloric removed from the working fluid as work in stage 2 as equal to
b′, as shown in Equations (27) and (29) as the Gibbs energy changes.

5.3. Isothermal Stage 3=>4

Having completed the expanding stages 1 and 2, the inertial effect of the heat engine
continues for two compressive stages where work is performed on the gas by the engine.
Heat Q(3) is extracted from the gas by the sink at its lower temperature. The lower the Tsink,
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the lower the heat that is extracted during the compression and the greater the external
work that is possible in each cycle. Hence:

Qrev (3) = −Wrev (3) = RTsink ln(V4/V3); And ∆S (3) = Qrev (3)/Tsink. (30)

Similar to stage 1=>2, stage 3=>4 is isothermal, continuing internal mechanical work
performed in stage 2 shown by the increased Gibbs energy, as a result of extracting caloric
or latent heat to the cold sink at air temperature (Tr), although without changes in internal
energy. We have:

−w = kTsinkln[(mr2
4 ω4)/(mr2

3ω3)]3 = kTsinkln[@t4/@t3]3 = −δgt = δsTsink. (31)

The Gibbs potential of the working fluid continues to increase while the total entropic
energy (sT) declines even further. This corresponds to a decrease in the action. For this
stage, we have Qr = 3kTrln(@4/@3), which has a negative value as the action declines to
less than half. Note that @4/@3) is equal to @1/@2, so the changes in entropy for stages 1 to
2 and for stages 3 to 4 are equal but opposite. Given that the temperature is much greater
for the first of these changes, the same change in relative action states costs much less in
energy in stage 3 to 4. Carnot designated Qr or 3kTrln(@4/@3) in his discussion as a′, the
caloric removed by the refrigerator body B, in stage 3=>4.

5.4. Adiabatic Stage 4=>1

The final isentropic, adiabatic, stage results in compressive work restoring internal
energy lost in stage 2, with molecular cv for monatomic gases like argon of 1.5k

−wexternal = cvTsource − cvTsink (32)

Equation (32) exactly balances the decrease in kinetic energy per mole in Equation (23).
On this basis, including the work done during changes in pressure, Kelvin’s argument
that there was no need to invoke the idea of caloric in the heat engine cycle was made.
However, we show there is also a loss of Gibbs potential as gas molecules are reheated by
compression. In contrast to the traditional treatment of the adiabatic stages of the Carnot
cycle where external work (w) is assigned to internal energy changes (∆E) only, internal
work processes as Gibbs energy changes in the working fluid also occur in stage 4=>1 as
a result of the increase in temperature. By contrast to stage 2=>3, where Gibbs energy or
potential is gained as temperature falls, Gibbs energy is lost in stage 4=>1, although the
loss is less than the gain in stage 2=>3. Overall, this ensures that the entire cycle results in a
zero balance in Gibbs energy for the working fluid. We have:

winternal = kTsinkln[(mr2
1ω1)/h̄)]3 − kTsourceln[(mr2

4ω4)/h̄)]3

= [Tsource − Tsink]kln(nt)3 = −δgt
(33)

Given that the translational action remains constant in stage 4, the decrease in Gibbs
energy is purely a function of the increase in temperature.

For diatomic molecules such as N2, both translational and rotational action will change
as temperature and pressure increase. We also have the increase in internal energy with
molecular cv of 2.5k, which accompanies the decrease in Gibbs energy and the increase in
entropic energy:

winternal = cvTsource − cvTsink. (34)

However, just as in stage 2=>3, the changes in quantum states exactly offset each
other so that the Gibbs potential is proportional to the difference in temperature. Al-
though the Gibbs energy per Kelvin [−kln[(nt)3(jr)2] remains constant, the Gibbs energy
declines. Hence:

winternal = kln [1/(nt)3(jr)2](Tsource − Tsink) = (δgt + δgr). (35)
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Note that inversion of the quantum numbers makes internal work positive. This is the
result whether work is considered in terms of mean Gibbs (g) or as total entropic energy
per molecule (sT). Pressure or volume and temperature changes occur in these stages
that exactly offset one another so they are isentropic, as shown in the tables following.
However, despite the fact that no thermal heat enters or leaves the working substance in
these adiabatic stages, inertial changes in the heat engine cause large conversions of latent
and sensible heat into work and the reversal in stages 2 and 4 of work into heat in each
cycle—a response to the change in temperature (sδT). This reflects reversible work against
gravity or as kinetic energy of shaft work linked to energy changes in the working fluid.
So, gravitational energy as elevated weight or inertial potential energy of a flywheel stored
reversibly outside the heat engine must also be an essential part of the Carnot cycle.

Carnot refers to the amount of caloric restored in stage 4 of adiabatic compression as b.
As shown in Table 1 below, there is an increase in the Gibbs energy during the adiabatic
expansion in stage 2=>3 that is much larger than the decrease that occurred in stage
1=>2 when heat was spontaneously transferred from the source as work was performed.
However, the decrease in Gibbs energy in stage 4=>1 (b) is less than the increase in stage
2=>3 (b′).

An outline of the program employed to calculate thermodynamic outputs is shown in
Figure 1.
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6. Results: Carnot Cycle Calculations for Argon and Nitrogen

In Tables 1 and 2, the results are shown from running the four stages of one complete
Carnot cycle with specified heat inputs per molecule, using the action mechanics described
in Section 3 to calculate entropy, Gibbs potential, and other properties of state at each
stage. This experiment in Table 1 involves monatomic argon as a working fluid, operating
with three degrees of translational freedom cycling between temperatures of 640 K (Tf)
and 288 K (Tr)—the Earth’s average surface temperature as the coldest refrigerator or sink
usually available.

It is important to understand that the tabulations refer primarily to the thermody-
namic or quantum states of the molecules in the working fluid—not to the external work
being done, although the maximum external work possible is shown in Table 1 as well.
Table 2 provides similar results for nitrogen (N2), which is a molecule with five degrees of
freedom by including rotation and operating between 640 and 288 K, which is the average
temperature. The tables also contain calculated data related to thermal energy content,
pressure, volume, action, Gibbs energy, entropy, and internal energy. Using action ratios, it
is also possible to express the negative Gibbs energies or their equivalents in field energy
as quantum numbers nt and jr.

Some of the data in Tables 1 and 2 are illustrated graphically in Figures 2 and 3.
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Figure 2. Action revision Carnot cycle for argon showing the thermodynamic energy in each stage commencing at
20 atmospheres pressure and 640 K temperature, with kT equal to Qf initiating changes in action. All values for negative
Gibbs energy (−gt,) entropic energy (sT), and internal energy (e) are ×10−13 ergs per molecule. Heat Qf is added from the
heat source in the isothermal transition stage 1=>2 as shown in the increased values of sT and -g, and heat Qr is removed
to the sink in the isothermal stage 3=>4, showing markedly decreased value of sT, and −g. The value of the entropy per
molecule is ×10−17 ergs/K, for temperature degrees Kelvin, pressure in Pascals, and volume per molecule ×10−22 cm3.
Pressure, volume, and temperature conform to pa3 = kT. The small increase in entropy in stage 1=>2 of kln(V2/V1) is equal
to the decline in entropy in stage 3=>4, kln(V3/V4).



Entropy 2021, 23, 860 14 of 27
Entropy 2021, 23, x FOR PEER REVIEW 14 of 26 
 

 

 
Figure 3. Action revision Carnot cycle for nitrogen showing thermodynamic energy in each stage; action is initiated in 
stage 1 at 40 atmospheres pressure and 640 K source temperature, declining to 298 K in stage 2. All values for negative 
Gibbs energy (−gt,) entropic energy (sT), and internal energy (e) are ×10−13 ergs per molecule. The heat Qf of kT is added 
from the heat source in the isothermal transition stage 1=>2 shown in the increased values of sT and −g, and heat Qr is 
removed to the sink in the isothermal stage 3=>4, showing markedly decreased values of sT, and −g. The value of the 
entropy per molecule is ×10−17 ergs/K, for temperature degrees Kelvin, pressure in Pascals, and volume per molecule ×10−22 

cm3. Pressure, volume, and temperature conform to pa3 = kT. The small increase in entropy in stage 1=>2 of kln(V2/V1) is 
equal to the decline in entropy in stage 3=>4, kln(V3/V4). 

As Carnot proposed, the work possible is shown in Tables 1 and 2 to be independent 
of the working fluid, although the extent of adiabatic expansion and compression where 
no net work is performed reflects the different heat capacities (Cv) of argon and nitrogen, 
as shown in line 4a and 4, respectively. The heat absorbed to reach these thermodynamic 
states as internal work is now field energy sustaining these molecular temperatures and 
pressures. In action mechanics [4], heat is more than molecular motion but includes the 
field energy sustaining the molecular motion. One is not possible without the other. Given 
that the mean kinetic energy (Itω2/2) of each species of molecule is the same at a particular 
temperature, the mean pressure exerted by each molecular species is inversely propor-
tional to its specific volume (a3). Thus, pa3 = kT is an average statistical property of each 
ensemble of molecules. For a volume V, pV = NkT, with V equal to Na3 with N, which is 
the average number of molecules per unit volume. Where N is a mole of molecules, Nk is 
equal to the gas constant R. For more realistic consistency with physical models, it is con-
venient to make thermodynamic calculations as mean values per molecule. Then, values 
per mole are easily calculated multiplying by Avogadro’s number (6.022 × 1023). Note that 
the terms (3kTIt)1/2 and (2kTIr)1/2 used to calculation translational and rotational action in-
clude temperature (T) and radius (rt); the latter can act as a surrogate for the mean specific 
volume of each molecule. The ideal gas equation p = kT/a3 or NkT where N indicates num-
ber density can be used to substitute for variations in temperature, number density, or 
volume and pressure. 

7. Discussion and Key Points 
7.1. Sadi Carnot’s Legacy 

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4

En
er

gy
 (e

rg
s x

 1
0­1

3 )

Stage

­ Gibbs  energy Total = ST Energy

0

100

200

300

400

500

600

700

1 2 3 4

Un
its

Stage

Temperature (K) Pressure (ergs/cm3)

Volume (cm3) Entropy (ergs/K)

Figure 3. Action revision Carnot cycle for nitrogen showing thermodynamic energy in each stage; action is initiated in stage
1 at 40 atmospheres pressure and 640 K source temperature, declining to 298 K in stage 2. All values for negative Gibbs
energy (−gt,) entropic energy (sT), and internal energy (e) are ×10−13 ergs per molecule. The heat Qf of kT is added from
the heat source in the isothermal transition stage 1=>2 shown in the increased values of sT and −g, and heat Qr is removed
to the sink in the isothermal stage 3=>4, showing markedly decreased values of sT, and −g. The value of the entropy per
molecule is ×10−17 ergs/K, for temperature degrees Kelvin, pressure in Pascals, and volume per molecule ×10−22 cm3.
Pressure, volume, and temperature conform to pa3 = kT. The small increase in entropy in stage 1=>2 of kln(V2/V1) is equal
to the decline in entropy in stage 3=>4, kln(V3/V4).

A monatomic gas such as argon has no vibrational degree of freedom capable of
absorption or emission of these quanta. In addition, Table 1 shows that each molecule in
its specific volume a3 is accompanied by a mean translational quantum number of 80.042.
At 640 K after isothermal expansion, these quantum states have increased in density to a
number of 111.708 per molecule. According to Clausius’ definition of entropy for reversible
heat exchange, δsT is equal to Qsource/Tsource, but this is also equal to 3kTln(@2/@1), which
is effectively a change in quantum state nt of about 80 to 112, as shown in Table 1.

As Carnot proposed, the work possible is shown in Tables 1 and 2 to be independent
of the working fluid, although the extent of adiabatic expansion and compression where
no net work is performed reflects the different heat capacities (Cv) of argon and nitrogen,
as shown in line 4a and 4, respectively. The heat absorbed to reach these thermodynamic
states as internal work is now field energy sustaining these molecular temperatures and
pressures. In action mechanics [4], heat is more than molecular motion but includes the
field energy sustaining the molecular motion. One is not possible without the other. Given
that the mean kinetic energy (Itω

2/2) of each species of molecule is the same at a particular
temperature, the mean pressure exerted by each molecular species is inversely proportional
to its specific volume (a3). Thus, pa3 = kT is an average statistical property of each ensemble
of molecules. For a volume V, pV = NkT, with V equal to Na3 with N, which is the average
number of molecules per unit volume. Where N is a mole of molecules, Nk is equal to
the gas constant R. For more realistic consistency with physical models, it is convenient to
make thermodynamic calculations as mean values per molecule. Then, values per mole are
easily calculated multiplying by Avogadro’s number (6.022 × 1023). Note that the terms
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(3kTIt)1/2 and (2kTIr)1/2 used to calculation translational and rotational action include
temperature (T) and radius (rt); the latter can act as a surrogate for the mean specific
volume of each molecule. The ideal gas equation p = kT/a3 or NkT where N indicates
number density can be used to substitute for variations in temperature, number density, or
volume and pressure.

7. Discussion and Key Points
7.1. Sadi Carnot’s Legacy

Carnot [1] stated firmly on page 29 of his book regarding isothermal expansion,
“When a gas increases in volume in geometrical progression, its chaleur specifique increases
in arithmetical progression”. His statement regarding the logarithmic increase in specific
heat with volume at constant temperature is consistent with the decreasing Gibbs energy or
increasing entropic energy (δsT) shown for stage 1 in Tables 1 and 2, while internal energy
(cvT) remains constant. The heat absorbed isothermally from the hot source is regarded as
consumed in the field energy sustaining the molecular orbits and maintaining the kinetic
energy of the molecules as constant, allowing external work to be done via their pressure.
This configurational entropic energy was also defined by Clausius in 1875 [10] as work
heat or the ergal. There was no need for the editor Mendoza (see his foreword in Dover
edition of Carnot’s book [2]) to have rejected the significance of Carnot’s conclusion on
page 29 of his memoir that the chaleur specifique (specific heat) varied with the logarithm of
the volume. Indeed, the editor of the Dover edition, Mendoza, claimed in 1960 that Carnot
was mistaken, having been misled by faulty data produced by Delaroche and Bérard to
calculate the effect of pressure on the specific heat of a gas. In fact, Mendoza’s criticism of
their data was in error, as discussed next.

Moreover, Carnot’s hypothetical table on page 33 of pressure varying from 1/1024 to
1024 atmospheres labeling variations in specific heat with pressure is correct in principle
—if Carnot’s chaleur specifique is interpreted as variation in the heat required for entropic
energy (δsT) while work is performed—varying logarithmically with volume, decreasing
Gibbs energy as a result of the increase in volume at constant temperature (stage 1=>2).
When Carnot visualized the thermodynamic operation of the motrice de feu, he actually
challenged the theory casting calorique as a diffusable fluid form of heat that could neither be
created nor destroyed. He did this by proposing that calorique as heat could be temporarily
exchanged with motive power in a reversible cycle. It is clear from what Carnot wrote that
he did consider sensible heat or chaleur disappeared as internal work was performed in an
adiabatic expansion.

At no point in his reflection does Carnot claim that the same quantity of heat as
that introduced from the hot source is fully re-absorbed as caloric after the adiabatic fall
(chute de calorique) to the temperature of the cold sink, which was an error introduced by
Clapeyron [15]. On the contrary, on page 28 in the Mendoza edition [2] (page 29 in the
1878 Gauthier-Villars reproduction of the original Bachelier 1824 edition), he clearly infers
to the quantity of caloric a, which is “necessary to maintain the temperature of the fluid
constant during dilatation”, and that transferred from the hot source in stage 1 is not equal
to the caloric a′ that the gas abandons later as a result of its reduction of volume at lower
temperature in stage 3, so a − a′ must have a positive value.

7.2. Caloric as Negative Gibbs Potential

To examine his analysis here in more detail, Carnot [2] defines (p. 28, 30) the high-
temperature phase of the cycle involving body A as consisting of two portions of caloric—
that needed to maintain the temperature A in dilatation (a) and that needed to restore
the temperature of the fluid from that of body B to that of body A (b). “The total caloric
furnished by the body A will be expressed by a + b. The caloric transmitted by the fluid to
the body B may also be divided in two parts: one, b′, due to the cooling of the gas by the
body B; the other, a′, which the gas abandons as a result of its (isothermal) reduction in
volume. The sum of these two quantities is a′ + b′; it should be equal to a + b, for, after a
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complete cycle of the operations, the gas is brought back exactly to its primitive state. It
has been obliged to give up all the caloric which has been furnished to it”. So, we have:

a + b = a′ + b′ (36)

or rather
a − a′ = b′ − b. (37)

At this point, Carnot leaves unsaid that Equation (37) gives the maximum work possi-
ble in a perfect heat engine, the difference between two similar logarithmic functions of
changes in volume but differing only by temperature. However, he clearly identifies [1]
this link on page 22 with his precise statement: “La puissance motrice résultat . . . sera
évidement la différence entre celle qui est produite par l’expansion du gaz, tandis qu’il
se trouve á la temperature du corps A, et celle qui est consommeé pour comprimer ce
gaz, tandis qu’il se trouve á la temperature du corps B”. Thus, he claims that the isother-
mal changes of volume at the different temperatures fully explains the potential to do
motive work.

These terms can readily be identified in the results for the cycle stages 1–4 in
Tables 1 and 2, corresponding to the negative magnitudes of the Gibbs potential changes
(or the Gibbs entropic energy values) in the columns 1=>2 (a), 2=>3 (−b′), 3=>4 (−a′), and
4=>1 (b). A typing error in his memoir on line 10 page 31 possibly first inserted in the
1878 edition of b′ for b, repeated in the Mendoza translation [2], may have been confusing.
Note that modern convention requires that the signs of a′ and b′ be made negative given
that the Gibbs energy is increased by the extraction of heat during the adiabatic expansion
and the isothermal compression by body B. From this analysis, we can now identify changes
in Gibbs potential with Carnot’s changes in caloric, with no need to include changes in
energy (δe) except in the stages where there is a change in temperature.

Carnot clearly understood that his term caloric related to the physical state of the
working fluid with a meaning very similar to negative Gibbs potential or configurational
entropic energy as calculated in action state theory. Whenever Carnot claims an increase
in caloric of the working fluid, we can recognize absorption of radiant heat as increasing
entropy and action and internal work of raising quantum states. Clausius refers to this
reversible work as having consumed heat “nowhere present, it is consumed in the changes
doing work”. Perhaps Clausius initially recognized Carnot’s perception as foreshadowing
his ergal, being the internal work done on the engine’s working fluid. However, Clausius
then seems to disregard the internal work implied for molecules further apart in the
working fluid and decides to directly assign the heat required to external work.

Fortunately, despite Kelvin’s apparent misquotation from Clapeyron of Carnot’s
theory implying that “all the heat from body A . . . during expansion has flowed into body
B during compression” as work was done, in 1850, Clausius [13] kindly corrected this false
viewpoint. The German inventor of the thermodynamic concept of entropy recognized
the value of Carnot’s principle of motive work depending on heat being transported from
a hot source to a colder sink, using a working fluid that was unchanged in its state. To
emphasize that heat and work were interchangeable, Clausius later [15] abandoned the
concept of latent heat, substituting ‘work-heat’ for increased entropy to account for the
heat needed to overcome both the cohesion of molecules and expansion against an external
pressure. Since these heat-absorbing processes are both reversible, heat disappears as work
is performed, but work can reappear later as heat in a reversible Carnot cycle. Perhaps
Clausius went too far in seeking to dispense with caloric when converting heat to work,
many years before Planck and Einstein developed the theory of quanta.

It is surprising how the false statement from Clapeyron has persisted with highly
skilled authors still continuing to claim that Carnot assumed all the heat given up by body
A was transferred to body B [16,17]. Although Aumand et al. [17] creditably provide a
correct account based on various sources, they still propagate the error that Carnot equated
calorique to the property we now call entropy, which is one also fell into by the book editor
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Mendoza [2]. As discussed above, Carnot clearly meant energy, requiring the product
(s × T) of entropy and temperature.

To put Carnot’s clear viewpoint to the contrary beyond doubt, his footnote in full
on page 19 of the Mendoza edition of his book (page 20 of the 1878 Bachelier edition [1]),
misquoted by Kelvin and Clausius, actually states “We tacitly assume in our demonstration,
that when a body has experienced any changes, and when after a certain number of
transformations, it returns to precisely its original state, that is to that state considered
in relation to density, to temperature, to mode of aggregation . . . I say that this body is
found to contain the same quantity of heat (chaleur) that it contained at first, or else that
the quantities of heat absorbed or set free in these different transformations are exactly
compensated. This fact has never been called into question. It was first admitted without
reflection, and verified afterwards in many cases by experiments with the calorimeter. To
deny it would be to overthrow the whole theory of heat to which it serves as a basis”.
Thus, Carnot never inferred the equality of the heat provided from the hot source to that
retrieved by the cold sink. Indeed, with his heat (caloric) function (a − a′) discussed earlier
as work, Carnot was also assuming the first law of conservation of energy as heat and work
as well as the second law of spontaneous development of entropy. In fact, except for heat
(chaleur or calorique), all these terms remained to be defined.

It is clear from his tentative equations that Carnot was already thinking in terms of the
entropy–temperature product of negative Gibbs energy that is a key part of the viewpoint
presented here. This idea was nascent in the concept of calorique he generally applied
to the state of the working fluid and his pressure–volume form of the logarithmically
variable chaleur specifique indicating the heat required. We conclude that this term should
not be confused with current definitions of specific heat or heat capacity that are purposely
restricted to the internal energy or enthalpy (Cv or Cp). Furthermore, in Thurston’s 1890
(Macmillan) translation of Carnot’s book Reflections on the Motive Power of Fire, the translator
(pointed out by Mendoza [2] Dover edition 1960) often used the same term heat for both
of Carnot’s terms calorique and chaleur, providing lingering confusion regarding Carnot’s
account. However, Carnot specifically states that while he is indifferent to the use of terms
chaleur or calorique as a quantity of heat, he does reserve chaleur as a measure for the sensible
heat of fire and is consistent in using calorique for changes in the state of the working fluid;
we would consider the latter as variations in Gibbs energy or configurational entropic
energy, not sensible heat.

At no stage is calorique specifique referred to in Carnot’s text despite a comment by
Mendoza in 1960 [2] to the contrary, with chaleur specifique used consistently. It must
be remembered that entropy includes an internal energy or enthalpy component not
relevant to Carnot’s calorique. Carnot clearly distinguished this heat related to expansion
and compression from the modern heat capacity where there are no such processes in
measurement. So, he was also proposing the first law of the conservation of energy as well
as the second law of increasing entropy as shown in Equation (16). Carnot even identified
the internal energy or enthalpy as a separate entity of heat U in his equation given here as
(38), which is discussed in detail on page 43 of his memoir [2].

s = e + U = T′ log(v) + U (38)

where s is “the quantity of heat (chaleur) necessary to change the air that we have employed
from the volume 1 and from the temperature zero (i.e., Celsius) to the volume v and to
the temperature t, the difference between s and e will be the quantity of heat required to
bring the air to the volume 1 from zero to t. This quantity depends on t alone; we will
call it U”. To obtain motive power, Carnot varies Equation (38) with temperature. Since
he had already explained that the difference in heat capacity at constant pressure and
that at constant volume was a constant independent of the working substance (i.e., in
modern terms, Cp − Cv = R), it is reasonable to conclude that U represented the internal
energy (E) or the enthalpy (H = E + RT), and thus, Equation (38) is closely analogous
to Equations (16) and (17) that express the 2nd law of thermodynamics and statistical
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mechanics. Our modern version of this equation has the benefit of both the clarifying work
of Clausius [15] on correctly establishing the fundamental principles of the mechanical
theory of heat, the statistical mechanics of Willard Gibbs [8], and the quantum theory of
Planck [14] and even Einstein soon after 1900.

Referring to the equation for entropic energy (ST) or total reversible heat requirement
from Equation (11) above for a monatomic gas, we observe that for argon, Equation (39)
applies at 1 atm external pressure.

SnTn = RTnln[e5/2(@t/h̄)3]

= 2.5RTn + RTnln[(@t/h̄)3] = 2.5RTn + 3RTnln[(nt)]
(39)

Thus, expressing Equation (39) between two temperatures provides variations in
Gibbs energy that allows the expression of motive power or rate of work. Thus, the
similarity of Carnot’s Equation (38) and our equation for entropic energy (39) is evident.

In terms of the action method, the change in temperature within the logarithmic
expression of (kTI)1/2 in adiabatic stages 2 and 4 exactly offsets the change in density and
inertia (It = mr2), a function of volume, so the relative action mrv remains the same. In
the adiabatic processes, the change in Gibbs or Helmholtz energies is a linear function
of the change in temperature only, as is the internal energy. These changes in energy (E
or H) in the adiabatic stages cannot result in net work, as stage 2=>3 is the reverse of
stage 4=>1, ensuring that the working fluid returns to the same stage at the completion
of each cycle. So, in Equation (38), taken with his conviction that as chaleur specifique or
specific heat would also change with temperature, unlike the constant heat capacity now
designated as Cv, we recognize that Carnot proposed the first version of the second law
of thermodynamics.

7.3. Heat Capacity versus Specific Heat

So, was Carnot correct after all in his definition of specific heat as varying with
pressure? On page 38 of the Dover edition [2], Carnot performs a thought experiment
confirming his viewpoint. He contends why a piston containing air first heated with a units
to 100 degrees at constant volume (V1) and then, expanded with heat, added b units at
constant temperature to a larger volume (V2) versus expanding first at 1 degree at constant
temperature to the same volume V2 with b′ units and then heated to 100 degrees with
a′ units must be equivalent. “As the final result of these two processes is the same, the
quantities of heat employed for both should be equal:

a + b = a′ + b′, whence a′ − a = b − b′ (40)

a′ is the quantity of heat required to cause the gas to rise from 1◦ to 100◦ when
it occupies the larger volume, and a is the quantity of heat required when it occupies
the smaller volume. The density of the air is less in the first case than the second and
according to the experiments of MM Delaroche and Bérard, its capacity for heat should be
a little greater”.

Carnot clearly considered that the measure of caloric content was a property of state,
which is consistent with the future concept of entropy as a measure of heat content for
both enthalpy and configurational energy as negative Gibbs energy; this must be the same
initially and finally, assuming conditions for the cylinder contents are the same. The change
in entropy per mole of argon is given by the following equation, with heat capacity Cv for
argon remaining the same throughout as 1.5R. The energy change for an enclosed cylinder
is equal to CvδT in both cases.

∆S = R ln (V2/V1) + R ln(T2/T1)3/2 = R ln[(V2/V1)(T2/T1)3/2 (41)

However, the quantity of caloric a required for heating at Vi includes an extra amount
for the change of temperature from T1 to T2, indicating a change in state and entropy. By
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contrast, expanding with b units at the lower temperature of 1 degree Celsius involves less
heat required, given that it equals RT ln(V2/V1).

Carnot [2] continues on page 36, “The quantity a′ being found to be greater than
the quantity a, b should be greater than b′. Consequently, generalizing the proposition,
we should say: The quantity of heat due to change of volume of a gas is greater as the
temperature is higher”. He also concludes: “The fall of caloric produces more motive
power at inferior than at superior temperatures”, foreshadowing the benefits of having a
heat sink for a given range of temperatures as close to absolute zero as possible, which is a
hint regarding the third law of thermodynamics regarding zero entropy at absolute zero of
temperature. However, Carnot had not completed his analysis of the effects of temperature
versus pressure or system volume, and the truth of his conclusions depends on whether
ratios of temperatures and volumes do depend on their relative magnitude.

Modern textbooks assume that the factors Cv and Cp for heat capacity of gases are
constants, although this is not true at either high or low temperatures because of quantum
effects. If we consider 3.5R as the heat capacity of air Cp given its predominant composition
of nitrogen, the difference in entropic energy as negative Gibbs energy −G per mole
between 298.15 and 297.15 K at the standard pressure of 1 atmosphere can be calculated
as follows.

δs = kln[(3kT297.15It/3kT298.15It)]3/2(2kT298.15Ir/2kT297.15Ir)
= kln[(297.15/298.15)]5/2

= kln(0.991636)
s = 3.5k − 0.008399k
s = 3.4916k per molecule = 29.029 J per mol per degree Kelvin

So, the variation in heat content as enthalpy shows very little change as a result of
the increase in Gibbs energy (ca. 0.24%), which is so small it can almost be overlooked.
If the pressure is increased to 64 atmospheres, the specific volume (a3) for an ideal gas at
the same temperature will be 1/64 that at 1 atmosphere, so separation of the molecules
will be one-quarter of that at one atmosphere, with a decrease in the translational moment
of inertia to one-sixteenth. Will this change the Gibbs work factor and the heat capacity
measured as the change in entropic energy between 298.15 and 297.15 K?

s = 3.5k + kln[(3kTIt)3/2/h̄3][(2kTIr)/h̄2]

In fact, assuming ideal gas behavior, the change in entropy between these two temper-
atures will be exactly the same as before, despite the increased density, since the relative
translational and rotational actions will be the same as before.

δs = kln[(3kT297.15It/3kT298.15It)]3/2(2kT297.15Ir/2kT297.15Ir)
= kln[(297.15/298.15)]5/2= 0.0084k

Thus, the heat capacity is very little affected by marginal changes in pressure, irre-
spective of the density. With this understanding, Carnot’s inclusion of the heat exchanged
isothermally in reversible work processes as his chaleur specifique or specific heat, now
recognized as negative Gibbs potential, has validity. Note in these calculations that with
pressure constant at one atmosphere, the temperature and specific volume vary inversely,
or the product of temperature and number density (N) is constant. If we allow pressure to
vary with the lower temperature, holding number density constant so that the moment of
inertia of N2 is constant, heat capacity will vary proportional to kln(T2/T1)5/2 or 3.49160k
per molecule or 29.02917 J per mole per degree Kelvin, which is the accepted value for Cp
of N2.

By contrast, holding temperature constant, as in stage 1 of the Carnot cycle, the
product of pressure and volume is constant (PV = RT), and the specific heat varies with
the logarithm of the specific volume (or pressure), just as Carnot proposed in his table.
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This understanding of his term for specific heat is also relevant for the amount of heat
consumed or released in stages 2 and 4 during adiabatic expansion and compression. As
the entropic energy changes (Table 1, line 16; Table 2, line 31), some eight to ten times more
specific heat is consumed or released to the fluid as Carnot’s caloric, depending on the
logarithmic function of temperature and volume compared with the change in internal
energy or enthalpy. So, we can conclude that in the same terms as Carnot hypothesized,
the specific heat does vary with the volume, the temperature, or the pressure.

7.4. Quantum State Numbers

For both translational and rotational actions, mean values for quantum numbers
(nt) supporting the molecular morphology of the field have been calculated in the tables,
including Table 3, where these are summarized. These mean quantum numbers are
calculated simply from the ratio of the action values (@t, @r) with Planck’s quantum of
action (h̄). It is a feature of such translational quantum states that their magnitude decreases
with the quantum number, as pointed out by Schrödinger [9], with only the levels very near
the average energy occupied, explaining why the Maxwell–Boltzmann distribution has a
sharp maximum. The average occupation number of the quantum cells in Tables 1 and 2
approaches one in a million.

Table 3. Field quantum states.

Stage 1 Stage 2 Stage 3 Stage 4

Argon, translational −gt, ergs 11.6173 × 10−13 12.5009 × 10−13 5.6255 × 10−13 5.2278 × 10−13

Mean quantum number n = 80.042 n = 111.708 n = 111.708 n = 80.042

nt
3 5.12807 × 105 1.393968 × 106 1.393968 × 106 5.12807 × 105

Mean quantum, ergs 2.2654 × 10−18 8.9679 × 10−19 4.0356 × 10−19 1.0194 × 10−18

N2, translational −gt ergs 11.1446 × 10−13 12.0282 × 10−13 5.7302 × 10−13 5.3326 × 10−13

Mean quantum number nt = 66.968 nt = 93.462 nt = 120.584 nt = 86.402

nt
3 3.00346 × 105 8.16404 × 105 1.753352 × 106 6.45017 × 105

Mean quantum, ergs 3.7106 × 10−18 1.4733 × 10−18 3.2681 × 10−19 8.2674 × 10−19

N2, rotational −gr ergs 4.1736 × 10−13 4.1736 × 10−13 1.5606 × 10−13 1.5606 × 10−13

Mean quantum number jr = 10.609 jr = 10.609 jr = 7.239 jr = 7.239

jr2 112.551 112.551 52.403 52.403

Mean quantum, ergs 3.7082 × 10−15 3.7082 × 10−15 2.9781 × 10−15 2.9781 × 10−15

nt
3 × jr2 3.3802660 × 107 9.1887008 × 107 9.1881105 × 107 3.3800921 × 107

Note that none of the translational or rotational quantum states in heat engines
correspond to extremely cold temperatures, so the quantum microstates are non-degenerate.
This contrasts with the size of vibrational quanta that vary little with temperature, even
down to absolute zero. Most texts in discussing quantum states are considering vibration,
with the greatest population in the ground state, misleadingly for translational states. In
Table 3, average quantum occupation numbers and magnitudes are shown. These are all
exceeded by kT by at least an order of magnitude, even for rotation, indicating a lack of
interaction between quantum particles as molecules of working fluid. As a symmetrical
molecule lacking a dipole moment, nitrogen is proposed to exchange rotational quanta
resonantly, with negligible net emission. The translational nt

3 and rotational quantum jr2

products are also shown. For isentropic states, these are expected to be equal as adiabatic,
although a small variation after four significant figures is shown in the table. Heat engines
might function by irradiation with resonant quanta of specific long wavelength, varying
according to the physical stage in the cycle, providing more efficient work than hitherto
achieved. Such an experimental model should now be tested.
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It is suggested that translational quanta are released gradually in molecular deceler-
ations during elastic collisions. When recovering their velocities, the field quanta would
be reabsorbed, only momentarily being freed. In effect, the Gibbs potential of separate
molecules oscillates, being at a minimum nearest zero when colliding molecules are closest.
In his discussion of Brownian motion, Einstein referred to forces acting between molecules
in which this quantum field can participate. Action requires that all relative molecular
motions be complemented by sustaining field energy related to configurational entropy.
Yet the heat required for a molecular ensemble to reversibly reach a given temperature
sustaining the enthalpy includes very significant heat contributions from changes in state
such as melting or vaporization. This heat is regarded as consumed as work when the
system reaches a given state under current environmental conditions of pressure and
temperature. Whether such heat causing reversible changes of state disappears as work is
performed or is consumed as field energy sustaining a molecular scaffold that also sustains
external work (e.g., lifting a weight against gravity) is irrelevant; any such energy under
given conditions can reappear as heat. This was Carnot’s conclusion.

The heat added or extracted in the isothermal stages in the cycle can be considered
as changing the density of field quanta supporting the molecular field in expansion or
compression. Since the internal and kinetic energy in these isothermal stages is constant, it
has no overall role in the work performed. Action mechanics suggests that this irrelevance
for internal energy may also be true of the two adiabatic stages, although the variation in
the Gibbs energy in adiabatic stage 2=>3 (b′) of dilatation is greater than that in stage 4=>1
(b), the difference also being equal to the maximum work performed. This is a result of the
higher quantum number for the former process and the reduced quantum number in stage
4=>1 after heat is lost isothermally in stage 3=>4. Obviously, the molecular kinetic energy
dictates the momentum and pressure on the piston, but this would not be possible without
the intensity of the quanta exerting the primary pressure on molecules with impulses at the
speed of light. This is a basic statement of action resonance theory [4]. Figure 4 summarizes
various variables and their changes in Carnot cycles. A flywheel is indicated that would
be required to provide reversibility in the cycle. From maximum compression in stage 1,
heat flows spontaneously from the hot source as marginal cooling occurs in expansion
of the cylinder, as driven by the flywheel. Once the hot source is removed, adiabatic
expansion doing external work continues, cooling the working fluid. The increased volume
compensates for the decreased temperature with no change in action and entropy, but with
a fall in Gibbs energy, which is shown as the red line in Figure 4. Reversing these stages by
reversing the flywheel would absorb heat at a low temperature from body B, compressing
the volume to reach the temperature of the hot source and slightly exceeding it. Then, heat
is released to the hot source body A, acting as a heat pump from cold B to hot A.

If the working fluid expands irreversibly into a vacuum following heating by body
A, as in a Joule or Gay-Lussac expansion, no work would be performed so no cooling
need occur. That is, the cubic action (mrv)3 would increase proportional to the increase in
volume (r3), but the temperature would remain constant, with no effect on mean molecular
velocity (v). While the Gibbs energy would decrease by the increase in entropic energy on
expansion, the action field would contain the same amount of field energy as before, since
no heat is needed given the vacuum, but with a larger quantum number of smaller quanta
nt cubed. Thus, the size of the associated quanta must be diminished by the same amount
as the radial separation is increased. The frequency of impulses would be decreased by the
increased radial separation, but the torques developed would remain the same. Viewing
kinetic energy as the statistical consequence of mean value of torques exerted in exchanges
of quanta, the temperature will remain the same if well insulated from the environment
at large.
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Figure 4. Carnot cycle for argon showing changes in mean molecular energy (e), Gibbs potential (g), pressure (pm), and
quantum field intensity (pg). While the energy is stationary in stages 1=>2 and 3=>4, the Gibbs potential varies (a=>b′=>a′=>b
in Carnot’s model), and thus, the maximum work possible is equal to (a − a′) = (b − b′).

This Joule expansion also has relevance for the famous Gibbs paradox, explaining
realistically why combining two equal volumes of the same gas isothermally does not
increase the total entropy, even if the two identical volumes of gas fully diffuse into one
another by Brownian motion. Obviously, the mean negative Gibbs energy per molecule
dependent on the mean action mrv, which was previously the same in both volumes of
gas at the same pressure, will remain identical after the diffusion. This is an objective
solution to the paradox that does not involve knowledge by an observer that all molecules
are identical, assuming they are. However, if the two volumes of the same ideal gas differ
isotopically in the number of nucleons, then both isotopes will have increased entropy on
mixing and decreased Gibbs energy or chemical potential. The two isotopic species are
considered to exist independently in their separate action fields. However, these differences
are usually ignored in thermodynamics where calculations use averages.

8. Implications for Climate Science and Future Research

This action revision of the Carnot cycle restores the complementary relationship
between kinetic molecular motion and field energy as a kind of quantum ether varying
density. It is clear that the latent energy in a gaseous system associated with the Gibbs
potential is quantum state energy, which is unavailable unless there is a change of state such
as condensation or freezing, chemical reaction, or gravitational potential [12]. The greater
the Gibbs potential, the lower the density of quantum field energy. The Gibbs potential
must also be zero at zero Kelvin when all motions bar vibrations cease, but its value can only
decrease while increasing negative values as the temperature increases and the molecular
field gains quanta. The associated kinetic energy of molecules that also contributes to the
total entropic energy is complementary to this quantum field but is not a contributor to
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the Gibbs potential. Whenever there is a change in the molecular configuration of the
system such as in chemical reaction, there will be a reassignment of the quantum field so
as to match the new configuration, with equilibrium occurring under conditions where
Gibbs potential becomes equal in all phases. Thus, the melting and vaporization of a water
system with phase equilibrium involves no change in Gibbs potential.

A critical process of the reversible heat engine cycles shown in both tables in stage 1
involves the absorption of radiant heat from the source by the molecular field accompa-
nying external work, which is shown as a Gibbs energy decrease or an entropic energy
increase. In the reverse cycle at stage 3=>4 at lower temperature during recompression,
only part of this field energy stored in the field is returned as heat to the sink, increasing the
Gibbs energy of the working fluid, the remainder being accumulated as reversible external
work by each cycle. Carrying out external work by a heat engine in a gravitational field
requires sustaining field energy, if the temperature is to be maintained. It is noteworthy
from Figures 2 and 3 that the decline in internal energy (CvδT) is only a small fraction
(ca. 10–15%) of the increase in Gibbs energy in the adiabatic expansions in Tables 1 and 2.
To ignore the transfer of such a substantial source of energy in the Carnot heat engine to
external work is a significant omission. In fact, in Tables 1 and 2, the density of translational
molecular kinetic energy has been found to be very similar to the density of translational
quantum energy, which is remarkably consistent as the molecular and quantum pressures
(kT/a3 = RT/Vm). Action resonance [4] proposes that there is just such an equation be-
tween the rate of change of momentum of molecules and the action force field of quantum
exchanges. Demonstrated here as operative in the cylinders of the Carnot cycle, we can
expect a similar relationship between molecular and quantum pressures in all physical
environments. As explained earlier in the text, for monatomic gases and nitrogen (N2)
discussed in this paper, vibrational entropy can be neglected, but in the general case, it will
need to be considered for low frequencies. Furthermore, in the context of climate processes,
we introduce another kind of entropy, the vortical entropy described below, to account for
climate specific physical phenomena.

Vortical Entropy

In our previous papers [7,12], we have used action thermodynamics to calculate the
standard entropies of all atmospheric gases as a guide to better understand heat processes
in climate. The virial theorem was invoked to provide a firmer basis for estimating the
lapse rate with gravitational elevation, finding that 6.9 Celsius per km was the expected
rate of change in temperature [12]. This value is very close to the observed lapse rate. We
introduce the new concept of vortical entropy as a function of the air flow under Coriolis
forces in anticyclones and cyclones, as illustrated in Figure 5 and shown in Table 4.

Table 4. Entropy and negative Gibbs potential of air, including vortical potential energy.

288.2 K Vibrational
Action

Rotational
Action

Translational
Action

Vortical
(ω = 5 × 10−5;

r = 108 cm

Vortical
(ω = 5 × 10−5;

r = 105 cm

Vortical
(ω = 5 × 10−5;

r = 102 cm

Action ratio
(@/h̄) <0.1 8.1 152.2 2.28259 × 1015 2.28259 × 109 2.28259 × 103

Entropy
ln(@/h̄) <0.01 4.18k 15.07k 35.364k 21.549k 7.333k

Energy kJ per mol 10.017 36.115 84.749 51.642 18.532

Vortical entropy is derived from vortical action in a similar manner as translational and
rotational entropy. Vortical entropy is derived in Equations (42) and (43) for a parcel of air
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of N molecules of mass m rotating in an anticyclone or cyclone at R from the geographical
center with angular velocity Ω (rad/sec).

@vort = mR2Ω (42)

Svort = Nk ln(mR2Ω/h̄) (43)

This vortical action hypothesis proposes that a quantum energy field similar to that
examined here for relative translational and rotational motion exists between the correlated
groups of molecules operating as vortexes. In anticyclones, air circulation is almost linear
near the extremities of the cells hundreds or thousands of km in magnitude, but it is inhib-
ited by friction near the surfaces, reducing wind speed near the surface. We have proposed
that the downwelling radiation required to balance the Kiehl–Trenberth model [18] is a
function of surface friction, releasing radiative heat near the surface.
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Figure 5. By analogy with translational, rotational, and vibrational relative action and entropy of N2 (see Equations (6), (7)
and (9) respectively) shown here, we introduce vortical relative action in rotating air masses of anticyclones and cyclones,
further increasing the action and entropy of masses of air and its heat capacity ST. Vortical action is modeled here simply as
one-dimensional, but it would also contain a smaller fraction of second dimensional action but no third locally.

The action in Table 4 was calculated using mean values of properties for molecules in
air (mass 29 daltons, 1 atmosphere pressure, and 288 K with bond length as the weighted
mean for nitrogen and oxygen). Vortical entropic energy is effectively a higher scale of
quantum field, which is justified by the action of the circulating air streams that is analogous
to the translational relative action of molecules. Its estimated magnitude (Table 4) is greater
than the sum of vibrational, rotational, and translational entropic energy, effectively raising
the heat capacity of air in anticyclones. However, this thermal energy is released in
turbulence at the Earth’s surface caused by friction. This solves the problem of how a
cooler atmosphere can add heat to a warmer surface, seemingly defying the second law as
defined by Clausius.

Environmental equity must also be considered. Substantial dissipation releasing
radiant heat in temperate zones caused by such compressive obstructions may deprive
environments at higher latitudes of beneficial warming from circulating air masses, even
leading to incursions of polar vortexes. Given the significance of the Carnot cycle in
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defining thermodynamics, this revision of the hypothesis and the associated methodology
for calculating the entropy and Gibbs energy of gases should have widespread application;
this can help provide corrective solutions for the real risks such as those of climate change.
These risks may require redefinition once the significance of heat reversibly stored in action
fields such as El Nino is realized. We must be aware that action in ecosystems cannot
be explained without understanding that the sensible heat of kinetic energy at all scales
of molecular motion is sustained by complementary thermal radiation of much greater
magnitude (ST versus CvT).

This hypothesis is amenable to experimental testing using radiometry, with sensors
placed on agents disrupting laminar flows and generating turbulence and vorticity, such as
large wind turbines and farms. A correlation with boundary layer vorticity and radiant
heat release is predicted and possibly detectable from satellites. It is well known that
the kinetic energy of molecules in laminar flow is not conserved at descending scales
of turbulent motion. The larger heat content of atmospheric cells envisaged released in
turbulence could explain the extremely hot conditions developed when large masses of air
collide, which often precedes wildfires.

9. Conclusions

Despite the frequent omissions regarding Carnot’s exact contribution to general ther-
modynamics, the correctness of all his main postulates [1] have been vindicated in this
action revision, as shown in the figures and tables.

• “The maximum of motive power resulting from the employment of steam is also the
maximum of motive power realizable by any means whatever . . . there should not
occur any change of temperature which may not be due to a change of volume.”

• “The motive power of heat is independent of the agents employed to realize it; its
quantity is fixed solely by the temperatures between which it is effected by the transfer
of caloric.”

• “When a gas varies in volume without change in temperature, the quantity of heat
absorbed or liberated is in arithmetical progression if the increments or decrements of
volume are in geometrical progression.”

• “The temperature is higher during the movements of dilatation than during the
movements of compression. During the former the elastic force of air is found to
be greater and consequently the quantity of motive power during dilatation is more
considerable than that consumed to produce movements of compression.”

• “The quantities of heat absorbed or set free in these different transformations are
exactly compensated.”

Carnot’s main principle regarding the need irrespective of working fluid for it to
vary in elastic force between a significant range of temperatures, his inference that the
heat content (his specific heat) of the fluid would vary logarithmically with density, and
his argument that all processes in the working fluid to maximize motive power would
be reversible are all truly vindicated. Modern treatments of the Carnot cycle tend to
emphasize the kinetic or internal energy and work performed as a function of differential
variations with pressure as external work. As a result, they avoid mention of caloric, except
to dismiss it as error. Carnot’s postulates once fully understood emphasize the role of that
part of the entropy related to configurational or phase space and the statistical properties of
entropy revealed by Gibbs [8] and Boltzmann [19]; irrespective of temperature or density,
the entropy related to enthalpy governing internal energy retains the same value. Carnot’s
conviction that that the specific heat of the air would nonetheless be a logarithmic function
of volume, increasing with the radial separation of molecules as density declines and also
of temperature, is vindicated in our action analysis. This is the basis of our proposal to
include vortical motion of the atmosphere as an extended form for action, entropy, and
extended latent heat content, suggesting a new area for research relevant to climate science.

Feynman [20] also attested strongly to Carnot’s accuracy in his Caltech lectures on
physics in the early 1960s, even re-attributing the Clausius–Clapeyron equation relating
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vapor pressure and temperature as Carnot’s equation. We can now conclude it is the
logarithmic variations in action and resultant Gibbs energy (or its inverse, entropic energy)
between the two temperatures that control the motive power of the heat engine; the
variation in enthalpy between the two temperatures is irrelevant to the motive power
and work performed, although kinetic energy and pressure play a role. Obviously, for a
reversible cycle, the Gibbs energies of the working fluid must always return to the same
values in each stage, which is assisted by the inertia of the motor’s flywheel that ensures
more heat is taken up at the higher temperature than is lost at the lower temperature. It
should be noted that inertia in the engine also ensures that more caloric a is transferred from
the hot source, preventing cooling during expansion, than loss of caloric a′ to the colder
sink, with no change in entropy as the ratio of these values to the respective temperature.

It is anticipated that action revisions will contribute to better understanding of thermo-
dynamics, allowing progress in non-equilibrium processes, the nature of irreversibility, and
discussion of the maximum entropy production principle (MEPP). Although Boltzmann
popularized the idea of entropy as disorder, it may be better understood as maximizing
the freedom of action and the evolution of diversity. The energy field envisaged by Carnot
in the concept of caloric can be regarded as a source of dynamic order for cyclic systems.
Although the flow of energy in the solar system is an entropy-producing process overall,
the surface of the Earth can be characterized more closely as in a steady state of entropy,
oscillating locally in magnitude.
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