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Abstract: Polar coding gives rise to the first explicit family of codes that provably achieve capacity
with efficient encoding and decoding for a wide range of channels. However, its performance at short
blocklengths under standard successive cancellation decoding is far from optimal. A well-known
way to improve the performance of polar codes at short blocklengths is CRC precoding followed by
successive-cancellation list decoding. This approach, along with various refinements thereof, has
largely remained the state of the art in polar coding since it was introduced in 2011. Recently, Arıkan
presented a new polar coding scheme, which he called polarization-adjusted convolutional (PAC)
codes. At short blocklengths, such codes offer a dramatic improvement in performance as compared
to CRC-aided list decoding of conventional polar codes. PAC codes are based primarily upon
the following main ideas: replacing CRC codes with convolutional precoding (under appropriate
rate profiling) and replacing list decoding by sequential decoding. One of our primary goals in
this paper is to answer the following question: is sequential decoding essential for the superior
performance of PAC codes? We show that similar performance can be achieved using list decoding
when the list size L is moderately large (say, L > 128). List decoding has distinct advantages over
sequential decoding in certain scenarios, such as low-SNR regimes or situations where the worst-case
complexity/latency is the primary constraint. Another objective is to provide some insights into
the remarkable performance of PAC codes. We first observe that both sequential decoding and list
decoding of PAC codes closely match ML decoding thereof. We then estimate the number of low
weight codewords in PAC codes, and use these estimates to approximate the union bound on their
performance. These results indicate that PAC codes are superior to both polar codes and Reed–Muller
codes. We also consider random time-varying convolutional precoding for PAC codes, and observe
that this scheme achieves the same superior performance with constraint length as low as ν = 2.

Keywords: coding theory; polar codes; convolutional codes; list decoding; sequential decoding

1. Introduction

Polar coding, pioneered by Arıkan [1], gives rise to the first explicit family of codes
that provably achieve capacity for a wide range of channels with efficient encoding and
decoding. However, it is well known that at short block lengths the performance of polar
codes is far from optimal.

For example, the performance of a polar code of length 128 and rate 1/2 on the binary-
input AWGN channel under standard successive cancellation (SC) decoding is shown
in Figure 1. Figure 1 largely reproduces the simulation results presented by Arıkan in [2].
Codes of length 128 and rate 1/2 serve as the running example throughout Arıkan’s recent
paper [2], and we will also adopt this strategy herein. We make no attempt to optimize
these codes; rather, our goal is to follow Arıkan [2] as closely as possible. Also shown
in Figure 1 is the BIAWGN dispersion bound approximation for such codes. This can be
thought of as an estimate of the performance of random codes under ML decoding (see [3]).
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Clearly, at length 128, there is a tremendous gap between polar codes under SC decoding
and the best achievable performance.
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Figure 1. Performance of PAC codes versus polar codes.

As shown in [4] and other papers, the reasons for this gap are two-fold: the polar code
itself is weak at such short lengths and SC decoding is weak in comparison with ML decoding.
A well-known way to address both problems is CRC precoding followed by successive-
cancellation list (SCL) decoding. Following [2], the performance of CRC-aided polar codes
(with 8-bit CRC) of rate 1/2 under SCL decoding with list-size 32 is also shown in Figure 1.
This approach, along with various refinements thereof (see [5–7] and other papers), has largely
remained the state of the art in polar coding since it was first introduced in [4]. It is currently
used as the coding scheme for control and physical broadcast channels in the enhanced mobile
broadband (eMBB) mode and the ultra-reliable low latency communications (URLLC) mode
of the fifth generation (5G) wireless communications standard [8].

In the Shannon Lecture at the ISIT in 2019, Erdal Arıkan presented a significant break-
through in polar coding, which significantly boosts the performance of polar codes at
short lengths. Specifically, Arıkan [2] proposed a new polar coding scheme, which he calls
polarization-adjusted convolutional (PAC) codes. Remarkably, under sequential decoding,
the performance of PAC codes is very close to the BIAWGN dispersion bound approxima-
tion [3,9]. The performance of PAC codes of length 128 and rate 1/2 is also shown (in blue
and green) in Figure 1.

1.1. Brief Overview of PAC Codes

Arıkan’s PAC codes are largely based upon the following two innovations: replacing
CRC precoding with convolutional precoding (under appropriate rate-profiling, discussed
later in this section) and replacing list decoding by sequential decoding. The encoding and
decoding of PAC codes are shown schematically in Figure 2, which is reproduced from [2].

Referring to Figure 2, let us consider an (n, k) PAC code. On the encoding side, Arıkan
uses a rate-1 convolutional precoder concatenated with a standard polar encoder. Only k
out of the n bits of the input v to the convolutional precoder carry the information (or data)
vector d. The remaining n− k bits of v are set to 0. Just like for conventional polar codes,
the overall performance of the resulting PAC code crucially depends upon which positions
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in v carry information and which are frozen to 0. This choice of frozen positions in v, Arı-
kan has termed rate-profiling. Unlike conventional polar codes, the optimal rate-profiling
choice is not known. In fact, it is not even clear what optimization criterion should govern
this choice, although we hope to shed some light on this in Section 5.
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Figure 2. PAC coding scheme.

The main operation on the decoder side is sequential decoding. Specifically, Arıkan
employs Fano decoding (as described in [10] and in Section 6.9 of [11]) of the convolutional
code to estimate its input v. The path metrics used by this sequential decoder are obtained
via repeated calls to the successive-cancellation decoder for the underlying polar code.

1.2. Our Contributions

One of our main goals in this paper is to answer the following question: is sequential
decoding essential for the superior performance of PAC codes? Is it possible, or perhaps
advantageous, to replace the sequential decoder in Figure 2 by an alternative decoding
method? We show that, indeed, similar performance can be achieved using list decoding,
provided the list size L is moderately large. This conclusion is illustrated in Figure 1, where
we use a list of size L = 128 to closely match the performance of the sequential decoder.
It remains to be seen which of the two approaches is advantageous in terms of complexity.
While a comprehensive answer to this question would require implementation in hardware,
we carry out a qualitative complexity comparison in Section 4. This comparison indicates
that list decoding has distinct advantages over sequential decoding in certain scenarios.
In particular, list decoding is certainly advantageous in low-SNR regimes or in situations
where the worst-case complexity/latency is the primary constraint.

Another objective of this paper is to provide some insights into the remarkable perfor-
mance of PAC codes observed in simulations. Although theoretical analysis of list decoding
remains an open problem even for conventional polar codes, it has been observed in numer-
ous studies that list decoding quickly approaches the performance of maximum-likelihood
decoding with increasing list size L. As expected, we find this to be the case for PAC
codes as well (see Figure 7). Fortunately, maximum-likelihood decoding of linear codes is
reasonably well understood: its performance is governed by their weight distribution, and
can be well approximated by the union bound, especially at high SNRs. Motivated by this
observation, we use the method of [5] to estimate the number of low-weight codewords
in PAC codes, under polar and RM rate profiles (introduced by Arıkan [2]). We find that
PAC codes with the RM rate-profile are superior to both polar codes (with or without
CRC precoding) and the (128,64,16) Reed–Muller code. For more on this, see Table 3 and
Figures 9 and 10. We also introduce and study random time-varying convolutional precod-
ing for PAC codes. We find that, as compared with the convolutional precoding introduced
in [2], time-varying convolutional precoding is much less sensitive to the constraint length.
Arıkan uses in [2] a convolutional code generated by c = (1, 0, 1, 1, 0, 1, 1), whose constraint
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length is ν = 6. In Figure 12, we observe that under list decoding, random time-varying
precoding achieves essentially the same performance with constraint length ν = 2.

1.3. Related Work

Numerous attempts have been made to improve the performance of polar codes at
short block lengths. Various approaches based on replacing successive-cancellation de-
coding with more advanced decoders include list decoding [4], adaptive list decoding [5],
sequential decoding [6,12], and stack decoding [7], among others. When concatenating
a polar code with an outer code, most of the existing work still uses CRC outer codes and
their variants, as originally proposed in [4]. However, many other modifications of the ba-
sic polar-coding paradigm have been extensively studied, including large polarization
kernels [13–21], polar subcodes [17,22–27], “convolutional” polar codes [28–31], and polar-
ized Reed–Muller coding [32–35] among others.

As shown later in this paper, in Arıkan’s PAC codes, convolutional precoding com-
bined with rate-profiling can be regarded as replacing traditional frozen bits with dy-
namically frozen bits. Polar coding with dynamically frozen bits was first introduced by
Trifonov and Miloslavskaya in [25], and later studied in [17,22,23,25–27,36–38] and other
papers. However, the dynamic freezing patterns in these papers are very different from [2].
Prior to Arıkan’s work [2], convolutional precoding of polar codes was proposed in [39]
and later studied in [40].

Although quite recent, Arıkan’s PAC codes have already attracted considerable inter-
est; see for example [41–47]. While these papers investigate various aspects of PAC codes,
none of them considers list decoding thereof. Finally, we note the work of [48,49], which
investigates both Fano decoding and list decoding of PAC codes. This work is apparently
independent from and contemporaneous with our results herein. The paper of Rowshan,
Burg, and Viterbo [48] was posted on arxiv.org in February 2020, while our work [50]
was submitted for review in January 2020. Our results became available on arxiv.org
in May 2020. The Rowshan-Viterbo paper [49] was posted on arxiv.org in July 2020, after
our results were presented in [50].

1.4. Paper Outline

The rest of this paper is organized as follows. We begin with an overview on Arıkan’s
PAC codes in Section 2, including both their encoding process and sequential decoding.
In Section 3, we present our list-decoding algorithm. In Section 4, we compare it with se-
quential decoding, in terms of both performance and complexity. In Section 5, we endeavor
to acquire some insight into the remarkable performance of PAC codes. First, we show
empirically that both sequential decoding and list decoding thereof are extremely close
to the ML decoding performance. To get a handle on the latter, we estimate the number of
low-weight codewords in PAC codes (and polar codes) under different rate profiles. This
makes it possible to approximate the performance of ML decoding with a union bound. In
Section 6, we introduce and study random time-varying convolutional precoding for PAC
codes, and show that it may be advantageous in terms of the constraint length. We conclude
with a brief discussion in Section 7.

2. Overview of Arıkan’s PAC Codes

For details on conventional polar codes under standard SC decoding, we refer the reader
to Arıkan’s seminal paper [1]. Like polar codes, the block length n of a PAC code is also
a power of 2. That is, n = 2m with m > 1. As shown in Figure 2, the encoding process for an
(n, k) PAC code consists of the following three steps: rate-profiling, convolutional precoding,
and polar encoding. In the first step, the k data (information) bits of the data vector d are
embedded into a data-carrier vector v of length n, at k positions specified by an index set
A ⊆ {0, 1, . . . , n− 1} with |A| = k. The remaining n− k positions in v are frozen to zero.
Arıkan [2] used rate-profiling to refer to this step, along with the choice of the index set A.
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Just like for polar codes, a careful choice of the index set A is crucial to achieve good
performance. Arıkan has proposed in [2] two alternative approaches for selecting this setA.
The first approach, called polar rate-profiling, proceeds as follows. Let W0, W1, . . . , Wn−1
be the n bit-channels, defined with respect to the conventional polar code of length n. In po-
lar rate-profiling,A is chosen so that {Wi : i ∈A} consists of the k best bit-channels in terms
of their capacity. In other words, the capacities of the k bit-channels {Wi : i ∈A} are the k
highest values among I(W0), I(W1), . . . , I(Wn−1). The second approach proposed in [2] is
called RM rate-profiling. Let wt(i) denote the Hamming weight of the binary expansion
of an index i. In RM rate-profiling, we simply pick the k indices of the highest weight, with
ties resolved arbitrarily. In other words, the set {wt(i) : i ∈A} consists of the k largest
values among wt(0), wt(1), . . . , wt(n− 1). Notably, without convolutional precoding, this
choice of A generates Reed–Muller codes (as subcodes of a rate-1 polar code).

In the second step, the data-carrier vector v resulting from the rate-profiling step is en-
coded using a rate-1 convolutional code generated by c = (c0, c1, . . . , cν), with c0 = cν = 1
(the latter can be assumed without loss of generality). This produces another vector
u = (u0, u1, . . . , un−1) of length n, where

u0 = c0v0, u1 = c0v1 + c1v0, u2 = c0v2 + c1v1 + c2v0,

and so on. In general, every bit in u is a linear combination of (ν + 1) bits of v computed
via the convolution operation:

ui =
ν

∑
j=0

cjvi−j (1)

where for i− j < 0, we set vi−j = 0 by convention. Alternatively, this step can be viewed
as a vector-matrix multiplication u = vT, where T is the upper-triangular Toeplitz matrix:

T =




c0 c1 c2 · · · cν 0 · · · 0
0 c0 c1 c2 · · · cν

...
0 0 c0 c1

. . . · · · cν
...... 0

. . . . . . . . . . . .
......

. . . . . . . . . . . . 0
......

. . . 0 c0 c1 c2... 0 0 c0 c1
0 · · · · · · · · · · · · 0 0 c0




(2)

In the third step, the vector u is finally encoded by a conventional polar encoder
as the codeword x = uPm. Here

Pm = Bn

[
1 0
1 1

]⊗m

(3)

where Bn is the n× n bit-reversal permutation matrix (as defined in Section VII of [1]),
and Pm is known as the polar transform matrix. Alternatively, the polar transform can be
defined as in (3) but without the bit-reversal matrix Bn; this has no effect on the performance
of the resulting codes.

With reference to the foregoing discussion, the PAC code in Figure 1 is obtained
via RM rate-profiling using the rate-1 convolutional code generated by c = (1, 0, 1, 1, 0, 1, 1).
This produces the (128,64) PAC code, which is the code studied by Arıkan in [2]. This
specific PAC code will serve as our primary running example throughout the paper.

On the decoding side, Arıkan [2] employs sequential decoding of the underlying
convolutional code to decode the data-carrier vector v. Under the frozen-bit constraints
imposed by rate-profiling, the rate-1 convolutional code becomes an irregular tree code.
There are many different variants of sequential decoding for irregular tree codes, varying
in terms of both the decoding metric used and the algorithm itself. Arıkan [2] uses the Fano
sequential decoder, described in [10,11]. Notably, the path metrics at the input to the se-
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quential decoder are obtained via repeated calls to the successive-cancellation decoder
for the underlying polar code, as shown in Figure 2.

3. List Decoding of PAC Codes

One of our main objectives herein is to determine whether sequential decoding of
PAC codes (cf. Figure 2) can be replaced by list decoding. In this section, we show how
list decoding of PAC codes can be implemented efficiently (see Algorithms 1 and 2). In the
next section, we will consider the performance and complexity of the resulting decoder,
as compared to the sequential decoder of [2].

3.1. PAC Codes as Polar Codes with Dynamically Frozen Bits

To achieve efficient list decoding of PAC codes, we use the list-decoding algorithm
developed in [4]. The complexity of this algorithm is O(Ln log n), where L is the list size.
However, the algorithm of [4] decodes conventional polar codes. In order to make it
possible to decode PAC codes with (a modified version of) this algorithm, we first observe
that PAC codes can be regarded as polar codes with dynamically frozen bits.

Polar coding with dynamically frozen bits was first introduced by Trifonov and
Miloslavskaya in [25], and later studied by the same authors in [26,27]. Let us briefly
describe the general idea. In conventional polar coding, it is common practice to set all
frozen bits to zero. That is, ui = 0 for all i ∈ F , where F ⊂ {0, 1, . . . , n−1} denotes the set
of frozen indices. However, this choice is arbitrary: we can set ui = 1 for some i ∈ F and
ui = 0 for other i ∈ F . What matters is that the frozen bits are fixed and, therefore, known
a priori to the decoder. In [25], it was further observed that in order to be known a priori
to the decoder, the frozen bits do not have to be fixed. Given i ∈ F , we can set

ui = fi(u0, u1, . . . , ui−1) (4)

where fi is a fixed Boolean function (usually, a linear function) known a priori to the decoder.
For all i ∈ F , the decoder can then decide as follows

ûi = fi(û0, û1, . . . , ûi−1) (5)

where û0, û1, . . . , ûi−1 are its earlier decisions. The encoding/decoding process in (4)
and (5) is known as dynamic freezing.

In order to explain how Arıkan’s PAC codes [2] fit into the dynamic freezing frame-
work, let us first introduce some notation. With reference to Section 2, for i = 0, 1, . . . , n−1,
let ui and vi denote the vectors (u0, u1, . . . , ui) and (v0, v1, . . . , vi), respectively. Further, let
Ti,j denote the submatrix of the Toepliz matrix T in (2), consisting of the first (topmost)
i + 1 rows and the first (leftmost) j + 1 columns. With this, it is easy to see that ui = viTi,i
for all i. The matrix Ti,i is upper triangular with det Ti,i = c0 = 1. Hence it is invert-
ible, and we have vi = uiT−1

i,i for all i. Now suppose that i ∈Ac, so that vi is frozen to zero
in the rate-profiling step. Then we have

ui = vi−1Ti−1,i =
(
ui−1T−1

i−1,i−1
)
Ti−1,i (6)

In particular, this means that the last bit ui of the vector ui is an a priori fixed linear
function of its first i bits, as follows:

ui = (u0, u1, . . . , ui−1)T−1
i−1,i−1

(
0, . . . , 0, cν, cν−1, . . . , c1

)t

where (0, . . . , 0, cν, cν−1, . . . , c1)
t represents the last column of the matrix Ti−1,i. Clearly,

the above is a special case of dynamic freezing in (4).
Moreover, it follows that the set F of indices that are dynamically frozen is precisely

the same as in the rate-profiling step, that is F = Ac.
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If i∈A, then vi is an information bit, but the value of ui is determined not only by
vi but by vi−1, vi−2, . . . , vi−ν as well. Thus, when representing PAC codes as polar codes,
the information bits may be also regarded as dynamic.

Finally, note that in implementing the PAC decoder, there is no need to actually invert
a matrix as in (6). Instead, we can successively compute the vector v̂ = (v̂0, v̂1, . . . , v̂n−1)
as follows. If i∈Ac, set v̂i = 0. Otherwise, set

v̂i = ûi −
ν

∑
j=1

cjv̂i−j (7)

where the value of ûi is provided by the polar decoder. Given v̂i, v̂i−1, . . . , v̂i−ν, the values
of the dynamically frozen bits ûi for i∈Ac can be computed using (1). This computation,
along with the one in (7), takes time linear in ν. All that is required is additional memory
to store the vector v̂ = (v̂0, v̂1, . . . , v̂n−1).

Algorithm 1: List Decoder for PAC Codes

Input: The received vector y, the list size L, the generator c = (c0, c1, . . . , cν) for
the convolutional precoder as global

Output: Decoded codeword x̂

// Initialization
1 · · · lines 2–5 of Algorithm 12 in [4]
2 shiftRegisters← new 2-D array of size L× (ν + 1)
3 for ` = 0, 1, . . . , L− 1 do
4 shiftRegister[`] = (0, 0, . . . , 0)

// Main Loop
5 for φ = 0, 1, . . . , n− 1 do
6 recursivelyCalcP(m, φ)
7 if uφ is frozen then
8 for ` = 0, 1, . . . , L− 1 do
9 if activePath[`] = false then

10 continue

11 left-shift shiftRegister[`] by one, with the rightmost position set to 0
12 Cm ← getArrayPointerC(m, `)
13 (vφ−ν, vφ−ν+1, . . . , vφ)← shiftRegister[`]

// Set the frozen bit
14 Cm[0][φ mod 2]← ∑ν

j=0 cjvφ−j

15 else
16 continuePaths_Unfzn(φ)

17 if φ mod 2 = 1 then
18 recursivelyUpdateC(m, φ)

// Get the best codeword in the list
19 · · · lines 17–24 of Algorithm 12 in [4]
20 return x̂ = (C0[β][0])n−1

β=0

3.2. List Decoding of PAC Codes

Representing PAC codes as polar codes with dynamically frozen bits makes it possible
to adapt existing algorithms for successive-cancellation list decoding of polar codes to
decode PAC codes.

There are, however, a few important differences. For example, for conventional polar
codes, when the list decoder encounters a frozen index i∈F , all the paths in the list-
decoding tree are extended in the same way, by setting ûi = 0. For PAC codes, since
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freezing is dynamic, different paths are potentially extended differently, depending upon
the previous decisions along the path.

Algorithm 2: continuePaths_Unfzn (PAC version)

Input: phase φ

1 · · · lines 1–18 of Algorithm 13 in [4]
// Continue relevant paths

2 for ` = 0, 1, . . . , L− 1 do
3 if contForks[`][0] = false and contForks[`][1] = false then
4 continue

5 Cm ← getArrayPointer_C(m, `)
6 left-shift shiftRegister[`] by one, with the rightmost position set to 0
7 (vφ−ν, vφ−ν+1, . . . , vφ)← shiftRegister[`]
8 if contForks[`][0] = true and contForks[`][1] = true then
9 Cm[0][φ mod 2]← ∑ν

j=0 cjvφ−j

10 `′ ← clonePath(`)
11 shiftRegister[`′]← shiftRegister[`]
12 flip the rightmost bit of shiftRegister[`′]
13 Cm ← getArrayPointer_C(m, `′)
14 (v′φ−ν, vφ−ν+1, . . . , v′φ)← shiftRegister[`′]
15 Cm[0][φ mod 2]← ∑ν

j=0 cjv′φ−j
16 else
17 if contForks[`][0] = true then
18 if ∑ν

j=0 cjvφ−j = 1 then
19 flip the rightmost bit of shiftRegister[`]

20 set Cm[0][φ mod 2]← 0
21 else
22 if ∑ν

j=0 cjvφ−j = 0 then
23 flip the rightmost bit of shiftRegister[`]

24 set Cm[0][φ mod 2]← 1

In general, our list decoder for PAC codes maintains the same data structure as the suc-
cessive-cancellation list decoder in [4]. In addition, for a list of size L, we introduce L
auxiliary shift registers—one for each path. Each such shift register stores the last ν bits
of the vector v̂ = (v̂0, v̂1, . . . , v̂n−1), computed as in (7), for the corresponding path.

Algorithms 1 and 2 provide the full details of our list decoding algorithm for PAC
codes. These algorithms fit into the same general mold as Algorithms 12 and 13 of [4], with
the differences highlighted in blue.

4. List Decoding versus Sequential Decoding

We now compare list decoding of PAC codes with sequential decoding, in terms of
both performance and complexity. For list decoding, we use the algorithm of Section 3. For
sequential decoding, we employ exactly the same Fano decoder that was used by Arıkan
in [2]. We are grateful to Erdal Arıkan for sharing the details of their decoding algorithm.
We do not disclose these details here, instead referring the reader to [2,44,45].

We note that more efficient algorithms for sequential decoding of polar codes and
their subcodes may be available; see in particular the work of Trifonov [12,27]. However,
in this paper, we use the results of Arıkan [2] as a benchmark, in terms of both performance
and complexity.

Our main conclusion is that sequential decoding is not essential in order to achieve
the remarkable performance of PAC codes: similar performance can be obtained with
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list decoding, providing the list size is sufficiently large. As far as complexity, sequential
decoding is generally better at high SNRs and in terms of average complexity, while list
decoding is advantageous in terms of worst-case complexity and at low SNRs.

4.1. Performance Comparison

Figure 3 summarizes simulation results comparing the performance of the Fano de-
coder from [2] with our list decoding algorithm, as a function of the list size L. The
underlying PAC code is the same as in Figure 1; it is the (128,64) PAC code obtained via RM
rate-profiling (see Section 2). The underlying channel is the binary-input additive white
Gaussian noise (BIAWGN) channel.
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Figure 3. Performance of PAC codes under list decoding.

As expected, the performance of list decoding steadily improves with increasing list
size. For L = 128, the list-decoding performance is very close to that of sequential decoding,
while for L = 256 the two curves virtually coincide over the entire range of SNRs.

It should be pointed out that the frame error rate (FER) reported for sequential
decoding in Figures 1 and 3 is due to two different mechanisms of error/failure. In some
cases, the sequential decoder reaches the end of the search tree (see Figure 4) producing an
incorrect codeword. These are decoding errors. In other cases, the end of the search tree is
never reached; instead, the computation is aborted once it exceeds a predetermined cap on
the number of cycles. These are decoding failures. As in [2], the FER plotted in Figure 3
counts all the cases wherein the transmitted codeword is not produced by the decoder:
thus it is the sum of the error rate and the failure rate. Table 1 below shows what fraction
of such cases were due to decoding failures:

Table 1. Fraction of decoding failures as a function of SNR.

SNR [dB] 1.00 1.25 1.50 1.75 2.00 2.25

% of failures 4.53% 3.56% 1.86% 1.38% 1.01% 0.29%

A decoding failure was declared in our simulations whenever the number of cycles
(loosely speaking, cycles count forward and backward movements along the search tree in
the Fano decoder) exceeded 1,300,000. This is exactly the same cap on the number of cycles
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that was used by Arıkan in [2]. Overall, the foregoing table indicates that increasing this cap
would not improve the performance significantly. In fact, we observe that decoding failures
never dominate the overall FER of sequential decoding. Thus, it would be interesting to
investigate how much this cap can be decreased without sacrificing the performance.

The FER for list decoding is also due to two distinct error mechanisms. In some
cases, the transmitted codeword is not among the L codewords generated by our decoding
algorithm. In other cases, it is on the list of codewords generated, but it is not the most
likely among them. Since the list decoder selects the most likely codeword on the list as its
ultimate output, this leads to a decoding error. We refer to such instances as selection errors.
Table 2 below shows the fraction of selection errors for lists of various sizes:

Table 2. Fraction of selection errors as a function of SNR.

SNR [dB] 1.50 1.75 2.00 2.25 2.50 2.75 3.00

L = 64 32.1% 32.2% 32.5% 32.3% 29.4% 36.7% 39.6%
L = 128 50.0% 51.6% 54.6% 53.6% 58.4% 60.4% 63.2%
L = 256 66.2% 71.0% 75.2% 78.0% 79.9% 83.6% 82.8%

This indicates that the performance of list decoding would further improve (at least,
for L> 64) if we could somehow increase the minimum distance of the underlying code,
or otherwise aid the decoder in selecting from the list (e.g., with CRC).

Finally, we also include in Figures 1 and 3 the BIAWGN dispersion-bound ap-
proximation for binary codes of rate 1/2 and length 128. The specific curve plotted in
Figures 1 and 3 is the so-called saddlepoint approximation [51] of the meta-converse dis-
persion bound of Polyanskiy, Poor, and Verdu [3]. Our curve coincides with those given
in Figure 1 of [52] and Figure 6 of [53]. Note that a more accurate bound can be derived
using the methods of Erseghe [9], but this is not critical for our purposes. It is clear from
Figures 1 and 3 that the performance of the (128,64) PAC code, under both sequential
decoding and list decoding with L > 128, is close to the best achievable performance.

4.2. Complexity Comparison

A comprehensive complexity analysis of list decoding versus sequential decoding
of PAC codes in practical applications is likely to require algorithmic optimization and
implementation in hardware. In the case of list decoding, this should be relatively easy
based upon our representation of PAC codes as polar codes with dynamically frozen bits
(see Section 3.1) in conjunction with existing work on efficient hardware implementation of
polar list decoders (see [54,55], for example). On the other hand, we are not aware of any
existing implementations of sequential decoding in hardware. Such implementation may
be challenging due to variable running time, which depends on the channel noise, and
complex control logic [56].

In this section, we provide a qualitative comparison of list decoding versus sequential
decoding using two generic complexity metrics: the number of nodes visited in the polar
search tree and the total number of floating-point operations performed by the decoder.
The results we obtain for the two metrics, summarized in Figures 5 and 6, are consistent
with each other.

The polar search tree, shown schematically in Figure 4, represents all possible inputs
u = (u0, u1, . . . , un−1) to the polar encoder. It is an irregular tree with n + 1 levels con-
taining 2k paths. If i ∈ Ac then all nodes at level i have a single outgoing edge, as ui is
dynamically frozen in this case. In contrast with conventional polar codes, these edges
may be labeled differently (cf. u4 in Figure 4). If i ∈A then all nodes at level i have two
outgoing edges. In this framework, both list decoding and sequential decoding can be
regarded as tree-search algorithms that try to identify the most likely path in the tree.
The list decoder does so by following L paths in the tree, from the root to the leaves, and
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selecting the most likely one at the end. The Fano sequential decoder follows only one
path, but has many back-and-forth movements during the decoding process.
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Figure 4. An example of the polar search tree, reproduced from [2].

For the sake of qualitative comparison, we take the total number of nodes the two
algorithms visit in the tree as one reasonable proxy of their complexity. In doing so,
we disregard the nodes at the frozen levels, counting only those nodes that have two
outgoing edges (colored blue in Figure 4); we call them the decision nodes. Figure 5 shows
the number of decision nodes visited by the two decoding algorithms as a function of
SNR.

For sequential decoding, two phenomena are immediately apparent from Figure 5. First,
there is a tremendous gap between worst-case complexity and average complexity. For
most SNRs, the worst-case complexity is dominated by decoding failures, which trigger
a computational timeout upon reaching the cap on the number of cycles (see Section 4.1).
Clearly, reducing this cap would also reduce the worst-case complexity. On the other hand,
for SNRs higher than 2.50 dB, decoding failures were not observed. Thus, beyond 2.50 dB,
the worst-case complexity gradually decreases, as expected. Another phenomenon apparent
from Figure 5 is that the average complexity is highly dependent on SNR. This is natural since
the processing in the Fano sequential decoder depends on the channel noise. The less noise
there is, the less likely is the sequential decoder to roll back in its search for a better path.

Neither of the two phenomena above is present for list decoding: the worst-case
complexity is equal to the average complexity, and both are unaffected by SNR. The
resulting curves in Figures 5 and 6 are flat, since the complexity of list decoding depends
only on the list size L and the code dimension k.

In fact, the number of decision nodes visited by the list decoder in the polar search
tree can be easily computed as follows. First assume, for simplicity, that L is a power
of 2. As the list decoder proceeds from the root to the leaves, the number of paths it traces
doubles for every i ∈A until it reaches L. The number of decision nodes it visits during
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this process is given by 1 + 2 + 4 + · · ·+ L = 2L− 1. After reaching L paths, the decoder
visits L decision nodes at every one of the remaining k− log2 L levels that are not frozen.
Thus, the total number of decision nodes visited is L(k + 2− log2 L)− 1 = O(kL).

0 0.5 1 1.5 2 2.5 3 3.5
SNR (dB)

102
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Number of nodes visited in the binary tree

Sequential Decoding (average)
Sequential Decoding (worst-case)
List Decoding, L=256
List Decoding, L=128
List Decoding, L=64
List Decoding, L=32
List Decoding, L=16
List Decoding, L=8

Figure 5. Sequential decoding vs. list decoding: Number of nodes visited in the polar search tree.
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Figure 6. Sequential decoding vs. list decoding: Number of floating-point operations.

If L is not a power of 2, this counting argument readily generalizes, and the number
of decision nodes visited is given by

L
(
k + 1− dlog2 Le

)
+ 2dlog2 Le − 1 = O(kL) (8)

As another qualitative metric of complexity of the two algorithms, we count the
total number of additions, comparisons, and multiplications of floating-point numbers
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throughout the decoding process. The results of this comparison are compiled in Figure 6.
The number of floating-point operations is a more precise measure of complexity than the
number of decision nodes visited in the search tree. Yet we observe exactly the same pattern
as in Figure 5. For list decoding, it is no longer possible to give a simple expression as in (8),
but the complexity is still independent of SNR, resulting in flat curves. For sequential
decoding, we again observe the same two phenomena discussed earlier in connection with
Figure 5. In particular, the worst-case complexity remains prohibitive even at high SNRs.

In summary, our qualitative comparison suggests that, for a similar level of perfor-
mance, sequential decoding is clearly advantageous in terms of average-case complexity at
high SNRs. However, list decoding may have distinct advantages in low-SNR regimes or
in situations where the worst-case complexity/latency is the primary constraint.

5. Performance Analysis for PAC Codes

In this section, we study the performance of PAC codes under the assumption of
maximum-likelihood (ML) decoding. To this end, we estimate computationally the number
of low-weight codewords in PAC codes (and other codes), then combine these estimates
with the union bound. First, we explain why analysis of performance under ML decoding
makes sense in our setting.

5.1. Sequential Decoding versus ML Decoding

It has been observed in several papers that for polar codes, list decoding rapidly
approaches the performance of ML decoding with increasing list-size L. In this section,
as expected, we find this to be the case for Arıkan’s (128,64) PAC code as well.

Figure 7 shows a bound on the frame error-rate of ML decoding obtained in our
simulations. This is an empirical lower bound, in the sense that the actual simulated
performance of ML decoding could only be worse—even closer to the other two curves
(for sequential decoding and list decoding) shown in Figure 7. The bound was generated
using the Fano sequential decoder, as follows.

Every time the Fano decoder makes an error, we compare the likelihoods of the trans-
mitted path and the path produced by the decoder. If the decoded path has a better
path-metric (higher likelihood), then the ML decoder will surely make an error in this
instance as well. We count such instances to generate the lower bound. This method of
estimating ML performance in simulations is very similar to the one introduced in [4] for
polar codes, except that [4] used list decoding.

1.5 2 2.5 3 3.5

SNR (dB)
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10 -2

10 -1

100
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PAC code, List Decoder, L=128
PAC code, Sequential Decoder
PAC code, ML Decoder (lower bound)

Figure 7. Performance of the PAC code under ML decoding.
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Figure 7 provides strong evidence that it makes sense to study PAC codes under ML
decoding in order to gain insights into their performance under sequential decoding, since
the two are remarkably close. Figure 7 also reveals one of the reasons why Arıkan’s PAC
codes are so good at short blocklengths: they can be efficiently decoded with near-ML fidelity.

5.2. Weight Distributions and Union Bounds

We now study the weight distribution of the (128, 64) PAC code in order to develop
analytical understanding of its performance under ML decoding. The results of this study
are summarized in Table 3 and in Figures 8–10.

First, consider the following experiment, devised in [5]. Transmit the all-zero code-
word in the extremely high SNR regime, and use list decoding to decode the channel
output. It is reasonable to expect that in this situation, the list decoder will produce code-
words of low weight. As L increases, since the decoder is forced to generate a list of size
exactly L, more and more low-weight codewords emerge. The results of this experiment
for the (128,64) PAC code are shown in Figure 8 as a function of the list size. We can see
that the only weights observed for L up to 400,000 are 16,18,20,22. Moreover, A16 > 3120,
A18 > 2696, and A20 > 95828 (cf. Table 3). These numbers are lower bounds on the weight
distribution of the code. However, the fact that the curves in Figure 8 saturate at these
values provides strong evidence that these bounds are exact, and that codewords of other
low weights do not exist.

We have used the same method to estimate the number of low-weight codewords in
other relevant codes of rate 1/2 , including polar codes (with and without CRC precoding),
the self-dual Reed–Muller code, and the PAC code with polar rate-profile. Our results are
compiled in Table 3.

103 104 105

List size L

103

104

105

Low-weight codewords in PAC codes with RM profiling

A16
A18
A20
A22

Figure 8. Low-weight codewords in the (128,64) PAC code.

Table 3. Number of low-weight codewords in certain relevant codes.

A8 A12 A16 A18 A20 A22

Polar code 48 0 68,856 0 897,024 0
Polar code, CRC8 20 173 >7069 - - -

Reed–Muller 0 0 94,488 0 0 0
PAC, polar profile 48 0 11,032 6024 >105 -
PAC, RM profile 0 0 3120 2696 95,828 >105
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Figure 9. Truncated union bound for certain codes of length 128.
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Figure 10. Truncated union bound vs. performance for two PAC codes.

Again, the numbers in Table 3 should be regarded as lower bounds, which we conject-
ure to be exact (except for the Reed–Muller code whose weight distribution is known [57]
and the polar code whose weight distribution can be computed using the methods of [58]).
Assuming this conjecture, we expect the performance under ML decoding of the (128,64)
PAC code with RM rate-profile to be superior to all other polar and PAC codes in the ta-
ble, since its minimum distance is twice as high. Interestingly, this code is also supe-
rior to the self-dual Reed–Muller code. The two codes have the same minimum distance, but
the PAC code has significantly less codewords at this distance (by a factor of about 30). These
observations are corroborated in Figures 9 and 10, where we plot the truncated union bound
based on the partial weight distributions compiled in Table 3 (with all other terms set to
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zero). It is well known that the performance of a linear code under ML decoding is governed
by its weight distribution, and can be well approximated by the union bound or variants
thereof [59], especially at high SNRs. The “truncated union bound” is by far the simplest
option, obtained by simply ignoring those terms in the union bound for which the weight
distribution is unknown. Consequently, it is neither an upper bound nor a lower bound.
Nevertheless, we have found that in the high SNR regime, it provides a reasonable first-
order approximation of performance under ML decoding for the codes at hand. For example,
Figure 10 shows the truncated union bound for the two PAC codes in Table 3 along with up-
per and lower bounds on their performance (under ML decoding) obtained in simulations.

Our results in this section also provide potential guidance for the difficult problem
of PAC code design. Since both sequential decoding and list decoding achieve near-
ML performance, one important goal of rate-profiling should be to optimize the weight
distribution at low weights. The same criterion applies for the choice of the convolutional
precoder as well. A related problem is that of finding the best rate profile for a given list
size, which does not necessarily approach ML decoding.

As we can see from Table 3, the (128,64) PAC code with RM rate-profile succeeds
at maintaining the minimum distance d = 16 of the self-dual Reed–Muller code, while
“shifting” most of the codewords of weight 16 to higher weights. This is another reason
for the remarkable performance of this code. The fact that the minimum distance of this
PAC code is d = 16 also follows from Theorem 1 of [42]. In fact, the work of Li, Zhang,
and Gu [42] shows that precoding with any nonsingular upper-triangular matrix, not
necessarily a Toepliz matrix as in (2), cannot decrease the minimum distance. Moreover,
there always exist such upper-triangular precoding matrices that strictly reduce the number
of mimimum-weight codewords (see Theorem 2 of [42]). Apparently, the Toepliz matrix
generated by c = (1, 0, 1, 1, 0, 1, 1) is a particularly “nice” choice, reducing A16 from 94488
to only 3120. As we shall see in the next section, there are many such “nice” matrices, and
it is possible to do even better.

6. PAC Codes with Random Time-Varying Convolutional Precoding

With reference to Section 2, the two main considerations when designing the rate-1
convolutional precoder are: the constraint length ν and the choice of the generator
c = (c0, c1, . . . , cν). Arıkan [2] refers to such generator c as the impulse response of the con-
volutional precoder. He furthermore writes in [2] that:

As long as the constraint length of the convolution is sufficiently large,
choosing c at random may be an acceptable design practice.

The main question we wish to address herein is this: How large is “sufficiently large”
in this context? It appears that if the impulse response c is fixed, then constraint length
on the order of ν = 6 is required. However, if we allow the impulse response to vary
with time, then essentially the same performance can be achieved with constraint length
as low as ν = 2 (which is the minimum possible, since c0 = cν = 1 by assumption). This
observation is of importance if trellis methods (such as list-Viterbi decoding, as suggested
in [2,49]) are used to decode PAC codes. Indeed, reducing the constraint length from ν = 6
to ν = 2 reduces the number of states in the resulting trellis from 64 to 4, respectively.

We also observe that under random time-varying convolutional precoding, the perfor-
mance of PAC codes improves with constraint length but only slightly.

6.1. Random Time-Varying Convolutional Precoding

In time-varying convolutional precoding, the impulse response c is a function of
time. Specifically, we keep the constraint length ν fixed, but use n potentially different
impulse response vectors ci = (ci

0, ci
1, . . . , ci

ν), where ci
0 = ci

ν = 1 for all i. Thus, each bit
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ui of the input u = (u0, u1, · · · , un−1) to the polar encoder is computed via a potentially
different convolution operation:

ui =
ν

∑
j=0

ci−j
j vi−j for i = 0, 1, · · · , n− 1 (9)

where v is the data-carrier vector resulting from the rate-profiling step, as in Section 2.
As before, the convolution operations in (9) can be recast a vector-matrix multiplication
u = vT, where T is the following upper-triangular matrix:

T =




c0
0 c0

1 c0
2 · · · c0

ν 0 · · · 0
0 c1

0 c1
1 c1

2 · · · c1
ν

...
0 0 c2

0 c2
1

. . . · · · c2
ν

...... 0
. . . . . . . . . . . .

......
. . . . . . . . . . . . 0

......
. . . 0 cn−3

0 cn−3
1 cn−3

2... 0 0 cn−2
0 cn−2

1
0 · · · · · · · · · · · · 0 0 cn−1

0




(10)

In (10), the 2n − ν bits shown in red, namely ci
0 and ci

ν, are set to 1, whereas the
(2n − ν)(ν − 1)/2 bits shown in blue are unconstrained. In what follows, we consider
random time-varying convolutional precoding, where these unconstrained bits are i.i.d.
Bernoulli

(
1/2
)

random variables. That is, each of these (2n − ν)(ν − 1)/2 bits is set to
0 or 1 with probability 1/2, independently of each other.

On the decoder side, we use a straightforward modification of the list-decoding
algorithm introduced in Section 3. With reference to the pseudocode in Section 3, this mod-
ification consists of replacing cj by cφ−j

j at line 14 of Algorithm 1 as well as lines 9, 15, 18, 22
of Algorithm 2, where cφ

0 , cφ−1
1 , . . . , cφ−ν

ν are as defined in (10). The complexity of such
modified list-decoding algorithm is exactly the same as before; the only difference being
that the decoder now needs to store the n impulse responses c0, c1, . . . , cn−1. However, this
storage requirement is still linear in n.

6.2. Performance of PAC Codes with Random Time-Varying Convolutional Precoding

We now assess the performance of random time-varying convolutional precoding
using our running example: the (128,64) PAC code with RM rate profile. As the comparison
benchmark, we employ the convolutional precoder with ν = 6 and c = (1, 0, 1, 1, 0, 1, 1)
used by Arıkan in [2].

Figure 11 summarizes our simulation results for the case where the constraint length is
fixed at ν = 6 while the list size ranges through L = 1, 4, 16, 128. We can see from this figure
that the performance of PAC codes under random time-varying convolutional precoding
coincides with the list-decoding performance of the benchmark for all the relevant list sizes.

In Figure 12, we keep the list size constant at L = 128, but vary the constraint length ν.
Note that setting ν = 0 or ν = 1 leads to degenerate cases. For ν = 0, the matrix (10) reduces
to the identity matrix and the PAC code reduces to the (128,64) Reed–Muller code; the
performance of this Reed–Muller code is also shown in Figure 12, for comparison. For ν = 1,
the precoding matrix in (10) is not time-varying and not random, with each row being a shift
of the vector c = (1, 1). Thus the smallest nontrivial constraint length is ν = 2, which allows
a single bit of randomness per row in (10). Surprisingly, this suffices to closely match the
performance of Arıkan’s PAC code [2] with ν = 6. As we increase the constraint length in (10)
beyond ν = 2, the performance further improves, but very slightly. Figure 12 shows that there
is no significant gain even for ν = 127, in which case the precoding matrix in (10) becomes a
random nonsingular upper-triangular matrix. In Table 4, we compile (lower bounds on) the
weight distribution for several typical realizations of the matrix in (10) which correspond to
ν = 2, 6, 10. These results corroborate the performance observed in simulations.
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Figure 11. Performance of PAC codes for some specific realizations of random time-varying convolu-
tional precoding with ν = 6, as a function of the list size.
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Figure 12. Performance of PAC codes for some specific realizations of random time-varying convolu-
tional precoding for L = 128, as a function of the constraint length.

Table 4. Number of low-weight codewords in PAC codes for certain specific realizations of random
time-varying convolutional precoding, as a function of the constraint length.

A8 A16 A18 A20 A22

Random precoding with ν = 2 0 6424 7780 142,618 >105

Arıkan’s PAC code with ν = 6 0 3120 2696 95,828 >105

Random precoding with ν = 6 0 2870 1526 88,250 >105

Random precoding with ν = 10 0 2969 412 81,026 >105
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7. Conclusions and Discussion

In this paper, we first observe that Arıkan’s PAC codes can be regarded as polar codes
with dynamically frozen bits and then, using this observation, propose an efficient list de-
coding algorithm for PAC codes. We show that replacing sequential decoding of PAC codes
by list decoding does not lead to degradation in performance, providing the list size is suf-
ficiently large. We then carry out a qualitative complexity analysis of the two approaches,
which suggests that list decoding may be advantageous in terms of worst-case complexity.
We also study the performance of PAC codes (and other codes) under ML decoding by
estimating the first few terms in their weight distribution. The results of this study provide
constructive insights into the remarkable performance of PAC codes at short blocklengths.
We furthermore introduce random time-varying convolutional precoding for PAC codes,
and observe that this makes it possible to achieve the same remarkable performance with
much smaller constraint length.

Based upon our results in this paper, we believe further complexity analysis of both
sequential decoding and list decoding of PAC codes is warranted, including implementa-
tions in hardware. Some progress along these lines has been already reported in the recent
paper [60], which uses the list-decoding algorithm introduced herein as a starting point.
Indeed, we hope that our work stimulates further research in this direction.

Finally, we would like to point out two important (and interdependent) but difficult
questions regarding PAC codes that remain open. What is the best choice of the rate profile?
What is the best choice of the precoder? We hope our results will contribute to further
study of these problems. In turn, effective resolution of these problems should make it
possible to replicate the success of PAC codes at length n = 128 for higher blocklengths.
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