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Abstract: In this investigation, for convex functions, some new (p,q)-Hermite-Hadamard-type
inequalities using the notions of (p,q)™ derivative and (p, )™ integral are obtained. Furthermore,
for (p, q)™-differentiable convex functions, some new (p, q) estimates for midpoint and trapezoidal-
type inequalities using the notions of (p, q)™ integral are offered. It is also shown that the newly
proved results for p = 1 and g — 1~ can be converted into some existing results. Finally, we discuss
how the special means can be used to address newly discovered inequalities.

Keywords: quantum calculus; post-quantum calculus; (p, q) estimates for midpoint and trapezoidal
type inequalities

1. Introduction

In convex functions theory, Hermite-Hadamard (HH) inequality, which was discov-
ered by C. Hermite and J. Hadamard independently, is very important (see also [1,2]

(p. 137)):

T
(M) < L [ < P )
2 Tl — 711 2

T
where I1 is a convex function. In the case of concave mappings, the above inequality is
satisfied in reverse order.

On the other hand, in the domain of g analysis, many works are being carried out
as initiated by Euler in order to attain adeptness in mathematics that constructs quantum
computing q calculus considered as a relationship between physics and mathematics. In
different areas of mathematics, it has numerous applications such as combinatorics, number
theory, basic hypergeometric functions, orthogonal polynomials, and other sciences, as well
as mechanics, the theory of relativity, and quantum theory [3,4]. Quantum calculus also has
many applications in quantum information theory, which is an interdisciplinary area that
encompasses computer science, information theory, philosophy, and cryptography, among
other areas [5,6]. Apparently, Euler invented this important branch of mathematics. He
used the g parameter in Newton’s work on infinite series. Later, in a methodical manner, the
g-calculus, calculus without limits, was firstly given by Jackson [7,8]. In 1966, Al-Salam [9] in-
troduced a g-analogue of the g-fractional integral and g-Riemann-Liouville fractional. Since
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then, related research has gradually increased. In particular, in 2013, Tariboon introduced
the r, D;-difference operator and g, -integral in [10]. In 2020, Bermudo et al. introduced
the notion of ™D, derivative and g™-integral in [11]. Sadjang generalized to quantum
calculus and introduced the notions of post-quantum calculus, or briefly (p, q)-calculus
in [12]. In [13], Tung and Go6v gave the post-quantum variant of r, D;-difference operator
and g, -integral. Recently, in 2021, Chu et al. introduced the notions of ™D, ; derivative
and (p, q) ™?-integral in [14].

Many integral inequalities have been studied using quantum and post-quantum in-
tegrals for various types of functions. For example, in [11,17-20,22-25], the authors used
m Dg,/? Dg-derivatives and gr, , g"?-integrals to prove Hermite-Hadamard integral inequal-
ities and their left-right estimates for convex and coordinated convex functions. In [26],
Noor et al. presented a generalized version of quantum integral inequalities. For general-
ized quasi-convex functions, Nwaeze et al. proved certain parameterized quantum integral
inequalities in [27]. Khan et al. proved quantum Hermite-Hadamard inequality using
the green function in [28]. Budak et al. [29], Ali et al. [30,31], and Vivas-Cortez et al. [32]
developed new quantum Simpson’s and quantum Newton’s type inequalities for convex
and coordinated convex functions. For quantum Ostrowski’s inequalities for convex and
co-ordinated convex functions, one can consult [33-35]. Kunt et al. [36] generalized the
results of [18] and proved Hermite-Hadamard-type inequalities and their left estimates
using , Dpq difference operator and (p, q) , integral. Recently, Latif et al. [37] found the
right estimates of Hermite-Hadamard type inequalities proved by Kunt et al. [36]. To prove
Ostrowski’s inequalities, Chu et al. [14] used the concepts of ™2 D,, ; difference operator and
(p,q)"™ integral.

Inspired by the ongoing studies, we give the generalizations of the results proved
in [11,15] and we prove Hermite-Hadamard-type inequalities for convex functions using
the concepts of ™D, ; difference operator and (p,q)™ integral.

The organization of this paper is as follows: In Section 2, a short explanation of the
concepts of g-calculus and some associated works in this direction is given. In Section 3, we
review the notions of (p, q)-derivatives and integrals. In Section 4, the Hermite-Hadamard-
type inequalities for the (p, q)-integrals are presented. The correlation between the results
presented herein and similar results in the literature are also considered. In Sections 5 and 6,
we present some new (p, q) estimates of midpoint and trapezoidal type inequalities for
convex functions, respectively, and show the relationship between the results given herein
and comparable results in the literature. Section 7 contains some conclusions and more
directions for future research.

2. Preliminaries

In this portion, we review some fundamental ideas and conclusions about convex
functions and g calculus.
A convex mapping IT: I C R — R is defined as:

II(trry 4+ (1 — t)mp) < HII(my) + (1 — £)TI(71p)
for all 711, 7 in I and t in [0, 1].
Definition 1 ([38]). A mapping 11 defined on I has a support at xo € I if there exists an affine
mapping A(x) = I1(xo) + m(x — xg) such that A(x) < II(x) for all x € 1. The graph of the
support mapping A is called a line of support for Il at x.

Theorem 1 ([38]). A mapping I1: (711, 1) — R is convex if and only if there exists a minimum
of one line of support for I1 at each x € (711, 712).

Theorem 2 ([39]). If a mapping I1 : [m1, mo] — R is convex, then I1 is also continuous on
(111, 712).
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Presently, we display a few known definitions and related inequalities in g calculus.
We set the following notation ([4]):

1_ n
[n], = _”’q —1+g0+@P+..+4"Y, g€ (0,1).

The g Jackson integral of a mapping I from 0 to 773, given by Jackson [8], is defined as:

T

I(x) dgx = (1—q)m )_ q"TI(mpq"), where 0 < g <1 ()
0 n=0

provided that the sum converges absolutely. Moreover, over the interval 711, 712], he gave
the following integral of a mapping I1:

sl

72H(x) dgx = .72H(x) dgx — / x) dgx .
7T1 0

0

Definition 2 ([10]). The q,-derivative of mapping I1 : [rt1, 2] — R is defined as:

mDyI(y) = T ECOm) ©

For x = 111, we state , DyI1(7r1) = limy—, 7, , Dgl1(x) if it exists and is finite.

Definition 3 ([11]). The " derivative of mapping I1: [r11, 1a] — R is given as:

D II(x) = H(qx("; (_117_)(‘77)[;72_);)1_[(9(), X # 10. 4)

For x = 1, we state 2 D,I1(72) = limy—, 7, "™DgI1(x) if it exists and is finite.
Definition 4 ([10]). The qr, definite integral of mapping I1 : [111, 12| — Ron [11, 712] is defined as:

/H(t) mdgt = (1—q)(x —m) i g'TI(q"x + (1 — q")m1), x € [y, 2] (5)

m n=0

On the other hand, the following concept of g-definite integral is stated by Bermudo
etal. [11]:

Definition 5 ([11]). The g™2-definite integral of mapping I1 : [r11, 7] — Ron [111, 73] is given as:
/H Tdpt = (1—q)(m — x) Z g'TI(g"x+ (1 —q")m2), x € [m, 2] (6)

3. (p, q)-Derivatives and Integrals

In this section, we review some fundamental notions and notations of (p, g)-calculus.

The [n]p’q is said to be (p, q) integers and is expressed as:

with0 < g < p < 1. The [n], ! and [ Z ]! are called (p, g)-factorial and (p, )-binomial,

respectively, and expressed as:
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n

(], = U[k]m’ n>1100],,!=1,
[ n :|' o [n]p,q!
k| [n =k, gtk], 00
Definition 6 ([12]). The (p, q)-derivative of mapping I1: [rr1, 7] — R is given as:
[1(px) — 1(gx)
D, T1(x) = 1PX) Z 1) - @)
pall(x) (p—q)x

with0 <g<p <1
Definition 7 ([13]). The (p,q) ,-derivative of mapping 11 : [r1, 2] — R is given as:

(px+ (1 —p)m) —(gx + (1 —g)11)
(p—q)(x—m)

m Dpgll(x) = ;X #F M 8
with0 <g<p <1
For x = 711, we state 7, D ,TI(711) = limy 7, 7, DpqI1(x) if it exists and is finite.

Definition 8 ([14]). The (p, q)™-derivative of mapping 1 : [1r1, 715] — R is given as:

I(gx+ (1 —q)m) —I(px + (1 — p)m)
(p—q)(m2—x)

2Dy I (x) = ;X F T ©)

For x = 1y, we state 2D, ,I1(712) = limy_,, ™D, 4I1(x) if it exists and is finite.

Remark 1. It is clear that if we use p = 1in (8) and (9), then the equalities (8) and (9) reduce
to (3) and (4), respectively.

Definition 9 ([13]). The definite (p, q)x,-integral of mapping I1 : [rt1, 2] — R on [y, 73] is
stated as:

X o qn qi’l qu
/ I(t) mydpqt = (p —q)(x — m11) Z anH(anJH— (1—pn+1>7r1> (10)
: n=0

4s|

with0 <g<p <1

Definition 10. From [14], the definite (p, q)"2-integral of mapping I1 : [1r1, 12] — Ron [y, 73]
is stated as:

153 . 00 qn qn qn
/ II(t) ™dp et = (p — q) (12 — x) Z n+1H< aTxt (1— n+1>712> (11)
x n=0 P p p

with0 <g<p <1

Remark 2. It is evident that if we pick p = 1 in (10) and (11), then the equalities (10) and (11)
change into (5) and (6), respectively.

Remark 3. Ifwe take t1 = 0 and x = 7y = 1in (10), then we have

1 0 n n
[0 gt = (=) &SmO ).
0 n=o P p
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Similarly, by taking x = 111 = 0 and 1o = 1 in (11), then we obtain that

1 o0 n
q
fne: - (- T )
In [36], Kunt et al. proved the following HH-type inequalities for convex functions via
(p, 9)n, integral:

Theorem 3. For a convex mapping I1 : [y, mp] — R which is differentiable on [y, 3], the

ollowing inequalities hold for (p, inteqral:
f g ineq Prq)n, integ
pro+(1—p)m
[2] P4 p(HZ - ﬂl) ’ [2] P4

where0 < g <p <1

Lemma 1. We have the following equalities

o (112 — 11y
my — x)" 2y g = o —
/7'(] (72 = x) b [zx—i—l]p,q

02 (1m0 — mp
(x —m)" g dpgx = ~——r—
/7f1 TYpq [D‘+1]p,q

where v € R — {—1}.

Proof. From Definition 10, we have

[Fm— 2 Ry = (p-a)(m2— )

m

=
NgEIR agk:
A~
=
x

= (p—q)(m—m)

= pn+1 anr
S (a+1)
= (p-Pm-m)"" Y — <q>
n=0 p p
 (m—m)*!
[+ l]p/q )

Similarly, we can compute the second integral by using the Definition 9. O

4. New HH Type Inequalities for Post-Quantum Integrals

In this section, we give a new variant of (p, 4)-HH inequality for convex functions. It
is also shown that the results presented here are a generalization of some existing results in
the literature.

Theorem 4. For a convex mapping I1 : [y, o] — R, which is differentiable on [rty, 713], the
following inequalities hold for (p,q)"™ integral:

I pm +qmo < 1 /ﬂz [1(x) ™y ,x < pIl(71) + qI1(717) 13)
12,4 p(7m2 = 711) Jpmi+(1-p)m, 2],

where0 < g <p <1
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L.
pm+(1-p)m

/.
prmi+(1-p)m

Proof. According to the given hypothesis, IT is differentiable on [711, 713}, so there exists
a tangent line for the function II at the point pﬂ[12]7+qﬂz' This tangent line can be indicated

as a function /1 (x) = I1 <pn[12}+qn2> + 1T (pﬁlziqm) (x — ’m[lzfrqnz) . Since I1 is convex on
Pa pa Pa

[711, 7T2], the following inequality (see Figure 1) holds for all x in 71y, 712] :

] — pr + g7 T pm + g _pmtgm <11 14
1(x) < [2]p,q + [2] b X [z]p,q = (x) ( )

(p, q) ™-integrating inequality (14) with respect to x over [prry + (1 — p) 2, 73], we find that

ll (x) nzdp,qx

I prm +qmp LT prm + gy v prm +qmp ”2dp,qx
21,9 2], 2,

prt + 42 /[ P+ g /”2 n
m — )| —————= | + 1" —————= x 2d, ,x
pim = m) ( 2,, ) < 2 >pm+upm P

—p(my — 1)

rAa
pm +qrp NG (pm + qm)

2] 2]

P4 P4

p(m — 711)1'[<W> — p(my — ) P70 4702 1 (Pm + qm)

2]

qnz)
A

p

2, 2] 2],

(p—q)p(m2 — m) i pZL (pfﬁl (prri+ (1—p)m) + (1 - pZH> nz)]

n=0

pA

p(r — 7_[1)H<P7T1 + 6I7T2> ~p(t— 1) P70t 470 <P7T1 + 677T2>

[2] P4 [2] 12| [2] p4q

+ 00 n 2n
+1T P AT (P*‘I)(nzfm)z ZHNZ*ZTH(NZ*M)
2
[ ]p,q n=0 p p
prt1 + g pry+ g, [ prTr 97
7w — )| Y———— | —p(mp— 7T IT
e =) ( Iy ) P ( Pl )
pry+ 4o o ( Pt g
+p(my — ) II < )
2] 2]
pr 4 qm e e
T — )| V——= | < TI(x) ™d, ,x

where the first inequality in (13) is derived. We also have to show the second inequality
in (13). According to the given hypothesis, IT is convex on |71y, 715}, so I1(x) < h(x), where
h(x) is a secant line that connects the points (771, I1(711)) and (712, I1(712)), expressed as:

T1(7p) — T1(7r1)

IT(x) < h(x) =TI(m) + F——

(x — 1m2) (15)

for all x in [711, 712] (see Figure 1). (p, q)™-integrating inequality (15) with respect to x over
[pt1 + (1 — p)mp, 2], we obtain the following
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) . d
II(x) "2 X
/pn1+(1—p>nz () " pa

(16)

() —1(m) | H(m) —T(m) (7™
< o — ) I1(m) — prip(mm — 7T + / x™2d, .x
p(m2 = m)I(m2) = prea(ma — ) —— — = e P
I(m) — II( 2(ry — 1)
= p(m — m)I(mp) — (72) (m) (P (m2 = m)
T — 7 [Z]p,q
p*(m2 — m)
= plm—m)l(m2) — (H(2) — H(m))?
pA
IT(my) + g1
— P(7T2—7T1)P ( l) q ( 2)
2]
where the last inequality in (13) is obtained. Thus, the proof is completed. [
(:l pu:+(1b b
li(x)
Figure 1. Tangent line at the point pZ—IZb = pn;]ij_gnz of the convex function IT and chord line.
Example 1. For a convex mapping I1(x) = x> and my =0, 1y = 1, p = %, and q = % From
inequality (13), we have
I1 pmitqm ) _ 0.16,
2]
1 s 4 1
7/ ’ T1(x) d, 5x = 7/ 22 1d; 1 x = 02736,
p(m2 —m1) Jpm+(1-p)m, 33 e
and
pl(m) +qll(m) _ o,
2],
Thus,
0.16 < 0.2736 < 0.4
which shows that the inequality (13) is valid.
Corollary 1. For a convex mapping I1: [mt1, ] — R, the following inequality holds:
T + 7[2) 1 [/Pﬂﬁ'(l—r])m > N
IT < I1(x) 7y dpgx + II(x) ™2d, ax 17
( 2 - 2p(m—m) Um () mdpaq pri+(1-p)m ) P o

H(T[l) + H(T[z)
2

IN
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where0 < g <p <1

Proof. From inequalities (12) and (13), one can easily obtain the resultant inequality (17). O

In the subsequent theorem, we give an alternative proof of the double inequality (13)
without using the condition of differentiability on I.

Theorem 5. For a convex mapping I1 : I — Ron I and 71, 1y € I° with t1 < 11p, the double
inequality (13) holds for 0 < g < p < 1.

Proof. According to the given hypothesis that II is convex on I, by Theorem 2,11 is
continuous on [71y, 71z]. By means of Theorem 1, there exists a minimum of one line of

support for IT at each xg € (711, 712). Since xp = ’m[lz]iﬂnz, from the definition 1
P
k(x) =0 PRy (- PTLEAT2 ) gy (18)
21, 2,

for all x € [y, 71p] and some m € [H’ (pﬂ[lzfrqm > T, (pﬂ[lzrqnz )} . If the strategy that
P P

was used in the proof of Theorem 4 is applied and taking into account the inequality (18),
the desired inequality (13) can be found. Thus, the proof is accomplished. [

Remark 4. If we consider p = 1 in Theorems 4 and 5, then Theorem 4 and 5 reduces to [11]
(Theorem 12).

Remark 5. If we adopt p = 1and g — 17 in Theorems 4 and 5, then we retake the well-known
HH inequality for convex functions.

Theorem 6. For a convex mapping I1 : [y, mp] — R, which is differentiable on [y, 15|, the
following inequalities hold for (p, q)™-integral:

o[ 7Tt pm (p_q)("2_”1)1—1/ g7t + pros o
( 2] i 2],,,q 2], (19)
1 ) -
p(m — m) /,m1+(1_p)n2 I1(x) "2dp g
pIL(my) + q11(72)
- 2],

where0 < g <p <1

Proof. According to the given hypothesis, IT is differentiable on |71, 73], so there exists

a tangent line for the function I1 at the point qn[lzirﬁ This tangent line can be indicated
&

as a function I (x) = IT <‘W> + 11 <'7”[12Tp”2> x— ‘W) Since IT is convex on
pA pA pA

[711, 712, then the following inequality (see Figure 2) holds for all x in [y, 715] :
o =i ) (e (amerm) g o)
1219 2] 2y )~

(p,q)™-integrating inequality (20) with respect to x over [p7r; + (1 — p) 71, 712], we obtain
that
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IN

T2
p

m+(1-p)ma

/nz I qm + prp T qm + prp ‘e qmy + pp ndex
pm+(1—p)m [2] P4 [2] p.4q [2} pq

qm + pro /[ 91 + prp /”2 7
my — )| ——— | +1I'| ——"— xd, ox
p( ? 1> < [Z]p,q ) ( [2] ) pmi+(1—p)mp P

P
—p(my — m) 1 TPy (47 P
2],,4 2],
p(ry — )11 [ L2 P72 ) p(my —mp) L F Py (70 P
2], 2],,q 2],,,4

+ p7t2

s (e
( 2]

Xl(zﬂ q)p 7T2—7T1i

( r(pm+ (1 —p)me) + (1 - pZL)ﬂz)]

p(7T2_ 7T1) (‘7711 + pm _p ¢7 12+ PT(ZH/(qr[lz_'_ pTl’z)
T+ pr 00 n o
(e <v—q><m—m>2( 1o )
[ ]p,q n=0 \P p
P i .
+p(mp — 1) P70 4702 1 (’7”1 + P7T2>
2y 2],
2
p(rm = ”1)H<pn12+ an) L P Q)z(@ — ) (‘17712+ Pm)
. 24 2],
U]

I1(x) ™d,  x.

~/;77r1+(17p)7-[2 (x) "dp,qx

From (16) and (21), we obtain the desired result (19). Thus, the proof is finished. O

Theorem 7. Let I : [y, mp] — R be a convex differentiable function on [y, 7tp|. Then, the
following inequalities hold for (p, q) ™ integral:

1 = pII(my) + qI1(72)
A, At < 7/ I1(x) ™d < 22
max{ Ay, Az} < p(m2 — 1) Jpmi+(1-p)ma (x) g < [Z]W 22)

where

- )

2,
_ qm + pma (p—q)(m2—m) 9T+ pm
A = “( 2, )+ 2, “( 2, )

and 0 <q<p <1

Proof. From (13) and (19), we have required double inequality (22). Thus, the proofisended. [
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1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I
I
I
I
|
|

é

T

qa + pb b
ptq

qa+pb _ qutpm

g 7q of the convex function IT.

Figure 2. Tangent line at the point

5. Midpoint-Type Inequalities through (p, )™ Integral

In this section, we give some new midpoint-type inequalities by using the (p, 9)-
derivative and integral.
To prove the main results of this section, we need the following crucial lemma.

Lemma 2. Let IT: [y, 12] — R be a differentiable function on (7t1, 7t2). If ™2 D) 411 is continu-
ous and integrable on 111, 11|, then we have the following identity:

P
(2 — 1) [/0 i gt 72Dy Tty + (1 — 1)) d gt (23)

1
+/ (qt — 1) ™Dy TI(ty + (1 — £)723)dp gt

- " H(x) "2d H(W)
’ pAa

where0 < g <p <1

Proof. From Definition 8, we have

qtmy + (1 — qt)ﬂz) — H(ptﬂ'1 + (1 — pt)ﬂz)

I1(
2Dy, dI(ty + (1 —t)mp) = 24
pal 170+ ( )m2) t(rra — 1) (p —q) =
From the left side of equality (23), we have
o
(2 — 1) l/o[ gt 2Dy Tty + (1~ )702)dp gt (25)

1
+ ) (gt —1) nsz,qH(tﬂ’l +(1- t)ﬂ.’z)dp,qt

_r 1
= (m-m) VG B mp, TI(ty 4 (1— £)7)dp ot +/O gt ™Dy T1(t711 + (1 — £)752)dp ot

-1
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By the equality (11), we have

p

[2]
/0 i mp, T(tm + (1— £)7)dp gt (26)

1 /m’;q (gt + (1 - gt)m) —T(ptm + (1= pt)ma) |
_q) 0 1z

I1(7p) _ 1 H(}ﬂﬁ +q7r2>

[2] r.4

1

(2 —m1)(p—9)

2~ 0
11(7rp) — (711

1 /1 [I(gtmy + (1 —gt) ) — T(ptmy + (1 — Pt)ﬂz)d ;
12
0

t

qn+1 < qn+l > ) 0 <qn ( qn ) )
m+|l-—F|m|—) II|=m+(1-—=|m
(anrl 1 pn+1 2 ?;J pn 1 pn 2

[e)

=

11
1
Tl — 701

and

1
/0 E72D,  TT(ty + (1 — £)7)dy gt (28)

1

(mp —m)(p—9q)

/01 (gt + (1 — qt)m2) — I(ptry + (1 — pt)mm2)]dp ot

) qn qn-i-l q}’l-‘rl 00 qn qn qn
Zo n+1H(Pn+1ﬂl+(1—pn+1 4y, _anHH ﬁﬂ1+ 1—p—n o)
[ i Tl+1 ?’l+1 1’l+1 1 o0 n n n
£ hn(Sins (- 50)) 3 E (5 (- 5)1)
n=0 n=0

1
K
(G3) Z (s (- 50)) -

- —= —II| —=—m+(1— = |m | — -II(m
_(q P),E)P” pr pi)72) g
p

| P9 =0 F W p"
: / . T1(x) "2dpgx — (7 ﬂ
_P‘i(ﬂfz - 7T1) Jpmy+(1—-p)mo pAq q 1)]|-

By using (26)—(28) in (25), we obtain the desired identity (23). Thus, the proof is ended. O
Remark 6. If we address p = 1 in Lemma 2, then Lemma 2 reduces to ([15], Lemma 2).
Remark 7. If weuse p = 1and q — 1~ in Lemma 2, then Lemma 2 reduces to [40] (Lemma 2.1).

Theorem 8. Suppose that the assumptions of Lemma 2 hold. If | ™D, gI1| is a convex function
over [711, T3], then we have the following new inequality:
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" mg x| Pt
/nler(l_p)nZH(x) dpqx H( a,, ) (29)
< (m = ) [(|"2Dpgll(m1) | Ar(p,q) + | Dy I1(12) | A2(p, q))
+(|n2Dp,qH(7Tl)|A3(PI‘1) + |n2Dp,qH(772)|A4(P/Q))]
where
Ailpq) = ( qr))
q(p*(p* + 9 —P)+P[]
Ax(p,q) = ( 3 )'
(121,,) 18,4
As(pa) = q(q+2p)_q2(q2+3pi+3pq),
[Z]M ([z]m> [3]W
Ag(pg) = [Z]q AR p) — As(p,q).
P ([Z]M)
, we obtain
that
" mg oy | Pt
~/7I1p+(1—P)7T2H(X) dpgx H( o, > (30)

IA

[]pq

IN

Llpq

(m—mﬂﬁ%q

+/ (1—gt) |™2DpI1(tmy + (1 — t) 1, |dpqt]

qt |2 DpgT1(trry + (1 — t)702) | dp gt

_r
(2 — 111) [q/omm E(t|™2DypgIT(7r1)| + (1= £)[™2Dy,gT1(712)| ) dp gt

+ /;(1 —qt) (t]"2 Dy (7m) | + (1 — t)’nsz,qH(NZ)’)dp,qt] :

One can easily compute the integrals that appeared in the right side of the inequality (30)

_pr 3
[P eyt = P, (31)
0 (121,,) 18,4
L 3(,2 2 213
/[ (1—f)dp,qt _ p (p +q Z)+P [ }p,ql (32)
° (2,) Bl
1 2(,2 3 2 3
/L H1—qt)dpgt = 4(‘[72]+2P) _P(a"+3p" 4 3pg) 33)

pa (12),,) 13l
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/1 Q-0 —qtdyyt — 1 T+ 2p) (34)
2,0 P4 ([Z]M>
q(q+2p)  4*(9* +3p* +3pq)
3
2l (121,,) 31,

Making use of (31)—(34) in (30) gives us the required inequality (29). Hence, the proof
is finished. O

Remark 8. If we use p = 1 in Theorem 8, then Theorem 8 becomes [15] (Theorem 5).
Remark 9. Ifwe take p = 1 and q — 1~ in Theorem 8, then Theorem 8 reduces to [40] (Theorem 2.2)

Theorem 9. Suppose that the assumptions of Lemma 2 hold. If | ", r > 1isaconvex

function over [, 73], then we have the following new inequality:

Tt prty + gy
I(x) ™d,  x — 11| Y—x—= 35
/71]p+(1*p)n2 ( ) P ( [2]p,q ) ‘ ( )
1-1
P2 ' ; ; 1
< (m-m)| [WWMWMAMW+W%NWHMmM

()

1
+{72Dpattm)[ Aa(p0) + 2Dt As(p0)} |
where A1(p,q) — A4(p, q) are given in Theorem 8.

Proof. Taking the modulus in Lemma 2, applying the well-known power mean inequality
for (p, g)-integrals, and by using the convexity of | T " +>1, we have

Tt
mp+(1-p)m2 2] P

_r
< (7'[2 — 7-(1) l/o Plyq qt |7T2DMH(t7r1 + (1 - i’)ﬂg)’dp,qt
+/ (1= qt) |™2Dy TI(tmy + (1 — £)7) | dp gt
p‘i
< (m-m) {(/O”” qtdpqt> {q/o[z]”t t72 D, T1(rry) |+ (1 — £)] 2Dy T (75)|" )d,,,qt}

Blpq el

+(/1p (1—‘1t)dp,qt) {q/1 1—qt t|™D,  I1(ry)|" + (1 = t)| ™Dy 0I1(712)|" )dp,qt}

1
-7
2

p 3
(21,,)

1
{201 A ) + =Dyt Aap,)} |

1

= (m—m) [{’nsz,qH(nl)’rAl(PIQ) + ’nsz,qH(HZ)’rAZ(PI‘D} '
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which ends the proof. O
Remark 10. If we put p = 1 in Theorem 9, then Theorem 9 reduces to [15, Theorem 6].
Remark 11. Ifweset p = 1and g — 17 in Theorem 9, then Theorem 9 becomes [18] (Corollary 2).

Theorem 10. Suppose that the assumptions of Lemma 2 hold. If | ™D, 411 ", r > 1isa convex

function over 711, 712], then we have the following new inequality:

/nz IT(x) ™dpx — 11 <p71[12i|—q712> ’ (36)

mp+(1-p)m

1 r 2 r
p N\ pey S 72 DpgTl(m)| ([2?3)
< q(m—m) ( s+1 _ s+1> 3 2M 2 9
2] p q P+W+2MP>

P +|"2Dp,qH(7r2)|r( 2,

1
;

@l

v 12],,—P?
2D, o T1(my)| (”{’27 ”)

1 1 Sd 3
L (Yo %)
B, \1 +|n2Dp,qH(7T2)’r(q[Z]M—H} - q)

3
2]
where s +r = sr.

Proof. Taking the modulus in Lemma 2, by applying the well-known Holder’s inequality
for definite (p, q) integrals and using the convexity of | 2D, 4I1 ",r > 1, we obtain that

0 T + g7t
/ T1(x) "d g — 11 PELEA2 (37)
mp+(1-p)m [ ]p,q
o
< gq(m—m) [/0 S 472Dy Tty + (1 — £)712) |dp gt
1 1
+/ ) (q — t) ‘HZDpqu(tﬂ'l + (1 — t)7'(2)|dp,qi‘
Plpq
1 1
- S 7
< g(mp—m) [(/O[z]p,q tsdp,qf> {/O[Z]p,q (t|”2Dp,qH(7T1)|’ +(1—1)] nzpp,qH(nz)r)dp,qt}

r

1
1 /1 s i N . N ,
" g

2lpq
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One can easily evaluate the integrals that appear in the right side of the inequality (37)

ﬁ % p s+1 p—g %
pa 48 - £ 1
(/0 t dp,qt> ( [Z]P,q> <ps+l _ qs+1) (38)

_P_ 2
/ Tapd, e = P (39)
0 2],,4
P 3 2 2. 42
/[z]m (1= t)dy,t = p~+pq +32P q—-pr ’ (40)
0 2]
pa
/ ! td, t = M (41)
ﬁ ra [2]3 4
PA pAa
1 g8+ —p—q
/L(l — )yt = o . 42)
Doa pa

Making use of (38)—(42) gives us the required inequality (36). Hence, the proof is
accomplished. O

Corollary 2. If we pick p = 1 in Theorem 10, then we have the following new inequality

Jrmenmse-n(5)

q

< W e (4
o8 )| ot
+(/1 (1_t)sdqt)‘ ’ﬂZDqH(nl)’r(;@) 1-

r (9122~
ey ()
q

S

[P

Remark 12. If we choose p = 1 and g — 1~ in Theorem 10, then Theorem 10 reduces to [40]
(Theorem 2.3).

6. Trapezoidal-Type Inequalities through (p, g)2-Integral

In this section, we give some new trapezoidal inequalities by using the (p, q) derivative
and integral.
To prove the main results of this section, we need the following crucial lemma.

Lemma 3. Let IT: [y, 12] — R be a differentiable function on (7t1, 7t2). If ™Dy 411 is continu-
ous and integrable on [1t1, 11|, then we have the following identity:

pII(7t1) 4 qT1(72) 1 - )
- T1(x) ™2dp,ex 43
2y p(m —m) /,gn1+(1_p)n2 (x) "2dp,q (43)
_ qlm—m) !
= [2]p,q/0 (1 - [Z]P,qt) ﬂsz’qH(tn1 + (1 — t)7T2) dp,qt

where 0 < g <p < 1.

Proof. From (24) and the right side of (43), we obtain that
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q(né]_ - /01 (1 B mp,qt) " Dpgll(tmy + (1= 1)712) dpqt
pa
_ qlm—m) [ 1 /‘1 (gtm + (1 —qt)m) —Ti(ptm + (1 —pt)m)
a [z]p,q (”2—7[1)(}7—17) 0 t pA
2] !
(m—m)(p—9q) /0 (gt + (1= qt)m2) — H(ptmy + (1 = pt)7a)] dpgt |-

From (27) and (28), we have

‘7("[22]_"1) /01 (1 - [Z}Mt) D, T1(ty + (1 — £)71) dp gt

pa

o —m) [(m) —(m) 2], 1 & o 1

- [, [ T = T = {W(ﬂz —7m) /pnﬁ(lfp)nz ) By qH(M)}]

where the identity (43) is obtained and the proof is accomplished. [
Remark 13. If we consider p = 1 in Lemma 3, then Lemma 3 becomes [15] (Lemma 1).
Remark 14. Ifweadopt p = 1and q — 17 in Lemma 3, then Lemma 3 reduces to [41] (Lemma 2.1).

Theorem 11. Suppose that the assumptions of Lemma 3 hold. If | ™D, 4I1| is a convex function
over [711, 73], then we have the following new inequality:

7T
pl(m) +qll(m) 1 / ’ T1(x) ™d,,,x (44)
[z]p,q p(ﬂ'z - 7-[1) pm+(1-p)m
Ty — 7T
= [1([22]1)[| "Dyp,gI1(m)|As(p,q) + | ™ Dpqt1(72) | A6 (p,4)]
P4
where
1
Aspa) = [ (1= 2Dyt)| dpat
1
As(p) = [ =] (1= Rgt)| duat
Proof. Taking the modulus in Lemma 3 and using the convexity of { 2Dy 411], we have
7T
pl(m) +all(m) 1 I T1(x) ™2dp,qx (45)
[Z]p,q p(?'[z - ﬂl) prri+(1-p)ma
q(m2 — m) /1 7'(
< N2 M _ 2
< T b (1= 20,0t) | 2DpaT1(1)| digt

* /01<1 B t)‘ (1 - mwf) ’ 2Dy gT1(712) | dp gt

q(ma — )
[Z]p,q

Thus, the proof is completed. [

[| ™2DpgI1(711)| As(p, q) + | ™DpgI1(712) | As(p. q)]

Remark 15. If we set p = 1 in Theorem 11, then Theorem 11 becomes [15] (Theorem 3).
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IN

IN

IN

< AT ([ -yt doat)

Remark 16. If we consider p = 1 and q — 1~ in Theorem 11, then Theorem 11 reduces to [41]
(Theorem 2.2).

Theorem 12. Suppose that the assumptions of Lemma 3 hold. If | ™D, 411 ", r > 1isa convex

function over |71y, 12|, then we have the following new inequality:

‘7(”[22];:1) (/ol‘l - [Z]p,qt’ th>1_’ “ 2Dy 11(711)|" As(p, g) + | ﬂzDPrqH(m)rAé(p’q)} r

pII(my) 4 gI1(72) B 1 /Hz I1(x) Hde’qx (46)
P

p(m2 — 711) Jpmi+(1—p)m

1

where As(p,q) and Ae(p, q) are given in Theorem 11.

Proof. Taking the modulus in Lemma 3 and applying the well-known power mean in-
equality for (p, q) integrals and the convexity of | ™D, 4I1 ", r > 1, we get that.

(47)

pIl(m) + qIl(m) 1 /nz T1(x) ™2d, x
P

"(”[Zz]mnl) (/01‘1 ~ [2,qt| dp,qt>l ['/0'1‘1 — @)y gt| 2Dt + (1= )| d,,,qt} '

W (/01!1 ~ (2, w)l_r || 72DpaT1(e)| As(p.g) + | 2Dy Ti(m2)[" As(p.)|

p(m2 — 111) Jpmi+(1—p)ma

_1 1
r

_ 1-3
‘7(”[22];7,:1)(/01‘1_ [2]Mt) dp,qt>

x [/01 t‘ (1- [Z]Mt)‘ 72D, T1(711) | dp gt + /01(1 - t)‘ (1 12],4t) ’ ™D,/ T1(7r5)|" dp,qt}

Si=

1
r

Thus, the proof is finished. [
Remark 17. If we consider p = 1 in Theorem 12, then Theorem 12 reduces to [15] (Theorem 4).

Remark 18. If we address p = 1 and q — 17 in Theorem 12, then Theorem 12 becomes [42]
(Theorem 1).

Theorem 13. Suppose that the assumptions of Lemma 3 hold. If | ™D, 411 ", r > 1isaconvex

function over [111, 73], then we have the following new inequality:

(48)

pIl(m) + qIl(m) 1 /”2 TI(x) "d,,x
p

P4 p(T[z - 7-[1)

m+(1-p)m

1

| 72Dy ()| + (12],4 1)) nsz,qn(nz)V] ’
2]

pAa
where s +r = sr.

Proof. Taking the modulus in Lemma 3 and applying the well-known Holder’s inequality
for (p, q)-integrals and the convexity of | ™D, 4I1 ", > 1, we obtain that
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IN

IN

7T
B : / 2 T1(x) ™dp,gx (49)
[2]p,q p(me — m) Jpm+(1-p)m,
; 1
q(nz — 7[1) 1 s H 1 1
W </0 ‘1 B [Z]Wt‘ th /0 |7T2Dp,qn(t7r1 +(1- f)ﬂz)r dmt
1
q(12 — 1) (/1 s H
T\ Sy [T Blpgt| deat
1 ) %
) {/0 ! ‘nzDWH(nl)’r dpqt +/0 (1—1) |HZDMH(7T2)|r dprqf}
We can calculate the integrals that occur in the right side of (49) as follows
| ‘ ) (50)
t t =
0 pA [2]%‘7
1 2]y~ 1
1—f)dyt = A -
fa-va - Zp

Making use of (50) and (51) in (49) gives the desired result. Hence the proof is done. [

Remark 19. If we set p = 1 and q — 17 in Theorem 13, then Theorem 13 becomes [41]
(Theorem 2.3).

7. Applications to Special Means

For arbitrary positive numbers 711, 712 (717 # 712), we consider the means as follows:

1. The arithmetic mean

T + 70

A:A(Tfl,ﬂ'z) = >

2. The geometric mean

g= g(ﬂl, 7'[2) = /71 772.
3.  The harmonic means
2711712

H="H(m,mm) = m———

Proposition 1. For 71, € Rwith my < mpand 0 < q < p < 1, the following inequality
is true:

1 1
A%(my, ) < .A(Tc%, 7'(2) — p(my — m)? [[z]pq - [3];::7] < A(?T%, n%)

Proof. The inequality (17) for mapping I1(x) = x? leads to this conclusion. For verification,
ifwechooserry =0, 1y =1,p = %, and g = %, we have

A%(my, ) = 0.25,

1 1
A7 m3) = P2 = m)? [ - 1 = 0.4578,

and
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Thus,
0.25 < 0.4578 < 0.5

which shows that the inequality (17) is valid. O
Proposition 2. For 71,71, € Rwith my < mpand 0 < g < p < 1, the following inequality

is true:

G2 (mmy, m)H(my, ) < A(@1,0,) < H L (my, m),

where

=) qn qn qn -1
o= (-9 ¥ T (an (71 + plm2 — 7)) + (1 - pﬂ)n)
n=0

and

x gt q" g" -1
O, = (p - q) nZ() Pn+1 (Pn+1 (7TZ + P(7T1 - 7T2)) + (1 — pn+1)ﬂ2> .

Proof. The inequality (17) for mapping IT(x) = 1, where x # 0leads to this conclusion. [J

Proposition 3. For r1, 1y € Rwith 11 < mpand 0 < q < p < 1, the following inequality
is true:
In(A(7my, m2)) < A(®3,04) < InG(my, m2),

where

O =(p-q ) L ln( Ty + plms — 1)) + (1 Zﬂ)m)
n=0 P p p

and

1) n n "
@i=(p—9q) Y. Z+1 IH(ZH(N2+F7(7T1_7T2))+(1_ZH)N2>'
n=0 P P P

Proof. The inequality (17) for mapping IT(x) = In x leads to this conclusion. [

8. Conclusions

In the present research, we used the notions of (p,q) derivative and integral, some
new HH-type inequalities, and estimates for midpoint and trapezoidal type inequalities
are derived. To approve their generalized behavior, we show the connection between our
outcomes and the already established ones. Moreover, we provided applications to special
means using the newly proved inequalities to show their significance. In future works,
researchers can obtain comparable results by utilizing different kinds of convexity.
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