
entropy

Article

Improved Effort and Cost Estimation Model Using Artificial
Neural Networks and Taguchi Method with Different
Activation Functions

Nevena Rankovic 1,* , Dragica Rankovic 1 , Mirjana Ivanovic 2 and Ljubomir Lazic 1

����������
�������

Citation: Rankovic, N.; Rankovic, D.;

Ivanovic, M.; Lazic, L. Improved

Effort and Cost Estimation Model

Using Artificial Neural Networks and

Taguchi Method with Different

Activation Functions. Entropy 2021,

23, 854. https://doi.org/

10.3390/e23070854

Academic Editor: Sotiris Kotsiantis

Received: 31 May 2021

Accepted: 27 June 2021

Published: 2 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computing, Union University, 11000 Belgrade, Serbia; drankovic@raf.rs (D.R.); ljlazic@raf.rs (L.L.)
2 Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; mira@dmi.uns.ac.rs
* Correspondence: nrankovic@raf.rs

Abstract: Software estimation involves meeting a huge number of different requirements, such as
resource allocation, cost estimation, effort estimation, time estimation, and the changing demands
of software product customers. Numerous estimation models try to solve these problems. In our
experiment, a clustering method of input values to mitigate the heterogeneous nature of selected
projects was used. Additionally, homogeneity of the data was achieved with the fuzzification method,
and we proposed two different activation functions inside a hidden layer, during the construction of
artificial neural networks (ANNs). In this research, we present an experiment that uses two different
architectures of ANNs, based on Taguchi’s orthogonal vector plans, to satisfy the set conditions,
with additional methods and criteria for validation of the proposed model, in this approach. The
aim of this paper is the comparative analysis of the obtained results of mean magnitude relative
error (MMRE) values. At the same time, our goal is also to find a relatively simple architecture
that minimizes the error value while covering a wide range of different software projects. For this
purpose, six different datasets are divided into four chosen clusters. The obtained results show
that the estimation of diverse projects by dividing them into clusters can contribute to an efficient,
reliable, and accurate software product assessment. The contribution of this paper is in the discovered
solution that enables the execution of a small number of iterations, which reduces the execution time
and achieves the minimum error.

Keywords: software development estimation; artificial neural network design; orthogonal array-
based experiment; clustering; fuzzification; activation function choices

1. Introduction

In recent years, due to a significant evolution in adopting and developing new tech-
nologies and methodologies in the area of software effort estimation, many researchers are
attempting to optimize the accuracy of this process [1,2]. Since this is one of the crucial
processes in completing a software product, there is a continuous need for questioning
both overestimation and underestimation [3]. We can relate costs to the project in the
initial phase, depending upon the efforts needed [4,5]. This involves a large number of
efficiency reviews using different techniques. Two essential types of estimation techniques,
like model-based and expert-based techniques, have been introduced.

The first one has a foundation depending on mathematical models, while the second
one has accepted human guidance [6]. Nowadays, estimation has turned attention to vari-
ous machine-learning (ML) methods and hybrid approaches that combine parametric and
non-parametric models [7–9]. Researchers use different higher-order ANN architectures
and deep-learning networks to combine parametric models such as COCOMO, FP, and
UCP for use in software effort estimation. This shift of interest occurred because of the
preponderance of traditional approaches focusing on particular aspects of the process of

Entropy 2021, 23, 854. https://doi.org/10.3390/e23070854 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-9910-5886
https://orcid.org/0000-0002-4464-0726
https://orcid.org/0000-0003-1946-0384
https://orcid.org/0000-0001-9839-1238
https://doi.org/10.3390/e23070854
https://doi.org/10.3390/e23070854
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23070854
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23070854?type=check_update&version=2

Entropy 2021, 23, 854 2 of 21

development, while ignoring others. Additionally, some of these adjustment factors might
be affected by specific rules, work environments, or even different cultures [10].

The essential part of using artificial intelligence (AI) in software effort estimation is
the construction of the Artificial Neural Network (ANN) architecture [11]. ANNs have
learning adaptability and are good at modeling complex nonlinear relationships. They are
also flexible in incorporating expert knowledge into the prediction model. The software
market proposes many software cost estimation models developed using ANNs over the
years [12,13].

New approaches founded on ANN architecture have disadvantages that indicate the
optimal set of parameters during training, when achieving the convergence rate and the
required accuracy. This results in a vast number of iterations that need to be performed. In
this paper, we propose two different ANN architectures, based on the Taguchi method for
robust design which uses three software development attributes in COCOMO (constructive
cost model) models as control variables (scale factors, cost factors, and software size) [14].
COCOMO is an algorithmic cost model where, with the help of mathematical functions, a
context between software metrics and project costs is created. Actual effort is the real value
of a project based on the number of lines of code expressed in person-months (PM).

The critical decisions that defined the objective of our research are as follows: (1) a com-
parison of the two activation functions within the hidden layer of the ANN architectures,
in order to reduce the number of iterations required to assess efforts to develop software
projects; (2) a comparison of the obtained MMRE results, depending on the complexity of
the proposed architecture; (3) finding one of the most efficient methods of encoding and
decoding input values, such as the fuzzification method; (4) ascertaining the minimum
number of iterations to be performed, i.e., shortened estimation time; (5) the division of
data sets into clusters according to the actual effort, to mitigate the heterogeneous nature
of the projects; (6) the testing and validation of different data sets in order to prevent errors
and confirm results.

In our approach, we introduce six different datasets in three phases of the experiment
using fuzzification [15–17] and the clustering method, to prove the reliability and accuracy
of our model. To homogenize the heterogeneous nature of the projects, we divide the
input signals using four different clusters, according to their actual efficiency. The Taguchi
method includes orthogonal vector arrays that are explicitly ordered in the matrix [18,19].
This method allows the development of a prediction method that is less complex and
much more useful. We use a back-propagation neural network [20] and relate it with
the two different orthogonal arrays (OA). The number of parameters equals the number
of weights of the ANN. The interval containing the solution is gradually dwindling, as
the result of an iterative robust design algorithm. The numerical value of the cost-effect
function that is observed in every examination in data distribution is sensitive to individual
predictions [1,3]. To increase the stability and safety of the experiment, prediction and
correlation between the estimated and actual values are calculated. Metrics to monitor
progress, such as the mean absolute error (MAE), and mean magnitude relative error
(MMRE), were used. Besides reducing the values, we compare the obtained MMRE results
with two different activation functions like the sigmoid function and hyperbolic tangent
function. Finally, to confirm our experiment’s and functions’ obtained values and efficiency,
two different ANN architectures and activation functions are compared.

The motivation of our research is to achieve:

• A simple ANN architecture that requires a short training time (small number of
iterations, i.e., epoch, which is less than 10). Acceptable error for application in other
areas with a critical mission, where a rapid response time to the studied problem
is required;

• A stable training process of ANN architecture, no oscillations, peaks, etc.;
• A reliable ANN architecture training process that has been validated on a large number

of datasets from practice;

Entropy 2021, 23, 854 3 of 21

• The minimization of the required number of observations in order to quickly and
effectively train the ANN architecture;

• The prediction accuracy required to be the same or better than other approaches (CO-
COMO, function point analysis, use case point analysis, etc.), which can be compared
to estimating the magnitude of software development efforts.

The outcome of our research is as follows:

• The method of clustering achieved homogenization of the heterogeneous nature of
the projects of each used dataset;

• The MMRE value is in the range of 30.1% to 48.2% for the ANN-L27 architecture,
depending on the nature of the projects of the dataset used;

• The MMRE value is in the range of 31.1% to 49.2% for the ANN-L36 architecture,
depending on the nature of the projects of the dataset used;

• The best results are achieved with the sigmoid activation function of the hidden layer
and the output layer;

• The number of iterations performed is in the range of 5 to 9, depending on the given
dataset and the cluster within the dataset;

• The model’s efficiency, reliability, and accuracy were confirmed through two correla-
tion coefficients (Pearson’s and Spearman’s);

• Additional prediction monitoring found that the ANN-L36 architecture was about
1% better.

Our proposed approach can be applied to the implementation of software projects
in the field of software engineering, as well as in other areas such as medicine, nuclear
sciences, speech recognition, solar systems, neuroscience, and others [21–23].

This paper is structured as follows: Section 2 provides an overview of the latest
research in the area of software estimation using various ML algorithms and ANNs.
Section 3 describes the proposed approach to software development estimation. It is
divided into three parts: the first part presents a robust design technique based on Taguchi
orthogonal arrays, the second part presents information on the dataset used, and the
third part describes the methodology used in detail. The results obtained are discussed in
Section 4, while concluding remarks and ideas for future work are given in Section 5.

2. Related Work

One of the riskier projects in the modern industrial arena is developing software
projects [24]. Customer requirements, methodology, tools, and the intangible nature of the
products can significantly impact the project schedule, the quality of the software product,
estimated effort, and related costs. In this manner, the risk of successful completion of the
project can be understood as an event that could have the consequences of a particular
hazard [25–27].

Many studies state that risk assessment in software project planning is rarely found
and is often challenging to implement [28,29]. Machine learning (ML), as one of the
branches of artificial intelligence, has gained importance in the field of software assessment.
The study [6] optimizes the estimation of costs in software development, using the CO-
COMO 2000 and applying two different algorithms on presented models, like the dolphin
algorithm and the hybrid dolphin and bat algorithm (DolBat). The results show a lower
value of magnitude relative error (MRE). However, in our approach, we show that it is
possible to reduce this MRE value, i.e., to obtain better results with a relatively simple ANN
architecture to perform a minimum number of iterations, reducing the estimation time.

Research by [20,30] represents the use of a combined technique, as they combine an
application of ML that improves the COCOMO model using ANNs; however, the results
achieved for MRE were again relatively high. An interesting study was conducted on
different neural network algorithms, and their comparison to accurately estimate software
costs. This study also used other activation functions that gave worse results than the
sigmoid function [31].

Entropy 2021, 23, 854 4 of 21

Contrary to our approach, the speed of convergence in their work is much slower. In
other studies, like that in [32], a two-layer network was used as an improved model to
minimize the MRE value between actual costs and estimated costs.

The research model of a multilayer neural network for estimating software effort in
real-world applications [33–35], with the function of activating identity on the input layer,
hidden layer, and the output layer, achieved a slightly better result. However, a smaller
number of performed iterations is not achieved.

Contrary to our approach, other researchers, for example in the study by [36], analyze
different feature selection algorithms to increase the accuracy of software development
effort predictions. Moreover, they investigate both bio- and non-bio-inspired algorithms. In
comparison, the authors in the study by [37] focus on comparing the stochastic regression
models with the proposed gradient boosting regressor model.

Based on several experiments, we conclude that a more complex architecture gives a
lower value of MMRE. By introducing a new, more complex ANN-L36 architecture, we
tried to reduce the value of MMRE, compared to the ANN-L27 architecture. In addition
to the clustering method, which in our previous study was limited to three selected
clusters, in this experiment, we increased the granularity by dividing the datasets into
four clusters and introducing the fuzzification as well as defuzzification methods. The
heterogeneous nature of the projects is further mitigated and controlled by these methods.
In addition, a comparison with another activation function in the hidden layer, such as
the hyperbolic tangent, was discussed. In this approach, the number of required iterations
is further reduced, which results in shortening the time required for fast and accurate
estimation because the convergence rate of the two proposed ANN architectures is less
than 8. Monitoring the correlation coefficients and prediction on three different criteria
confirmed the efficiency of the proposed approach.

3. Proposed Approach

The ANN network architecture includes input values, none or more hidden layers, and
an output layer. The shape, type, and size of ANN training parameters affect the specific
ANN architecture. In constructing all the proposed architectures in this paper, the Taguchi
orthogonal array was used to optimize the design parameters. In ANN design that uses
the Taguchi methodology, the engineer must recognize the application problem well. The
advantage of this approach over other nonlinear models is based on estimating any function
with optional precision. To simplify optimization problems, this paper uses various Taguchi
orthogonal arrays representing the MFFN (multilayer feed-forward neural network) class,
which has a vital role in solving various types of problems in science, engineering, and
engineering medicine, pattern recognition, nuclear sciences, and other fields [1]. In order
to construct a high-performance MFFN, no clearly defined theory allows the calculation of
ideal parameter settings. This leads to the conclusion that even small changes in parameters
can cause significant differences in the behavior of almost all networks. In [2], an analysis
of neural network design factors and object functions is given, in which an architecture
with one or two hidden layers is recommended. Based on the Kolmogorov–Smirnov test, a
recommendation is given that the number of neurons in the hidden layer should be twice
the number of input neurons, increased by one, i.e., N-input + 1. The results for each of
the 240 experiments were collected. The authors showed that a specific neural network
configuration is required to achieve convergence, along with the accuracy of the trained
network, when a set of test data is obtained. They also concluded that the number of
hidden layers (one or two) has a minimal effect on the network accuracy but is rather
significant at the convergence speed. Considering these results, we adopted a trial-and-
error strategy, because most existing theoretical works for generalization fail to explain
the performance of neural networks in practice. There are many different domains where
various AI methods have been applied as solution approaches, such as online learning,
scheduling, multi-objective optimization, vehicle routing, medicine, data classification, and
others (not only software development estimation) [38–43].

Entropy 2021, 23, 854 5 of 21

In our experiment, two different architectures of artificial neural networks were
proposed. These architectures are based on two different Taguchi orthogonal plan vectors.
The architecture of the artificial neural network is established on the orthogonal array
L27, with 13 weight parameters. It consists of one input layer, one hidden layer, and one
output layer. The input layer has three input values (signals): X1 = E, X2 = PEMi, and
X3 = KLOC. By combining the input values and weight parameters using the appropriate
activation function, the obtained values are: Y1, Y2, and Y3 in the hidden layer. One output
size—the estimated effort—is calculated by combining the sizes from the hidden layer and
the remaining weight parameters. OA denotes the output value in Figure 1. Later in the
paper, this is referred to as ANN-L27. The architecture of the artificial neural network is
established on the orthogonal array L36, with 23 weight parameters. It consists of one
input layer, two hidden layers, and one output layer. The input layer has three input values
(signals): X1 = E, X2 = PEMi, and X3 = KLOC. By combining the input values and weight
coefficients with the appropriate activation function, the values are obtained: Y1, Y2, Y3,
and Y4 in the first hidden layer. Two values are calculated in the second hidden layer,
Z1 and Z2, by combining the values from the first hidden layer with the corresponding
weight parameters. One output value—estimated effort—is calculated by combining two
values with weight parameters from the second hidden layer. OA denotes the output value
in Figure 2, later in the paper referred to as ANN-L36. After several trial experiments,
those clustering and fuzzification methods that gave the best results were selected. The
method that divides the input signals into four clusters according to the value of the actual
effort has made it possible to lower the error and control the heterogeneous values of the
selected projects. The fuzzification method further homogenizes the data to reduce the
number of iterations as much as possible. After all three phases of the experiment (training,
testing and validation of the two proposed ANN architectures), to determine the validity,
reliability, and efficiency of the proposed models, the prediction and correlation of all six
used datasets were monitored.

3.1. Robust Design Technique—Taguchi Orthogonal Arrays

The first proposed ANN architecture in our experiment is ANN-L27. This architecture
is based on the Taguchi orthogonal array L27 with 13 parameters [1–3] (Wi, I = 1, . . . , 13),
and three levels: L1, L2, and L3 (Figure 1, Table 1).

Figure 1. ANN architecture with one hidden layer (ANN-L27).

Entropy 2021, 23, 854 6 of 21

Table 1. Taguchi orthogonal array OA(313) for ANN-L27.

ANN-L27 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13

ANN1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1
ANN2 L1 L1 L1 L1 L2 L2 L2 L2 L2 L2 L2 L2 L2
ANN3 L1 L1 L1 L1 L3 L3 L3 L3 L3 L3 L3 L3 L3
ANN4 L1 L2 L2 L2 L1 L1 L1 L2 L2 L2 L3 L3 L3
ANN5 L1 L2 L2 L2 L2 L2 L2 L3 L3 L3 L1 L1 L1
ANN6 L1 L2 L2 L2 L1 L1 L1 L3 L3 L3 L2 L2 L2
ANN7 L1 L3 L3 L3 L1 L1 L1 L3 L3 L3 L2 L2 L2
ANN8 L1 L3 L3 L3 L2 L2 L2 L1 L1 L1 L3 L3 L3
ANN9 L1 L3 L3 L3 L3 L3 L3 L2 L2 L2 L1 L1 L1
ANN10 L2 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3
ANN11 L2 L1 L2 L3 L2 L3 L1 L2 L3 L1 L2 L3 L1
ANN12 L2 L1 L2 L3 L3 L1 L2 L3 L1 L2 L3 L1 L2
ANN13 L2 L2 L3 L1 L1 L2 L3 L2 L3 L1 L3 L1 L2
ANN14 L2 L2 L3 L1 L2 L3 L1 L3 L1 L2 L1 L2 L3
ANN15 L2 L2 L3 L1 L3 L1 L2 L1 L2 L3 L2 L3 L1
ANN16 L2 L3 L1 L2 L1 L2 L3 L3 L1 L2 L2 L3 L1
ANN17 L2 L3 L1 L2 L2 L3 L1 L1 L2 L3 L3 L1 L2
ANN18 L2 L3 L1 L2 L3 L1 L2 L2 L3 L1 L1 L2 L3
ANN19 L3 L1 L3 L2 L1 L3 L2 L1 L3 L2 L1 L3 L2
ANN20 L3 L1 L3 L2 L2 L1 L3 L2 L1 L3 L2 L1 L3
ANN21 L3 L1 L3 L2 L3 L2 L1 L3 L2 L1 L3 L2 L1
ANN22 L3 L2 L1 L3 L1 L3 L2 L2 L1 L3 L3 L2 L1
ANN23 L3 L2 L1 L3 L2 L1 L3 L3 L2 L1 L1 L3 L2
ANN24 L3 L2 L1 L3 L3 L2 L1 L1 L3 L2 L2 L1 L3
ANN25 L3 L3 L2 L1 L1 L3 L2 L3 L2 L1 L2 L1 L3
ANN26 L3 L3 L2 L1 L2 L1 L3 L1 L3 L2 L3 L2 L1
ANN27 L3 L3 L2 L1 L3 L2 L1 L2 L1 L3 L1 L3 L2

The second proposed ANN architecture in our experiment is ANN-L36. This ar-
chitecture is based on the Taguchi Orthogonal Array L36, with 23 parameters [1–3]
(Wi, I = 1, . . . , 23). It consists of two parts. The first part has 11 parameters on two
levels, L1 and L2, while the second part has 12 parameters on three levels, L1, L2, and L3
(Figure 2, Table 2).

Table 2. Taguchi orthogonal array OA(211312) for ANN-L36.

ANN-L36 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 W17 W18 W19 W20 W21 W22 W23

ANN1 L1
ANN2 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2
ANN3 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3
ANN4 L1 L1 L1 L1 L1 L2 L2 L2 L2 L2 L2 L1 L1 L1 L1 L2 L2 L2 L2 L3 L3 L3 L3
ANN5 L1 L1 L1 L1 L1 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L3 L3 L3 L3 L1 L1 L1 L1
ANN6 L1 L1 L1 L1 L1 L2 L2 L2 L2 L2 L2 L3 L3 L3 L3 L1 L1 L1 L1 L2 L2 L2 L2
ANN7 L1 L1 L2 L2 L2 L1 L1 L1 L2 L2 L2 L1 L1 L2 L3 L1 L2 L3 L3 L1 L2 L2 L3
ANN8 L1 L1 L2 L2 L2 L1 L1 L1 L2 L2 L2 L2 L2 L3 L1 L2 L3 L1 L1 L2 L3 L3 L1
ANN9 L1 L1 L2 L2 L2 L1 L1 L1 L2 L2 L2 L3 L3 L1 L2 L3 L1 L2 L2 L3 L1 L1 L2
ANN10 L1 L2 L1 L2 L2 L1 L2 L2 L1 L1 L2 L1 L1 L3 L2 L1 L3 L2 L3 L2 L1 L3 L2
ANN11 L1 L2 L1 L2 L2 L1 L2 L2 L1 L1 L2 L2 L2 L1 L3 L2 L1 L3 L1 L3 L2 L1 L3
ANN12 L1 L2 L1 L2 L2 L1 L2 L2 L1 L1 L2 L3 L3 L2 L1 L3 L2 L1 L2 L1 L3 L2 L1
ANN13 L1 L2 L2 L1 L2 L2 L1 L2 L1 L2 L1 L1 L2 L3 L1 L3 L2 L1 L3 L3 L2 L1 L2
ANN14 L1 L2 L2 L1 L2 L2 L1 L2 L1 L2 L1 L2 L3 L1 L2 L1 L3 L2 L1 L1 L3 L2 L3
ANN15 L1 L2 L2 L1 L2 L2 L1 L2 L1 L2 L1 L3 L1 L2 L3 L2 L1 L3 L2 L2 L1 L3 L1
ANN16 L1 L2 L2 L2 L1 L2 L2 L1 L2 L1 L1 L1 L2 L3 L2 L1 L1 L3 L2 L3 L3 L2 L1
ANN17 L1 L2 L2 L2 L1 L2 L2 L1 L2 L1 L1 L2 L3 L1 L3 L2 L2 L1 L3 L1 L1 L3 L2
ANN18 L1 L2 L2 L2 L1 L2 L2 L1 L2 L1 L1 L3 L1 L2 L1 L3 L3 L2 L1 L2 L2 L1 L3
ANN19 L2 L1 L2 L2 L1 L1 L2 L2 L1 L2 L1 L1 L2 L1 L3 L3 L3 L1 L2 L2 L1 L2 L3
ANN20 L2 L1 L2 L2 L1 L1 L2 L2 L1 L2 L1 L2 L3 L2 L1 L1 L1 L2 L3 L3 L2 L3 L1
ANN21 L2 L1 L2 L2 L1 L1 L2 L2 L1 L2 L1 L3 L1 L3 L2 L2 L2 L3 L1 L1 L3 L1 L2
ANN22 L2 L1 L2 L1 L2 L2 L2 L1 L1 L1 L2 L1 L2 L2 L3 L3 L1 L2 L1 L1 L3 L3 L2
ANN23 L2 L1 L2 L1 L2 L2 L2 L1 L1 L1 L2 L2 L3 L3 L1 L1 L2 L3 L2 L2 L1 L1 L3
ANN24 L2 L1 L2 L1 L2 L2 L2 L1 L1 L1 L2 L3 L1 L1 L2 L2 L3 L1 L3 L3 L2 L2 L1
ANN25 L2 L1 L1 L2 L2 L2 L1 L2 L2 L1 L1 L1 L3 L2 L1 L2 L3 L3 L1 L3 L1 L2 L2
ANN26 L2 L1 L1 L2 L2 L2 L1 L2 L2 L1 L1 L2 L1 L3 L2 L3 L1 L1 L2 L1 L2 L3 L3
ANN27 L2 L1 L1 L2 L2 L2 L1 L2 L2 L1 L1 L3 L2 L1 L3 L1 L2 L2 L3 L2 L3 L1 L1
ANN28 L2 L2 L2 L1 L1 L1 L1 L2 L2 L1 L2 L1 L3 L2 L2 L2 L1 L1 L3 L2 L3 L1 L3
ANN29 L2 L2 L2 L1 L1 L1 L1 L2 L2 L1 L2 L2 L1 L3 L3 L3 L2 L2 L1 L3 L1 L2 L1
ANN30 L2 L2 L2 L1 L1 L1 L1 L2 L2 L1 L2 L3 L2 L1 L1 L1 L3 L3 L2 L1 L2 L3 L2
ANN31 L2 L2 L1 L2 L1 L2 L1 L1 L1 L2 L2 L1 L3 L3 L3 L2 L3 L2 L2 L1 L2 L1 L1
ANN32 L2 L2 L1 L2 L1 L2 L1 L1 L1 L2 L2 L2 L1 L1 L1 L3 L1 L3 L3 L2 L3 L2 L2
ANN33 L2 L2 L1 L2 L1 L2 L1 L1 L1 L2 L2 L3 L2 L2 L2 L1 L2 L1 L1 L3 L1 L3 L3
ANN34 L2 L2 L1 L1 L2 L1 L2 L1 L2 L2 L1 L1 L3 L1 L2 L3 L2 L3 L1 L2 L2 L3 L1
ANN35 L2 L2 L1 L1 L2 L1 L2 L1 L2 L2 L1 L2 L1 L2 L3 L1 L3 L1 L2 L3 L3 L1 L2
ANN36 L2 L2 L1 L1 L2 L1 L2 L1 L2 L2 L1 L3 L2 L3 L1 L2 L1 L2 L3 L1 L1 L2 L3

Entropy 2021, 23, 854 7 of 21

Figure 2. ANN architecture with one hidden layer (ANN-L36).

3.2. Used Dataset

Through all phases of the experiment, both ANN-L27 and ANN-L36 were used. For
the first phase of our training experiment, 87 projects from the COCOMO 2000 dataset
were chosen. Table 3 shows that the 23 projects from the COCOMO 2000 were used in the
testing phase. Once again, to check and confirm the obtained results, four datasets for the
third phase of our experiment were used. In the first validation, randomized 46 selected
projects from the COCOMO 81 dataset were used. In the second validation, 60 projects
from the NASA dataset were used. Finally, in the third validation, the Kemerer dataset
with a dataset of industrial projects (15 + 5) was used. Finally, in the fourth validation, a
Desharnais dataset of 80 projects was used. Basic information on the datasets used is shown
in Table 3. Within Dataset_1, the data range is from minimum actual effort values from
8.4 to maximum actual effort values of 8211, expressed in person-months [PM]. In all other
phases of the experiment, datasets that have project values within this scope were used.
This infers taking projects of different scales that require different efforts to implement
them, as shown in Table 4. Data sets are selected depending on input sizes. In this paper,
input sizes are the determining factor for selecting datasets. In the paper [44], the authors
showed that the R2 value for COCOMO is 0.7203 and, for example, for the Function Point is
0.4392, which is additional proof that our approach is statistically reliable. In our paper, this
is confirmed with the Pearson’s and Spearman’s rho correlation coefficients. Furthermore,
the paper published in Elsevier [7] presented the analysis about ISBSG-10 dataset usage,
and the results tell us that only one of 80 authors used this dataset for COCOMO-based
attributes as software efforts predictors. The authors in the paper [45] did not consider
the ISBSG, which is the most used one. Based on the correlation values, we choose the
appropriate datasets [6,20,46]. The results in Table 4. indicate the heterogeneous nature of
the designs of each dataset used and directly affect the prediction results within all three
phases/parts of the experiment (training, testing, validation). It can be seen that the data
sets from 1 to 6 are very heterogeneous in terms of the programming languages used, the
duration of application development, and an extensive range of actual effort values, with a
large standard deviation. Datasets used in this experiment are publicly available at [47].

Table 3. Information about datasets in all three phases of the experiment.

Dataset Number of Projects Phase in
Experiment

Dataset_1 COCOMO 2000 dataset 87 Training
Dataset_2 COCOMO 2000 dataset 23 Testing
Dataset_3 COCOMO 81 46 Validation1
Dataset_4 NASA dataset 60 Validation2
Dataset_5 Kemerer dataset + Industrial projects 15 + 5 Validation3
Dataset_6 Desharnais 80 Validation4

Entropy 2021, 23, 854 8 of 21

Table 4. The basic statistics regarding datasets in all three phases of the experiment.

Dataset Number of Projects Min [PM] Max [PM] Mean [PM] Stand Deviation [PM]

Dataset_1 87 8.4 8211.0 630.9 1181.3
Dataset_2 23 12.0 1924.5 487.8 559.3
Dataset_3 46 33.0 6599.9 651.9 1373.9
Dataset_4 60 8.4 3240.0 406.4 656.9
Dataset_5 20 23.2 1780.0 408.6 462.1
Dataset_6 80 54.6 2394.0 504.6 441.8

3.3. Applied Methodology

The following robust design algorithm shows all three phases of our experiment with
the selected methodology, which gave the best results, as shown in Figure 3.

Figure 3. Algorithm for the robust design of the experiment.

The first phase of data training in the proposed experiment is described in the follow-
ing steps:

Step 1. Input layer

The three input signals for the two proposed architectures ANN-L27 and ANN-L36
are: X1 = E, X2 = PEMi, and X3 = KLOC, according to Formulas (1)–(7):

E f f ort = A× [SIZE]E ×
17

∏
i=1

EMi (1)

Entropy 2021, 23, 854 9 of 21

E = B + 0.01×
5

∑
j=1

SFj, where A = 2.94, B = 0.91 (2)

E f f ort[PM] = 2.94× [SIZE]E × PEMi (3)

PEMi =
17

∏
i=1

EMi (4)

Time = C× (E f f ort)F (5)

F = D + 0.2× 0.01×
5

∑
j=1

SFj, where C = 3.67, D = 0.28 (6)

People = Effort/Time (7)

A and B are the fundamental constants for calibration; KSLOC (thousands of source
lines of code) stated for the size of the software project; SFj represents five scale factors
(prec, flex, resl, team, pmat); EMi stated for seventeen effort multipliers (rely, cplx, data,
ruse, time, stor, pvol, acap, pcap, pcon, apex, plex, ltex, tool, sced, site, docu). In the input
layer for the first phase of the experiment, 87 projects from the COCOMO 2000 dataset were
used. They are divided into four clusters according to the actual effort value, as follows:
small cluster (projects less than 90 PM), medium cluster (projects between 90 PM and 500
PM), large cluster (projects between 500 PM and 1000 PM), and very large cluster (projects
larger than 1000 PM).

Step 2. Fuzzification method

In addition to the method of clustering, the different nature of the data needs to be
further homogenized. This will be achieved by using the method of fuzzification [48,49],
which involves mapping all three inputs. E, PEMi, and KLOC, into real values from
the interval [0,1]. Function µD(X):R→[0,1], µD = (Xi − Xmin)/(Xmax − Xmin). D is the set of
input data.

Step 3. The hidden and output layer functions use two different activation functions
for both proposed ANN architectures. EstEffANN represents the output values of the
proposed model.

1. Sigmoid function: yi= 1
1+e−xi

,i=1,n

Hidden and output layer functions for ANN-L27 architecture, according to
Formulas (8)–(11):

Y1 =
1

1 + e−(X1·W1+X2·W4+X3·W7)
(8)

Y2 =
1

1 + e−(X1·W2+X2·W5+X3·W8)
(9)

Y3 =
1

1 + e−(X1·W3+X2·W6+X3·W9)
(10)

EstE f f ANN − L27 =
1

1 + e−(Y1·W10+Y2·W11+Y3·W12+1·W13)
(11)

where Y1, Y2, Y3 are calculated values from the hidden layer and EstEffANN-L27 is the
output value.

Hidden and output layer functions for ANN-L36 architecture, according to
Formulas (12)–(18):

Y1 =
1

1 + e−(X1·W1+X2·W5+X3·W9)
(12)

Entropy 2021, 23, 854 10 of 21

Y2 =
1

1 + e−(X1·W2+X2·W6+X3·W10)
(13)

Y3 =
1

1 + e−(X1·W3+X2·W7+X3·W11)
(14)

Y4 =
1

1 + e−(X1·W4+X2·W8+X3·W12)
(15)

Z1 =
1

1 + e−(Y1·W13+Y2·W15+Y3·W17+Y4·W19)
(16)

Z2 =
1

1 + e−(Y1·W14+Y2·W16+Y3·W18+Y4·W20)
(17)

EstE f f ANN − L36 =
1

1 + e−(Z1·W21+Z2·W22+1·W23)
(18)

where Y1, Y2, Y3 and Y4 are calculated values from the first hidden layer, Z1 and Z2 are calculated
values from the second hidden layer and EstEffANN-L36 is the output value.

2. Hyperbolic tangent: y
i= exi−e−xi

e−xi +e−xi
,i=1,n

Hidden and output layer functions for ANN-L27 architecture, according to
Formulas (19)–(22):

Y1 =
e(X1·W1+X2·W4+X3·W7) − e−(X1·W1+X2·W4+X3·W7)

e(X1·W1+X2·W4+X3·W7) + e−(X1·W1+X2·W4+X3·W7)
(19)

Y2 =
e(X1·W2+X2·W5+X3·W8) − e−(X1·W2+X2·W5+X3·W8)

e(X1·W2+X2·W5+X3·W8) + e−(X1·W2+X2·W5+X3·W8)
(20)

Y3 =
e(X1·W3+X2·W5+X3·W9) − e−(X1·W3+X2·W5+X3·W9)

e(X1·W3+X2·W5+X3·W9) + e−(X1·W3+X2·W5+X3·W9)
(21)

EstE f f ANN − L27 =
e(Y1·W10+Y2·W11+Y3·W12+1·W13) − e−(Y1·W10+Y2·W11+Y3·W12+1·W13)

e(Y1·W10+Y2·W11+Y3·W12+1·W13) + e−(Y1·W10+Y2·W11+Y3·W12+1·W13)
(22)

where Y1, Y2, Y3 are calculated values from the hidden layer and EstEffANN-L27 is the
output value.

Hidden and output layer functions for ANN-L36 architecture, according to
Formulas (23)–(29):

Y1 =
e(X1·W1+X2·W5+X3·W9) − e−(X1·W1+X2·W5+X3·W9)

e(X1·W1+X2·W5+X3·W9) + e−(X1·W1+X2·W5+X3·W9)
(23)

Y2 =
e(X1·W2+X2·W6+X3·W10) − e−(X1·W2+X2·W6+X3·W10)

e(X1·W2+X2·W6+X3·W10) + e−(X1·W2+X2·W6+X3·W10)
(24)

Y3 =
e(X1·W3+X2·W7+X3·W11) − e−(X1·W3+X2·W7+X3·W11)

e(X1·W3+X2·W7+X3·W11) + e−(X1·W3+X2·W7+X3·W11)
(25)

Y4 =
e(X1·W4+X2·W8+X3·W12) − e−(X1·W4+X2·W8+X3·W12)

e(X1·W4+X2·W8+X3·W12) + e−(X1·W4+X2·W8+X3·W12)
(26)

Z1 =
e(Y1·W13+Y2·W15+Y3·W17+Y4·W19) − e−(Y1·W13+Y2·W15+Y3·W17+Y4·W19)

e(Y1·W13+Y2·W15+Y3·W17+Y4·W19) + e−(Y1·W13+Y2·W15+Y3·W17+Y4·W19)
(27)

Z2 =
e(Y1·W14+Y2·W16+Y3·W18+Y4·W20) − e−(Y1·W14+Y2·W16+Y3·W18+Y4·W20)

e(Y1·W14+Y2·W16+Y3·W18+Y4·W20) + e−(Y1·W14+Y2·W16+Y3·W18+Y4·W20)
(28)

EstE f f ANN − L36 =
e(Z1·W21+Z2·W22+Y3·W18+1·W23) − e−(Z1·W21+Z2·W22+Y3·W18+1·W23)

e(Z1·W21+Z2·W22+Y3·W18+1·W23) + e−(Z1·W21+Z2·W22+Y3·W18+1·W23)
(29)

Entropy 2021, 23, 854 11 of 21

where Y1, Y2, Y3 and Y4 are calculated values from the first hidden layer, Z1 and Z2 are
calculated values from the second hidden layer and EstEffANN-L36 is the output value.

Weight factors in both proposed architectures take initial values from the
interval [−1, 0, 1] depending on L1, L2, and L3 levels. After performing the first iter-
ation according to the Taguchi orthogonal vector plan, the value of the cost effect function
is calculated for each of the listed architectures based on Tables 1 and 2. Calculating the
levels for ANN-L27 architecture [1,3] according to Formula (30):

L1W1 = cost1 + cost2 + · · · + cost9
L2W1 = cost10 + cost11 + · · · + cost18
L3W1 = cost19 + cost20 + · · · + cost27
. . .

L1W13 = cost1 + cost5 + · · · + cost26
L1W13 = cost2 + cost6 + · · · + cost27
L1W13 = cost3 + cost4 + · · · + cost25
where cost(i) = Σ MRE(ANN-L27(i))

(30)

Calculating the levels for ANN-L36 architecture [1,3] according to Formula (31):

L1W1 = cost1 + cost2 + · · · + cost18
L2W1 = cost19 + cost20 + · · · + cost36
. . .

L1W23 = cost1 + cost5 + · · · + cost34
L2W23 = cost2 + cost6 + · · · + cost35
L3W23 = cost3 + cost4 + · · · + cost36
where cost(i) = Σ MRE(ANN-L36(i))

(31)

For each subsequent iteration, the interval is divided as follows [1], according to
Formula (32):

L1W1new = L2W1old
L2W1new = L2W1old + (L3W1old − L2W1old)/2

L3W1new = L3W1old
(32)

where the suffix “old” means values from the interval of the previous iteration, and “new”
means the value calculated based on the division of the previous intervals.

Step 4. Defuzzification method

Defuzzification of the data in all three phases of the experiment on four datasets is
performed as follows, according to Formulas (33)–(35):

Xi = (Xmin + µD(Xi))·(Xmax − Xmin) (33)

OA(ANN-L27) = Xi, i = (1, 27) (34)

OA(ANN-L36) = Xi, i =
(

1, 36) (35)

Step 5. Hidden and output layer

The values of the output layer were calculated using the following
Formulas (36)–(38), [1]:

MAEi =
1
n

Σn
i=1|ActEffort EstEffort| (36)

MRE = Deviation/Actual_Effort (37)

Entropy 2021, 23, 854 12 of 21

MRE =
1
n ∑n

i=1 MREi, MMRE = mean(MRE) (38)

In the first step, the deviation as the difference between the actual and estimated value
is calculated. Then, the mean absolute error (MAE) and MRE values for each ANN (i)
network for both proposed architectures, as well as the MMRE of each iteration performed,
were calculated. Finally, the gradient descent (GA) for both ANN architectures is calculated
in all three phases of the experiment. The GA value in our experiment is 0.01 (GA < 0.01)
and is present as follows, according to Formula (39):

GA = MREi1 −MREi2 < 0.01, where I = (1, n), n is a number of ANN (39)

By examining correlation coefficients, such as Spearman’s rho and Pearson’s coeffi-
cient [50,51], we will determine whether the agreement between the actual and estimated
value is good, i.e., whether our approach is reliable and efficient, using Formulas (40)–(43):

PRED(x) =
1
n

n

∑
i=1

{
1, i f MRE ≤ x

0, otherwise
(40)

PRED(k) = count(MRE) < 25% (41)

PRED(k) = count(MRE) < 30% (42)

PRED(k) = count(MRE) < 50%, where k = 25, 30 and 50, respectively (43)

During all three phases of the experiment, the prediction was monitored as another
important indicator of the reliability and safety of our proposed approach.

Step 6. The obtained results are presented and discussed in the next section.

The second phase of our experiment is data testing, which is performed according
to the same robust design algorithm on the same dataset but with other selected projects.
The third phase of our experiment is validation, which is also performed by the same
algorithm but on different datasets. Finally, testing and validation are performed on the
Winner network (the network that gives the best results for each of the two proposed ANN
architectures).

4. Obtained Results

In the first phase of training using the first proposed activation sigmoid function, the
number of iterations on a small cluster was 6, while in the medium cluster it was 5. For a
large cluster and a very large cluster, the number of required iterations was 7. The lowest
MMRE value is achieved with the proposed ANN-L27 architecture over a large cluster
(38.6%). Both ANNs achieve similar MMRE values over the medium cluster; for ANN-L27,
the MMRE value is 40.9%, while for ANN-L36, the MMRE value is 40.1%. The worst result
is achieved with a small cluster; for ANN-L27, the value of MMRE is 58.0%, while for
ANN-L36, this value is 55.9%. The mean MMRE on the entire dataset (Dataset_1) in the
training phase is better for the ANN-L27 network by 1% and is 48.2%, shown in Table 5.

Entropy 2021, 23, 854 13 of 21

Table 5. MMRE values for both ANNs in all three phases.

MMRE Cluster
MMRE

ANN-L27
(%)

Mean
(MMRE)
ANN-L27

(%)

MMRE
ANN-L36

(%)

Mean
(MMRE)
ANN-L36

(%)

Training
(Dataset_1)

Small 58.0

48.2

55.9

49.2
Medium 40.9 40.1

Large 38.6 47.8
Very Large 55.4 52.9

Testing
(Dataset_2)

Small 54.9

39.7

57.4

37.4
Medium 30.8 31.3

Large 20.3 16.1
Very Large 52.7 44.8

Validation 1
(Dataset_3)

Small 37.5

47.5

42.4

38.8
Medium 57.8 34.8

Large 40.6 53.6
Very Large 47.2 39.2

Validation 2
(Dataset_4)

Small 68.4

44.1

59.9

40.0
Medium 45.7 41.2

Large 19.2 17.6
Very Large 43.0 41.9

Validation 3
(Dataset_5)

Small 39.7

35.1

37.8

36.6
Medium 41.6 46.0

Large 20.6 25.7
Very Large 38.2 36.9

Validation 4
(Dataset_6)

Small 16.9

30.1

15.9

31.1
Medium 35.8 36.0

Large 29.0 34.4
Very Large 38.8 38.0

In the second phase of testing, using the first proposed activation sigmoid function,
the number of iterations is the same as in the previous phase. The best result of the MMRE
value is achieved by a large cluster with ANN-L36 architecture (16.1%), while the worst
result is achieved with a small cluster of both proposed architectures. At this stage of the
experiment, the mean value of MRE over (Dataset_2) is better in ANN-L36 by 2.3% and is
37.4% Table 5.

The third phase of the experiment includes four validation datasets of the first pro-
posed activation sigmoid function. In the first validation set, the best result is achieved
with a small cluster of the proposed ANN-L27 architecture (37.5%), while the worst value
is achieved on the medium cluster of the same architecture and is 57.8%. The mean value of
MMRE over (Dataset_3) on all clusters is 8.5% better in the proposed ANN-L36 architecture
and is 38.8%. In the second validation set, the lowest value of MMRE is achieved on a large
cluster with ANN-L36 architecture (17.6%), while the worst result is achieved on a small
cluster of ANN-L27 architecture (68.4%). The mean MMRE value over (Dataset_4) is 3.9%
better in the proposed ANN-L36 architecture than in ANN-L27 and is 40.0%. In the third
validation set, the best result was achieved by the ANN-L27 architecture on a large cluster
(20.6%). The mean value of MMRE over (Dataset_5) is better by 1.5% with the ANN-L27
architecture and is 35.1%. In the fourth validation set, the best result is achieved by a small
cluster with ANN-L36 architecture (15.9%), and the total observed mean value of MMRE
over (Dataset_6) is better with the proposed architecture ANN-L27 by 1% and is 30.1%, as
shown in Table 5.

Analogous to the previous phases of the experiment, in all calculations, instead of
the sigmoid activation function, a hyperbolic tangent activation function was used. By
comparative analysis of the obtained results, using two different activation functions
on two proposed architectures and six different datasets, it can be concluded that the
hyperbolic tangent function as activation gives 1.5–2-times worse results of MMRE values
compared to the sigmoid activation function. In the first training phase, the MMRE value

Entropy 2021, 23, 854 14 of 21

was significantly better for the ANN-L27 architecture and was 68.0%. In the second phase of
testing, the ANN-L27 architecture gives a better MMRE value (52.2%). In all experimental
validation sets, the ANN-L27 architecture gives better results, although they are much
worse than the first proposed sigmoid activation function (Table 6, Figure 4).

Table 6. Comparison of MMRE values using sigmoid (S) and hyperbolic tangent (TH) activation
function.

MMRE
MMRE-(S)
ANN-L27

(%)

MMRE-(TH)
ANN-L27

(%)

MMRE-(S)
ANN-L36

(%)

MMRE-(TH)
ANN-L36

(%)

Training
(Dataset_1) 48.2 68.0 49.2 92.9

Testing
(Dataset_2) 39.7 52.2 37.4 61.3

Validation1
(Dataset_3) 47.5 60.1 38.8 81.2

Validation2
(Dataset_4) 44.1 57.0 40.0 86.5

Validation3
(Dataset_5) 35.1 49.7 36.6 50.3

Validation4
(Dataset_6) 30.1 46.5 31.1 48.7

Figure 4. Graphical representation comparing MMRE values with two different activation functions.

The correlation value between actual effort and estimated effort was monitored during
all phases of the experiment on all datasets for both proposed architectures. It can be con-
cluded that both correlation coefficients in the first approach using the sigmoid activation
function are greater than 0.5, and that the highest correlation coefficient on Dataset_4 and
according to Spearman is 0.997 for the ANN-L27 network and 0.994 for the ANN-L36
network. In the second approach, where the hyperbolic tangent activation function was
used, the values of the correlation coefficients were not calculated because the MMRE value
was unsatisfactory, as shown in Table 7.

Entropy 2021, 23, 854 15 of 21

Table 7. Values of correlation coefficients.

Correlation
ActEffort and

EstEffort

Pearson
ANN-L27

Pearson
ANN-L36

Spearman’s rho
ANN-L27

Spearman’s rho
ANN-L36

Dataset_1 0.573 0.603 0.866 0.910
Dataset_2 0.937 0.962 0.873 0.874
Dataset_3 0.591 0.638 0.542 0.851
Dataset_4 0.836 0.765 0.997 0.944
Dataset_5 0.824 0.837 0.541 0.547
Dataset_6 0.779 0.773 0.857 0.782

As another confirmation of our proposed experiment’s durability, robustness, and
accuracy, the prediction was monitored during all three phases on the six datasets used for
the proposed architectures in the first approach of the sigmoid activation function. The
prediction on three different criteria, 25, 30, and 50, showed that a large number of projects
meet the given conditions. The prediction on the 25% criterion is the best in the second
phase of testing, and is 50% for ANN-L36. The prediction on the 30% criterion achieves
the best result in the third validation set of 56.3% for ANN-L36. Finally, the 50% criterion
prediction is 100% in both the testing phase for the ANN-L27 architecture and the third
validation set for the ANN-L36, as shown in Table 8.

Table 8. Prediction values for both architectures.

PRED (%) PRED (25)
ANN-L27

PRED (25)
ANN-L36

PRED (30)
ANN-L27

PRED (30)
ANN-L36

PRED (50)
ANN-L27

PRED (50)
ANN-L36

Training 17.8 17.8 24.4 23.3 47.8 46.7
Testing 45.0 50.0 50.0 55.0 100.0 95.0

Validation1 27.5 32.5 32.5 42.5 62.5 72.5
Validation2 18.3 18.3 21.7 26.7 38.3 46.7
Validation3 25.0 31.3 45.0 56.3 90.0 100.0
Validation4 35.0 36.3 46.3 45.0 85.0 77.5

The main goal of our experiment is to find the ANN architecture that gives the best
value for MMRE. In this experiment, a more complex ANN-L36 architecture was chosen,
which, unlike the ANN-L27, has two hidden layers, in the expectation that it will give
a better MMRE value. Upon completing our experiment, we found that the new, more
complex ANN-L36 architecture yields a 1% better error value than the proposed ANN-L27.
This leads to the conclusion that a more complex architecture does not give a significantly
better error value. On the other hand, for the needs of the software industry and the creation
of an adequate tool that will be able to estimate the obtained parameter successfully, the
obtained error value can be used depending on the size of the project on specific clusters,
as shown in Figure 5.

Entropy 2021, 23, 854 16 of 21

Figure 5. Selection of the appropriate ANN architecture for estimating the MMRE value of a
particular scenario.

Support Vector Regression in Machine Learning

In order to confirm the correctness and reliability of the proposed approach and its
comparison with other artificial intelligence tools, the Support Vector Regression (SVR)
algorithm was used. SVR is a popular machine-learning (ML) algorithm and stems from
the use of observed data for training. The SVR is a robust and proficient technique for both
classification and regression. In addition, it minimizes the expected error, thus reducing
the problem of overfitting [52,53]. The SVR machine algorithm divides the plane by the
function f into two parts, so that the points (project input values) lie above or below the
function f. Three different functions inside a kernel in SVR with radial basis function (RBF)
were used:

• linear kernel function,
• quadratic kernel function,
• cubic kernel function.

The obtained results show that the estimated value in the training part of the exper-
iment, based on three input variables of E, PEMi, and KLOC, has a very high degree of
correlation (deterministic coefficient—R2). The R2 values are shown in Table 9. Graphi-
cal representations of the actual and estimated values using the SVR algorithm and the
corresponding kernel functions are shown in Figures 6 and 7.

Table 9. R2 values using different kernel functions based on SVR (RBF).

SVR (RBF) ActEffort EstEffort MMRE (%)

R2 Linear 0.477 0.845 52.9%
R2 Cubic 0.511 0.908 63.7%

R2 Quadratic 0.506 0.845 68.4%

Entropy 2021, 23, 854 17 of 21

Figure 6. Graphical representation using different kernel functions based on SVR (RBF) for ActEffort
on the training dataset.

Figure 7. Graphical representation using different kernel functions based on SVR (RBF) for EstEffort
on the training dataset.

The MMRE value for all three kernel functions used in the SVR algorithm is slightly
higher than the proposed approach using ANN and Taguchi orthogonal arrays. Based on
the obtained results, it can be concluded that our proposed approach is stable, reliable, and
efficient even when used by other machine-learning tools.

5. Threats to Validity
5.1. Internal Validity

The choice of methods, appropriate coding and decoding techniques, and the value
assignment for all the experimental parameters in the presented study are common threats
to internal validity in the literature on model-based software effort estimation. In our exper-
iment, all these validity threats were already handled using hyperparameter optimization
via the Taguchi method, based on orthogonal arrays (a unique set of Latin squares), which
demonstrated an effective apparatus in a robust design, i.e., an optimization search tech-
nique. This robust design method combines the input values (signals) with weights using
the appropriate activation function to obtain the output value. One of the requirements
in this experiment is to obtain the smallest number of iterations performed to shorten the
estimation time. Two simple architectures, constructed according to appropriate orthogonal
plans to avoid overfitting, are presented. The presented experiment shows the efficient

Entropy 2021, 23, 854 18 of 21

application and the required accuracy of estimating the convergence rate of the proposed
architectures. Our approach uses the orthogonal array tuning method (OATM), which
always gives good results and requires a much smaller number of experiments to find the
optimal solution. Using the OATM method, the hyperparameters are the levels. In our
proposed model, we use three levels: L1, L2, and L3 according to works [1–3], and, based
on these levels, we build the F-L (factor-level) table. The optimum parameter set is believed
to be the most suitable setup for each test project case in the experiments.

5.2. External Validity

This study used six well-known datasets with sufficient project data metrics (obser-
vations greater than an unknown number of factors to be determined). In addition, two
proposed ANN architectures with 13 and 23 parameters for ANN-L27 and ANN-L36,
respectively, were used. The COCOMO attributes were used as predictors of scale factors,
cost drivers, and software size in KLOC. These projects are collected from different com-
panies and countries, and they are heterogeneous in terms of their features: this makes
them challenging for evaluating the effort estimation with ANN architectures in software
development project techniques. By dividing the interval in half at every iteration, the
search converges extremely quickly, i.e., in fewer than 10 iterations (the search interval
for a weight shrinks three orders of magnitude in ten steps). The orthogonal array tuning
method (OATM) proposed always gives good results and requires a much smaller number
of experiments, i.e., observations (historical project data) in the dataset, to find the optimal
solution. However, we believe that it will benefit from replicating this study using other
software project datasets.

6. Conclusions and Future Work

In the presented experiment, we showed that the estimation of software projects
when minimizing MMRE does not depend exclusively on the complexity of the ANN
architecture. We found that the error in the ANN-L36 architecture was 1% better than the
error in the ANN-L27 architecture. In our approach, using clustering and fuzzification
methods, we have shown that the proposed models are reliable, efficient, accurate, and
applicable to many projects. We conclude that there is a big difference in the choice
of activation functions, where, when using the sigmoid activation function concerning
the hyperbolic tangent, we get 1.5 to 2-times better results. Therefore, correlation and
prediction parameters for models that used the hyperbolic tangent activation function
were not monitored in further analyses. The main advantages of our proposed approach
are that the number of iterations is small (fewer than 8), which significantly shortens the
estimation time, the simple ANN architecture of the two proposed networks ANN-L27 and
ANN-L36, the high coverage of different values of software projects which was checked
on six different datasets, and minimum MMRE value. Possible disadvantages of the
proposed approach may be further reductions in MMRE knowledge using other methods
and datasets, including the size of attributes expressed in source code lines. However, there
are no particular restrictions to the application of this approach. The obtained results can
be used to construct an appropriate tool that would allow software companies, software
engineers, project managers, and test engineers to efficiently, quickly, and safely assess the
project’s development using the fundamental value of actual effort in a particular cluster.
Future research is focused on constructing a tool based on the idea proposed in this paper.
In addition, the use of a different number of input signals and checking over other attribute
sizes is in progress. Advantages and limitations of the proposed approach are:

• The choice of methods, data normalization techniques, and the value assigned for all
the experimental parameters are common limitations in the literature on model-based
software effort estimation. In the presented study, it is, however, our belief that all
these limitations were already handled by the use of hyperparameter optimization via
the Taguchi method based on orthogonal arrays (a unique set of Latin squares);

Entropy 2021, 23, 854 19 of 21

• The presented experiment in the paper has been tested and validated several times
through different data sets, thus achieving an extensive coverage of input sizes
(project values);

• The minimum number of iterations was performed, i.e., shortened required
execution time;

• With this approach, we achieved a stable and reliable estimation accuracy that is
acceptable compared to other estimation models and software development efforts,
based on three attributes as in the COCOMO estimation model;

• According to ANN architecture, and constructions based on orthogonal vector plans,
other estimation techniques, such as use case point and functional point, will
be considered.

Author Contributions: Conceptualization, N.R., D.R., M.I. and L.L.; Data curation, N.R., D.R., M.I.
and L.L.; Formal analysis, N.R., D.R., M.I. and L.L.; Funding acquisition, N.R., D.R., M.I. and L.L.;
Investigation, N.R., D.R., M.I. and L.L.; Methodology, N.R., D.R., M.I. and L.L.; Project administration,
N.R., D.R., M.I. and L.L.; Resources, N.R., D.R., M.I. and L.L.; Software, N.R., D.R., M.I. and L.L.;
Supervision, N.R., D.R., M.I. and L.L.; Validation, N.R., D.R., M.I. and L.L.; Visualization, N.R., D.R.,
M.I. and L.L.; Writing—original draft, N.R., D.R., M.I. and L.L.; Writing—review & editing, N.R.,
D.R., M.I. and L.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: This study is based on the research and data that will be presented in
detail in the doctoral dissertation of Nevena Rankovic.

Acknowledgments: Mirjana Ivanovic acknowledge financial support of the Ministry of Educa-
tion, Science and Technological Development of the Republic of Serbia (Grant No. 451-03-9/2021-
14/200125).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Stoica, A.; Blosiu, J. Neural Learning using orthogonal arrays. Adv. Intell. Syst. 1997, 41, 418.
2. Khaw, J.F.C.; Lim, B.S.; Lim, L.E.N. Optimal design of neural networks using the Taguchi method. Neurocomputing 1995, 7,

225–245. [CrossRef]
3. Rankovic, N.; Rankovic, D.; Ivanovic, M.; Lazic, L. A New Approach to Software Effort Estimation Using Different Artificial

Neural Network Architectures and Taguchi Orthogonal Arrays. IEEE Access 2021, 9, 26926–26936. [CrossRef]
4. Boehm, B.W. Software cost estimation meets software diversity. In Proceedings of the 39th International Conference on Software

Engineering Companion (ICSE-C’17), Buenos Aires, Argentina, 20–28 May 2017; pp. 495–496.
5. Boehm, B.; Abts, C.; Chulani, S. Software development cost estimation approaches-A survey. Ann. Softw. Eng. 2000, 10, 177–205.

[CrossRef]
6. Fadhil, A.A.; Alsarraj, R.G.; Altaie, A.M. Software Cost Estimation Based on Dolphin Algorithm. IEEE Access 2020. [CrossRef]
7. Kumar, P.S.; Behera, H.S.; Kumari, A.; Nayak, J.; Naik, B. Advancement from neural networks to deep learning in software effort

estimation: Perspective of two decades. Comput. Sci. Rev. 2020, 38, 100–288.
8. Saavedra Martínez, J.I.; Valdés Souto, F.; Rodríguez Monje, M. Analysis of automated estimation models using machine learning.

In Proceedings of the 8th International Conference in Software Engineering Research and Innovation (CONISOFT), IEEE,
Chetumal, Mexico, 4–6 November 2020; pp. 110–116. [CrossRef]

9. Mahmood, Y.; Kama, N.; Azmi, A.; Khan, A.S.; Ali, M. Software Effort Estimation Accuracy Prediction of Machine Learning
Techniques: A Systematic Performance Evaluation. J. Softw. Pract. Exp. 2021. [CrossRef]

10. BaniMustafa, A. Predicting software effort estimation using machine learning techniques. In Proceedings of the 8th International
Conference on Computer Science and Information Technology (CSIT 2018), Amman, Jordan, 11–12 July 2018; pp. 249–256.
[CrossRef]

11. Langsari, K.; Sarno, R. Optimizing effort and time parameters of COCOMO II estimation using fuzzy multiobjective PSO. In
Proceedings of the 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Yogyakarta,
Indonesia, 19–21 September 2017; pp. 1–6. [CrossRef]

http://doi.org/10.1016/0925-2312(94)00013-I
http://doi.org/10.1109/ACCESS.2021.3057807
http://doi.org/10.1023/A:1018991717352
http://doi.org/10.1109/ACCESS.2020.2988867
http://doi.org/10.1109/CONISOFT50191.2020.00025
http://doi.org/10.1002/spe.3009
http://doi.org/10.1109/CSIT.2018.8486222
http://doi.org/10.1109/EECSI.2017.8239157

Entropy 2021, 23, 854 20 of 21

12. Gharehchopogh, F.S. Neural networks application in software cost estimation: A case study. In Proceedings of the 2011
International Symposium on Innovations in Intelligent Systems and Applications, Istanbul, Turkey, 15–18 June 2011; pp. 69–73.
[CrossRef]

13. Kumar, P.S.; Behera, H.S. Estimating Software Effort Using Neural Network: An Experimental Investigation. In Computational
Intelligence in Pattern Recognition; Springer: Singapore, 2020; pp. 165–180.

14. Boehm, B.W.; Abts, C.; Brown, A.W.; Chulani, S.; Clark, B.K.; Horowitz, E. Software Cost Estimation with Cocomo II; Prentice Hall:
Hoboken, NJ, USA, 2000; Volume 1.

15. Nassif, A.B.; Azzeh, M.; Idri, A.; Abran, A. Software development effort estimation using regression fuzzy models. Comput. Intell.
Neurosci. 2019. [CrossRef]

16. Safari, S.; Erfani, A.R. A new method for fuzzification of nested dummy variables by fuzzy clustering membership functions and
its application in financial economy. Iran. J. Fuzzy Syst. 2020, 17, 13–27.

17. Kaushik, A.; Tayal, D.K.; Yadav, K. A fuzzified story point approach for agile projects. Int. J. Agil. Syst. Manag. 2020, 13, 103–129.
[CrossRef]

18. Orthogonal Arrays (Taguchi Designs). Available online: https://www.york.ac.uk/depts/maths/tables/orthogonal.htm (accessed
on 4 February 2020).

19. Taguchi Orthogonal Arrays. Available online: https://www.me.psu.edu/cimbala/me345/Lectures/Taguchi_orthogonal_arrays.
pdf (accessed on 4 February 2020).

20. Goyal, S.; Parashar, A. Machine learning application to improve COCOMO model using neural networks. Int. J. Inf. Technol.
Comput. Sci. 2018, 10, 35–51. [CrossRef]

21. Hoseinzadeh, S.; Sohani, A.; Ashrafi, T.G. An artificial intelligence-based prediction way to describe flowing a Newtonian
liquid/gas on a permeable flat surface. J. Therm. Anal. Calorim. 2021, 1, 1–7.

22. Sohani, A.; Hoseinzadeh, S.; Samiezadeh, S.; Verhaert, I. Machine learning prediction approach for dynamic performance
modeling of an enhanced solar still desalination system. J. Therm. Anal. Calorim. 2021, 1, 1–12.

23. Rankovic, D.; Rankovic, N.; Ivanovic, M.; Lazic, L. Convergence rate of Artificial Neural Networks for estimation in software
development projects. Inf. Softw. Technol. 2021, 138, 106627. [CrossRef]

24. Suresh, K.; Dillibabu, R. A novel fuzzy mechanism for risk assessment in software projects. Soft Comput. 2020, 24, 1683–1705.
[CrossRef]

25. Hall Elaine, M. Managing Risk: Methods for Software Systems Development; SEI Series in Software Engineering; Addison Wesley
Longman: Harlow, Essex, UK, 1998; p. 374. ISBN 0-201-25592-8.

26. Pressman, R.S. Software Engineering—A Practitioner’s Approach; Palgrave Macmillan: Landon, UK, 2001; p. 696.
27. Iranmanesh, S.H.; Khodadadi, S.B.; Taheri, S. Risk assessment of software projects using fuzzy inference system. In Proceedings

of the 2009 International Conference on Computers & Industrial Engineering IEEE, Troyes, France, 6–9 July 2009; pp. 1149–1154.
28. Madachy, R. Heuristic Risk Assessment Using Cost Factors. IEEE Softw. 1997, 14, 51–59. [CrossRef]
29. Odzaly, E.E.; Greer, D.; Sage, P. Software Risk Management Barriers: Empirical Study. In Proceedings of the 3rd International

Symposium on Empirical Software Engineering and Measurement, Lake Buena Vista, FL, USA, 15–16 October 2009; pp. 418–421.
[CrossRef]

30. Kaur, I.; Narula, G.S.; Wason, R.; Jain, V.; Baliyan, A. Neuro fuzzy-COCOMO II model for software cost estimation. Int. J. Inf.
Technol. 2018, 10, 181–187. [CrossRef]

31. Subasri, R.; Meenakumari, R.; Panchal, H.; Suresh, M.; Priya, V.; Ashokkumar, R.; Sadasivuni, K.K. Comparison of BPN, RBFN
and wavelet neural network in induction motor modelling for speed estimation. Int. J. Ambient. Energy 2020, 17, 1–6. [CrossRef]

32. Mukherjee, S.; Malu, R.K. Optimization of project effort estimate using neural network. In Proceedings of the 2014 IEEE
International Conference on Advanced Communications, Control and Computing Technologies, Ramanathapuram, India, 8–10
May 2014; pp. 406–410. [CrossRef]

33. Apolo-Apolo, O.E. A mixed data-based deep neural network to estimate leaf area index in wheat breeding trials. Agronomy 2020,
10, 175. [CrossRef]

34. Pandey, M.; Litoriya, R.; Pandey, P. Validation of existing software effort estimation techniques in context with mo-bile software
applications. Wirel. Pers. Commun. 2020, 110, 1659–1677. [CrossRef]

35. Pandey, M.; Litoriya, R.; Pandey, P. Applicability of Machine Learning Methods on Mobile App Effort Estimation: Validation and
Performance Evaluation. Int. J. Softw. Eng. Knowl. Eng. 2020, 30, 23–41. [CrossRef]

36. Ali, A.; Gravino, C. Improving software effort estimation using bio-inspired algorithms to select relevant features: An empirical
study. Sci. Comput. Program. 2021, 205, 102621. [CrossRef]

37. Kumar, P.S.; Behera, H.S.; Nayak, J.; Naik, B. A pragmatic ensemble learning approach for effective software effort estimation.
Innov. Syst. Softw. Eng. 2021, 1, 1–17.

38. Zhao, H.; Zhang, C. An online-learning-based evolutionary many-objective algorithm. Inf. Sci. 2020, 509, 1–21. [CrossRef]
39. Dulebenets, M.A. An Adaptive Island Evolutionary Algorithm for the berth scheduling problem. Memetic Comput. 2020, 12,

51–72. [CrossRef]
40. Liu, Z.Z.; Wang, Y.; Huang, P.Q. AnD: A many-objective evolutionary algorithm with angle-based selection and shift-based

density estimation. Inf. Sci. 2020, 509, 400–419. [CrossRef]

http://doi.org/10.1109/INISTA.2011.5946160
http://doi.org/10.1155/2019/8367214
http://doi.org/10.1504/IJASM.2020.107902
https://www.york.ac.uk/depts/maths/tables/orthogonal.htm
https://www.me.psu.edu/cimbala/me345/Lectures/Taguchi_orthogonal_arrays.pdf
https://www.me.psu.edu/cimbala/me345/Lectures/Taguchi_orthogonal_arrays.pdf
http://doi.org/10.5815/ijitcs.2018.03.05
http://doi.org/10.1016/j.infsof.2021.106627
http://doi.org/10.1007/s00500-019-03997-2
http://doi.org/10.1109/52.589234
http://doi.org/10.1109/ESEM.2009.5316014
http://doi.org/10.1007/s41870-018-0083-6
http://doi.org/10.1080/01430750.2020.1817779
http://doi.org/10.1109/ICACCCT.2014.7019474
http://doi.org/10.3390/agronomy10020175
http://doi.org/10.1007/s11277-019-06805-0
http://doi.org/10.1142/S0218194020500023
http://doi.org/10.1016/j.scico.2021.102621
http://doi.org/10.1016/j.ins.2019.08.069
http://doi.org/10.1007/s12293-019-00292-3
http://doi.org/10.1016/j.ins.2018.06.063

Entropy 2021, 23, 854 21 of 21

41. Pasha, J.; Dulebenets, M.A.; Kavoosi, M.; Abioye, O.F.; Wang, H.; Guo, W. An Optimization Model and Solution Algorithms for
the Vehicle Routing Problem with a “Factory-in-a-Box”. IEEE Access 2020, 8, 134743–134763. [CrossRef]

42. D’Angelo, G.; Pilla, R.; Tascini, C.; Rampone, S. A proposal for distinguishing between bacterial and viral meningitis using
genetic programming and decision trees. Soft Comput. 2019, 23, 11775–11791. [CrossRef]

43. Panda, N.; Majhi, S.K. How effective is the salp swarm algorithm in data classification. In Computational Intelligence in Pattern
Recognition; Springer: Singapore, 2020; pp. 579–588.

44. Hastings, T.; Sajeev, A. A vector-based approach to software size measurement and effort estimation. IEEE Trans. Softw. Eng.
2001, 27, 337–350. [CrossRef]

45. Phannachitta, P. On an optimal analogy-based software effort estimation. Inf. Softw. Technol. 2020, 125, 106330. [CrossRef]
46. Shukla, S.; Kumar, S. Applicability of Neural Network Based Models for Software Effort Estimation. In Proceedings of the 2019

IEEE World Congress on Services (SERVICES), Milan, Italy, 8–13 July 2019; pp. 339–342. [CrossRef]
47. Promise Software Engineering Repository. Available online: http://promise.site.uottawa.ca/SERepository/datasets-page.html

(accessed on 4 February 2020).
48. Chhabra, S.; Singh, H. Optimizing Design of Fuzzy Model for Software Cost Estimation Using Particle Swarm Optimization

Algorithm. Int. J. Comput. Intell. Appl. 2020, 19, 2050005. [CrossRef]
49. Kataev, M.; Bulysheva, L.; Xu, L.; Ekhlakov, Y.; Permyakova, N.; Jovanovic, V. Fuzzy model estimation of the risk factors impact

on the target of promotion of the software product. Enterp. Inf. Syst. 2020, 14, 797–811. [CrossRef]
50. Zhang, L.; Lu, D.; Wang, X. Measuring and testing interdependence among random vectors based on Spearman’s ρ and Kendall’s

τ. Comput. Stat. 2020, 35, 1685–1713. [CrossRef]
51. Fu, T.; Tang, X.; Cai, Z.; Zuo, Y.; Tang, Y.; Zhao, X. Correlation research of phase angle variation and coating performance by

means of Pearson’s correlation coefficient. Prog. Org. Coat. 2020, 139, 105–459. [CrossRef]
52. Manali, P.; Rajib, M.; Ratnam, J.V.; Masami, N.; Behera, S.K. Long-lead Prediction of ENSO Modoki Index using Machine Learning

algorithms. Sci. Rep. 2020, 10, 365.
53. Liang, H.; Zou, J.; Li, Z.; Khan, M.J.; Lu, Y. Dynamic evaluation of drilling leakage risk based on fuzzy theory and PSO-SVR

algorithm. Future Gener. Comput. Syst. 2019, 95, 454–466. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.3010176
http://doi.org/10.1007/s00500-018-03729-y
http://doi.org/10.1109/32.917523
http://doi.org/10.1016/j.infsof.2020.106330
http://doi.org/10.1109/SERVICES.2019.00094
http://promise.site.uottawa.ca/SERepository/datasets-page.html
http://doi.org/10.1142/S1469026820500054
http://doi.org/10.1080/17517575.2020.1713407
http://doi.org/10.1007/s00180-020-00973-5
http://doi.org/10.1016/j.porgcoat.2019.105459
http://doi.org/10.1016/j.future.2018.12.068

	Introduction
	Related Work
	Proposed Approach
	Robust Design Technique—Taguchi Orthogonal Arrays
	Used Dataset
	Applied Methodology

	Obtained Results
	Threats to Validity
	Internal Validity
	External Validity

	Conclusions and Future Work
	References

