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Abstract: We consider a discrete-time random walk (xt) which, at random times, is reset to the
starting position and performs a deterministic motion between them. We show that the quantity

Pr
(

xt+1 = n + 1|xt = n
)

, n → ∞ determines if the system is averse, neutral or inclined towards
resetting. It also classifies the stationary distribution. Double barrier probabilities, first passage times
and the distribution of the escape time from intervals are determined.

Keywords: random walk with resetting; escape probabilities; exit times

1. Preliminaries

In a previous paper [1], we introduced the Sisyphus random walk as an infinite
Markov chain that moves on the space state N = {0, 1, 2, . . . , ∞} and that, at every step,
can either jump one unit rightward or return to the initial state from where it is restarted.
The system was named after the king of Ephyra, Sisyphus, who was condemned to lift a
heavy stone in an endless cycle.

Here, we generalize the above idea and consider a random walk on the integers
(xt)t∈N whose dynamics alternates deterministic linear motion with resets which drive the
system to the starting point at the random times (tn)n≥1. At every clock tick, the position
of the random walker is such that |xt| either increases one unit, or returns to the ground
state, whereupon the evolution continues. Such resetting occurs through an independent
mechanism superimposed onto the original semi-deterministic evolution. Once (xt) is
reset to the origin at t1, it begins the evolution anew from scratch which is deterministic
between resets.

Using translational invariance, we can suppose that x0 = 0 with no loss of generality.
Concretely, starting from x0 = 0, three possibilities exist for the future position x1: the
system may remain at x1 = 0 provided a reset occurs at t = 1; otherwise, it goes one unit
to the right with probability ρ or to the left with probability ρ̄ = 1− ρ. In addition, if the
system has wandered into the positives so that at a certain time t ≥ 0 is xt > 0 (respectively
xt < 0) then, at time t + 1, it may either be reset to the origin xt+1 = 0 with arbitrary
probability or else increase (respectively, decrease) one unit to xt+1 = xt + 1 (respectively
xt+1 = xt − 1).

Such apparent simplicity is misleading, as this simple evolution law can exhibit a sur-
prisingly complex and rich behavior. Indeed, at each site, we allow arbitrary probabilities
for the random walk to reset to the origin and, additionally, the possibility to move both
in the positive and negative integers. The only restriction in this general dynamics is the
requirement that (xt)t∈N be a Markov chain. The resulting system is a natural, non-trivial
generalization of that of [1], which is recovered when the reset probability is independent
of the location and when ρ = 1.

In a different setting, such a system may be used as an idealized model of the random
dynamics of a “mobile” in a trap, say, who is trying to climb stepwise a ladder or wall
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given that, at every step, there is a probability of slipping to the bottom, resulting in the
need to restart again. Here, the natural question would be the determination of the location
probability and expected time to escape the trap.

A related mechanism—Sisyphus cooling— was proposed by Claude Cohen-Tannoudji
in certain optical contexts to the effect that an atom may climb up a potential hill, till
suddenly it is returned to some ground state where it can restart anew. The hallmark of
such systems is the possibility to display “back-to-square-one” behavior, a feature common
in real life systems. Indeed, the study of stochastic processes subject to random resets is a
problem that has attracted great interest in recent years after the seminal work of Manrubia
and Zanette [2] and Evans and Majumadar [3]. Presently, the dynamics of systems with
resets is being subjected to intense study, see the recent review [4]. Other mechanisms for
random walks that are suddenly refreshed to the starting position are considered in [5–7].
Brownian motion with resets is considered in [3,8] while in [9] the propagator of Brownian
motion under time-dependent resetting is obtained (see also [10] for further elaboration).
In [11], these ideas are applied to the case of a compound Poisson process with positive
jumps and constant drift. Further elaboration appears in [12]. Reset mechanisms have also
been thoroughly applied to search strategies in mathematical and physical contexts as well
as to behavioral ecology, see [10,13–18]. Surprisingly, strategies that incorporate reset to
pure search are advantageous in certain contexts in ecology and biophysics and molecular
dynamics, [19–22]. A generalization of the Kardar–Parisi–Zhang (KPZ) equation that
describes fluctuating interfaces and polymers under resetting is covered in [23]. Dynamical
systems with resets have also been used as proxies of the classical integrate-and-fire models
of neuron dynamics, see [24,25]. In the context of Lévy flights with resetting, see the
interesting papers [26,27]. For other applications, see also the recent papers [28–35].

As commented, the main aim of this paper is to study the main features of the semi-
deterministic random walk with resets (xt), t = 0, 1, . . . ∞. The evolution rules for such a
random walk are described in Section 2. We then study the propensity towards resetting
of the system. According to this important property, we denote systems as reset averse,
neutral or reset-inclined, and characterize them in terms of the transition probabilities

and behavior of Pr
(

xt+1 = n + 1|xt = n
)

, n → ∞. In Section 3, we study the stationary
distribution that the system approaches for large time. Section 4 considers first-passage
problems and, in particular, two-sided exit probabilities; concretely, given levels a, b ∈ N,
we study the probability that x reaches a > 0 before having reached−b and distributions of
the escape time. First passage times (FPT) also play a key role in statistical decision models,
or to devise optimal strategies for seeking information; the rate at which a Brownian
particle, under the influence of a metastable potential, escapes from a potential well is also
a critical subject in the study of polymers, the so-called Kramers problem [36].

Under the simplest election ρ = 1 and qn := Pr
(
xt+1 = n + 1|xt = n

)
= q1 constant,

we have that the distribution of the FPT to level k ≥ 1 is that of the number of trials
required in an unfair coin-toss to obtain k consecutive successes, a classical problem in
probability. Even with k = 2, the distribution of such a problem is not trivial.

2. The Model

The evolution rules for the random walk (xt), t = 0, 1, . . . ∞ are as follows. Let x0 := 0
be the initial position. We suppose that, if for any t ≥ 0 is xt = 0, then the random
walk satisfies

Pr
(

xt+1 = n|xt = 0
)
= q̄1δn0 + q1ρδn1 + q1ρ̄δn,−1, n ∈ Z (1)

We denote q1 = Pr(xt+1 6= 0|xt = 0) ∈ (0, 1) the probability that, starting form zero, the
system moves away from the origin at the next instant and ρ := Pr(xt+1 = 1|xt = 0, xt+1 6=
0) ∈ [0, 1] the probability that, if the system abandons the originat time t, it goes to position
xt+1 = 1. To ease notation, for any value p, we set p̄ := 1− p , q̄1 := 1− q1. Besides δnk is
the Kronecker delta.
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Further, we suppose that the random walk (xt), t = 0, 1, . . . ∞ is a Markov chain where,
if xt ≡ n 6= 0, the only allowed transitions are either to site n + sign (n) if no reset occurs,
which happens with probability qn+1; or else to {0}, when a reset occurs, with probability
1− qn+1. Here, the sequence (qn) satisfies that 0 ≤ qn ≤ 1 for all n. It follows that the chain
has the transition rules

Pr
(

xt+1 = m|xt = n
)
=

{
qn+1, m = n + 1
1− qn+1, m = 0

, t ≥ n > 0 (2)

Pr
(

xt+1 = m|xt = n
)
=

{
q|n|+1, m = n− 1
1− q|n|+1, m = 0

, t ≥ −n > 0 (3)

Pr
(

xt+1 = m|xt = 0
)
=


ρq1, m = 1
ρ̄q1, m = −1
1− q1, m = 0

(4)

and 0 otherwise. We also suppose that the infinite product with general term qn satisfies

lim
n→∞

n

∏
j=1

qj = 0; alternatively
∞

∑
j=1

(1− qj) = ∞ (5)

This mild requirement does not imply that limn→∞ qn = 0 (see Equation (12) below).
The model considered in [1] is recovered assuming ρ = 1 and that the jump-probability

is constant: q1 = q2 = . . . qn = . . . . Figure 1 displays a typical sample path.

t1
0 5 10 15 20 25 30

−4

−2

0

2

4

t1 t2

Figure 1. A typical sample paths of the process where t1 = 5, t2 = 7, . . . and x1 = x6 = 1.

2.1. Reset Times

We denote as t1 the random time at which the first reset happens. Here, we consider
its distribution probability pn := Pr(t1 = n), n = 1, . . . , ∞. Similarly, we denote as tk
the random time at which the k−th reset happens. To this end, note that for n = 1, 2, . . .
the reset takes place at time n if in all previous times no reset has occurred—and so
|x1| = 1, . . . , |xn−1| = n − 1 and xn = 0. Thus, we have transitions {0} 7→ {1} · · · 7→
{n− 1} 7→ {0} and the corresponding probability

pn := Pr(t1 = n) = q1 . . . qn−1q̄n (6)

where t1 is a proper random variable, in view of Equation (5).
The following representation clarifies the meaning and different roles of (pn) and (qn)

pn := Pr(t1 = n) = Pr(tt = n) := Pr
(

xt+n = 0, xt+j 6= 0, 0 < j < n|xt = 0
)

(7)
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and
q̄n = Pr

(
xt+n = 0|xt = 0, xt+j 6= 0, 0 < j < n

)
(8)

We relate both probabilities. We introduce recursively a sequence (βn) via β0 ≡ 1 and
βn := q1 . . . qn, n = 1, 2, . . . . Note then that

pn = q1 . . . qn−1q̄n = βn−1 − βn

This can be inverted as

βn = pn+1 + pn+2 + · · · = F̄t1(n) = 1− Ft1(n) (9)

whereFt1 ≡ F is the cumulative distribution function (cdf) of t1 and F̄(n) := 1− F(n).
Recalling that βn := q1 . . . qn, we finally have that Equation (6) can be inverted as

qn =
F̄(n)

F̄(n− 1)
, n = 1, 2 . . . (10)

2.2. Reset Averse and Reset-Inclined Systems

One of the most defining traits in the random walk (2)–(4) is what we call propensity
towards resetting, a measure of how likely is that the resetting mechanism is triggered as
the time from the last reset increases. We say that a system is inclined towards resetting
if such a probability grows as the distance to the origin increases: q̄n < q̄n+1, for all n.
Intuitively, for a reset-inclined system, the greater the time since the last visit (alternatively,
the farthest off) the more anxious to return to the origin becomes the random walk. If this
probability decreases (respectively, remains unchanged), we say that the system is reset-
averse or reset-neutral. Reset-neutral chains correspond to having qn = qn−1 ≡ q1 ∈ (0, 1)
for all n. This is the choice considered in [1]. In this case

Pr(t1 = n) = qn−1
1 (1− q1), F(n) = 1− qn

1 (11)

Actually, we are interested in this property for large n. We say that a system is ultimately
averse, neutral or, respectively, inclined towards resetting if, as the time from the last reset
tends to infinity, the reset probability (qn) satisfies

lim
n→∞

qn := lim
n→∞

Pr
(

xt+n 6= 0|xt = 0, xt+j 6= 0, 0 < j < n
)
=


0, (inclined)
q∞ ∈ (0, 1) (neutral)
1, (averse)

(12)

The selection qn = q1/n corresponds to an ultimately reset-inclined system. Here, we
have limn→∞ qn = 0 and

pn =
qn−1

1
(n− 1)!

−
qn

1
n!

, F̄(n) =
qn

1
n!

, n = 1, 2 . . . (13)

A simple calculation yields < t1 >= eq1 ≤ e, which is bounded with respect to the
parameter q1.

Finally, the choice qn = n/(n + 1) corresponds to a reset-averse system. Here, the
chain has power law decay tails:

pn =
1

n(n + 1)
and F̄(n) =

1
n + 1

(14)

The selections (13) and (14) reflect that the probability to commit an error that sends
the walker to square one diminishes (increases) with every step. This may be put down
to a capability to learn or, in contrast, to forget or grow tired with the distance to the
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origin. Equation (14) corresponds to qn = qn−1
(
1 + 1

n2−1

)
—and hence to learning—while,

if qn = qn−1(1− 1
n ), then Zipf law (13): qn = q1/n follows.

Equation (14) may also arise due to uncertainty in the relevant parameters. Suppose
we accept the basic model (11) to hold but are ignorant of the value of parameter q1.
Besides, we accept that all values for q1 are equally likely; in this situation, the parameter
q1 should be assumed to have Uniform (0, 1) distribution. Bayes theorem implies that the
distribution at posteriori of t1 must be given by Equation (14):

Pr(t1 = n) =
∫ 1

0
Pr(t1 = n|q1)dq1 =

∫ 1

0
dq1qn−1

1 (1− q1) =
1

n(n + 1)
(15)

We next show that the above behavior is ubiquitous, so the reset propensity is directly
related with the tail’s behavior. Indeed, since the sequence F̄(n) is strictly monotone and
F̄(n) ↓ 0 as n→ ∞, the Stolz–Cesáro theorem gives

q∞ := lim
n→∞

qn = lim
n→∞

F̄(n)
F̄(n− 1)

= lim
n→∞

pn

pn−1
(16)

Requiring q∞ ≡ e−λ ∈ (0, 1), we obtain that asymptotically (pn) must grow as

pn ≈ ce−λn, c, λ > 0, n→ ∞ (17)

which is the paradigmatic example of ultimately neutral systems. Note that such (pn) has
medium tails. By contrast, tails of the form

pn ≈ ce−λnα
, n→ ∞ where c > 0, λ > 0, α > 0 (18)

give q∞ = 1 if 0 < α < 1 and q∞ = 0 if α > 1. The exponential case α = 1, i.e., the
geometric distribution, marks the crossover between these cases.

Note that slowly, power-law decaying, sequences such as

pn ≈ c/nα, c > 0, α > 1, n→ ∞ (19)

also correspond to reset-averse systems ultimately. Thus, heavy tails of the sequence
(pn) correspond to reset-averse systems while the opposite holds with medium and light
(super-exponential) tails such as those in Equations (11) and (18). Table 1 summarizes all
the possibilities.

More complicated tails can be handled noting the behavior of ultimately averse,
neutral or inclined reset systems under sums and products. We use q∞ := ϑ to denote that
limn→∞ qn ∈ (0, 1) (thus, limn→∞ qn = 0, ϑ or 1). Hence, with obvious notation, the sums
and product rules for q(1)∞ , q(2)∞ read

0 + 0 = 0; 0 + ϑ = ϑ; 0 + 1 = 1; ϑ + ϑ = ϑ; ϑ + 1 = 1 + 1 = 1;

0 · 0 = 0 · ϑ = 0 · 1 = 0; ϑ · ϑ = ϑ · 1 = ϑ; 1 · 1 = 1

where the symbol ϑ · ϑ = ϑ is used to mean that if

lim
n→∞

q(1)n ∈ (0, 1), lim
n→∞

q(2)n ∈ (0, 1), then lim
n→∞

q(1)n q(2)n ∈ (0, 1)

As an example, for 0 < c < 1, consider the hybrid system

pn =
nν̄ + 1

n(n + 1)
νn−1 = O(

e−λn

n
)
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where ν := e−λ, λ > 0. Here, pn ≡ p(1)n p(2)n and tails display mixed exponential and
power-law decay. Hence, q∞ = q(1)∞ · q

(2)
∞ = ϑ · 1 = ϑ correspond to an ultimately neutral

system. This is corroborated by an exact evaluation of qn. Equation (10) yields that

qn = nν/(n + 1) and lim
n→∞

qn = ν ∈ (0, 1)

Table 1. The table summarizes the propensity to resetting in terms of the decay of pn := Pr(t1 = n) and the equilibrium
distribution. In all cases λ > 0.

pn→∞ Ft1 (n) qn→∞ Propensity Tails Et1 πn→∞

O(e−λnα
), α > 1 O(e−λnα

) 0 inclined Super-exp. <∞ O(e−λnα
)

O(( e−λ

n )n, O(( e−λ

n )n, 0 inclined Super-exp. <∞ O(( e−λ

n )n

O(e−λn) O(e−λn) ∈ (0, 1) neutral exp. <∞ O(e−λn)

O(e−λnα
), 0 < α < 1 O(e−λnα

), 0 < α < 1 1 averse Sub-exp. <∞ O(e−λnα
)

O(1/nα), α > 2 O(1/nα−1), α > 2 1 averse Power-law <∞ O(n1−α)

O(1/nα), 1 < α ≤ 2 O(1/nα−1), 1 < α ≤ 2 1 averse Power-law =∞ —-

2.3. Comments on Markovianness

The fact that the system has a capability for learning (or to forget, see Equations (11),
(13) and (14)) suggests the existence of some “memory” in the dynamics, a fact that cast
doubt upon the Markovian nature of the model. Actually, there is some hidden memory,
although not in (xt).

This apparent paradox has interesting implications and can be developed further as
we now explain. At any time t, let Nt be the process that counts the number of resets
tn “observed” in the time window (0, t]. Thus, Nt = n if tn ≤ t < tn+1. Given that
Nt = n, n ≤ t any additional information may result in information relevant to predict its
future: if additionally, say Nt−1 = n− 1, we infer that a reset has occurred exactly at t, a
valuable information. Hence, (Nt) is generically non-Markovian. The only exception is the
system (11); here, Nt follows a binomial distribution with success parameter q̄1:

P
(

Nt = n
)
=

(
t
n

)
· q̄n

1 qt−n
1 , n = 0, 1, . . . t (20)

By contrast, suppose we know xt = i, 0 < i ≤ t. This information amounts to saying that
the previous reset occurred at tn = t− i and hence pins down the history of the process
after tn, viz xt−i+j = i + j, ∀j = 0, 1, . . . i. By contrast, the history of the process previous
to tn remains unknown. Should additional information be provided, it would not help
predict the future of x, since at tn the process started anew; hence, only the history after tn
is relevant, but this is already known. Thus, we arrive at the counter-intuitive fact that (Nt)
needs not be Markovian but (xt) is. Likewise, the vector chain (Nt, xt) is Markovian.

3. Equilibrium Distribution

Here, we consider the large time distribution of the random walk. Call x∞ ≡ limt→∞ xt
the limit of the process and πn := Pr(x∞ = n), n ∈ Z its distribution. When it exists it is
also a stationary state, in the sense that if it has initially this distribution then it will not
abandon it. (πn) satisfies the system

∑
n∈Z

gnmπn = πm, m ∈ Z (21)
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where (gnm) is the transition probability matrix defined in Equation (3):

gnm := Pr
(

xt+1 = m|xt = n
)

(22)

To handle this, we divide the matrix in upper and lower parts, connected only by the
column and rows with index 0, i.e.,

G =

(
G− 0
0 G+

)
(23)

where G− is essentially obtained from G+ by reflection and G+,nm, n, m = 0, ∞ reads
(including the 0− column)

G+ =


q̄1 ρq1 0 0 0 . . .
q̄2 0 q2 0 0 . . .
q̄3 0 0 q3 0 . . .
. . . . . .
q̄n 0 . . . 0 0 qn

 (24)

By insertion, we find
π1 = ρq1π0, π−1 = ρ̄q1π0

along with the recursive system

πn+1 = qn+1πn, n ≥ 1 and πn−1 = q|n|−1πn, n ≤ −1 (25)

Solving recursively, we find

πn = ρπ0q1q2 . . . qn = π0ρF̄(n) and π−n = π0ρ̄F̄(n), n ≥ 1 (26)

Normalization gives 1/π0 = ∑∞
n=0 npn ≡< t1 >≡ µ which requires < t1 >≡ µ < ∞, i.e.,

(pn) must decay at least as pn ≈ 1/nr, r > 2. In this case, defining ρn ≡ ρ1n>0 + ρ̄1n<0 +
δn0, the stationary distribution is

πn = (ρn/µ)F̄(|n|), n = −∞, . . . , ∞ (27)

The probability that the random walk has drifted to site n for large times decreases as
F̄(n) does, see Table 1. Hence, for reset-averse systems, (πn) displays heavy tails (which
may even decay in a weak, algebraic way), and so there exists a non-negligible probability
to find the system away from the origin at large times. This agrees with the “unwillingness”
of the system to return to the origin. The opposite holds for reset-inclined systems where
this probability will decrease quicker than exponentially. Concretely, for the cases (11) and
(13), the stationary distribution is

πn = ρn(1− q1)q
|n|
1 and πn = ρneq1

q|n|1
|n|! , n = −∞, . . . 0, . . . , ∞ (28)

Finally, for system (14), there is neither an equilibrium nor a stationary distribution, in-
dicating that the chain spreads out far from the origin and does not settle to an equilibrium.

Writing Equation (21) as ∑n 6=m πmgnm = ∑n 6=m πngmn, it states that the total probabil-
ity flux from all states n into m, n 6= m, must equal the flux from state m into the rest of
states. Hence, (πn) satisfies a global balance equations, viz Equation (21). This does not
imply that (πn) is an equilibrium state, only a limit state; for an equilibrium distribution it
must satisfy the far stronger “detailed balance” condition: πmgnm 6= πngmn—which does
not hold. This was to be expected since detailed balance guarantees time-reversibility of
the dynamics, a trait that the system at hand clearly does not exhibit, as a simple inspection
of the trajectories shows.
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In the absence of any information, the maximum entropy principle yields that the
distribution with maximum entropy should be chosen on the basis that it is the least-
informative one. Within the class with fixed finite mean, it is well known that this cor-
responds to a geometric distribution. It follows from Equation (28) that this implies that
the model satisfies Equation (11). We conclude that the reset neutral chain (11) satisfying
qn = q1, for all n, and arbitrary ρ has the remarkable properties of being the only selection
that corresponds to a truly Markovian situation (i.e., for both (xt) and the arrival process
(Nt)) and the one that gives the maximum entropy for fixed mean.

4. Escape Probabilities

In a classical study, W. Feller [37] showed that most recurrent properties of general
diffusion processes can be codified in terms of two of the functions that define escape
probabilities from an interval (c, d), c < d. Given that the process has started from a general
x0, c < x0 < d, Feller considers the “scale and speed functions”, defined as

s(x0) = Pr(τd > τc) and m(x0) ≡< min{τc, τd} > (29)

and shows that they solve certain differential equations (see [37] for an overview). Here,
for any a ∈ R, we introduce the “hitting time” τa = inf{t > 0 : xt = a} which represents
the lapse of time necessary to travel from the starting value to a.

We perform a similar study here and determine, for given levels a, b ∈ N,−b < 0 < a,
the probability that the random walk (xt) reaches a before having reached −b. Note that by
translational invariance the case when (x) starts from general x0 is immediately reduced to
that with x0 = 0.

We start noting that when resets are switched off the only source of randomness lies in
the first displacement of the random walk away from x = 0; hence, xn = n for all n if x1 = 1.
In this case, τa,b—the minimum time to hit either a > 0 or −b < 0—is a binary random
variable that takes values a and b with probabilities ρ and ρ̄. Besides, Pr0(τa < τb) = ρ.

Obviously, τa,b will increase when a reset mechanism is introduced; it is, however,
tempting to think that resets do not affect the escape probabilities, namely Pr0(τa < τb) = ρ
still holds. However this is not correct! To dispel such a misinterpretation, note that resets
introduce a bias which favors the closest barrier against the farthest one. This is similar to
the classical waiting time paradox where cycles with very large inter-reset times have a
greater probability than smaller ones. Intuitively, if restarts occur very often, the possibility
to reach the farthest barrier diminishes. We now determine this probability.

A very simple argument goes as follows. Consider the probability `a that the random
walk (x) reaches a > 0 before having reached −b when we know that (xt) hits a or −b in
the given cycle. The event that escape occurs at a given cycle, say, the first, is

E := {x1 > 0, t1 > a} ∪ {x1 < 0, t1 > b} ≡ E1 ∪ E2 (30)

with probability
κ ≡ Pr(E) = ρF̄(a) + ρ̄F̄(b) (31)

Hence, the probability that escape occurs via the upper barrier can be evaluated as the
probability of E1 conditional on the event E having happened:

`a = Pr( escape via a|E) = Pr(E1|E1 ∪ E2) =
ρF̄(a)

κ
(32)

The reasoning when escape occurs at a general given cycle is a bit more involved but
does not change the result.

Denote `0
a ≡ ρ the corresponding probability when no resets are introduced. Then,

`a ≥ `0
a ⇔ F̄(b) ≤ F̄(a)⇔ b ≥ a (33)
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which means that resets increase the probability to hit first the closest barrier, as expected.
Further, when a = b Equation (32) yields `a = `0

a.
We thus have for the neutral chain (11), the reset-averse chain (13) and the reset-

inclined chain (14), respectively

`a =


ρ
(

ρ + ρ̄qb−a
1

)−1

ρb!
(

b!ρ + ρ̄a!qb−a
1

)−1

(
1 + ρ̄(a+1)

ρ(b+1)

)−1

=


ρ
(

ρ + ρ̄qd
1

)−1

ρ
(

ρ + ρ̄qd
1a!/(a + d)!

)−1

(
1 + ρ̄(a+1)

ρ(a+d+1)

)−1

(34)

In the second equality, we introduce d := b− a, which measures the departure from
symmetry of the problem and suppose b ≥ a for ease of notation.

5. Escape Times
5.1. Symmetry Properties of First Passage Times

Denote for a moment as τ
ρ
a,b the FPT to either a or−b when Pr(xt+1 = 1|xt = 0, xt+1 6=

0) = ρ. This quantity τa,b has a nice interpretation. Suppose the model (11) holds. Say a
success has been scored every time a reset does not happen. Then, τ1

n,n = τ1
n is the time

that takes to obtain n ≥ 1 successes in a row provided the probability of individual success
is q1, a classical problem in probability. Obviously, if n = 1 then τ1

1 —the first time to reach
level 1—must have a geometric distribution with parameter q1. However, even with n = 2,
this problem has no easy solution, not even for the mean times.

We note the interesting relation between the asymmetric and symmetric cases.

1. If la is defined in Equation (32) and la + lb = 1 and EX ≡< X > indicates the expected
value of the random variable X, we have

Eτ
ρ
a,b = laEτ

ρ
a,a + lbEτ

ρ
b,b (35)

2. τ
ρ
a,a is independent of ρ. Besides, the distributions in the symmetric case and one-sided

case are equal, namely, for any b

τ
ρ
a,a = τ1

a,b = τ1
a,∞ ≡ τ1

a ; τ
ρ
a,∞ = τ

ρ
a (36)

Indeed, when the interval is symmetric the escape time will not be influenced by
whether resets favor upward or downward flights; hence, Equation (36) must hold.
For the sake of comparison, we see that Equation (39) overestimates the time it takes
to reach the boundaries.

A first approximation is given by < τa,b >≈< N > × < t1 > where N is the number
of resets until escape. To warm up, we consider first the distribution of N.

By independence of cycles, N has a geometric distribution with exit parameter κ :=
Pr(E) where E, κ are defined in Equations (30), (31). Thus, we have N ∼Geom (κ):

Pr(N = n) = κ(1− κ)n−1, n = 1, 2 . . . and (37)

< N >= (1/κ), < τa,b >≈< N > × < t1 >=
∑∞

n=1 npn

ρF̄(a) + ρ̄F̄(b)
(38)

In particular, for the symmetric case a = b,

< τa,b >≈
( ∞

∑
n=1

npn

)
/(

∞

∑
n=a+1

pn) ≥ a +
( a

∑
n=1

npn

)
/(

∞

∑
n=a+1

pn) (39)

Clearly, this approximation is only reasonable when the system needs a large number of
resets prior to exit the interval, i.e., κ ≈ 0.
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5.2. Mean Exit Time

To study the exact time to hit a or b, we note that depending of what happens at the
the first reset t1 there are five excluding and exhausting possibilities. These scenarios are:

• (S1) x1 > 0 and t1 > a;
• (S2) x1 < 0 and t1 > b;
• (S3) x1 > 0 and t1 ≤ a;
• (S4) corresponds to having x1 < 0 and t1 ≤ b;
• (S5) corresponds to x1 = 0.

Under scenario (S1), (xt) hits a before it hits b with τa,b = a. Under scenario (S2), (xt)
hits b before a and τa,b = b. Scenarios (S3) to (S5) refresh (xt) to the origin so the “race”
starts again from scratch; hence τa,b = t1 + τ′a,b, where τ′a,b is the time that remains until
exit once the new cycle starts. This implies that

τa,b =


a if x1 > 0, t1 > a
b if x1 < 0, t1 > b
t1 + τ′a,b if 2 ≤ t1 ≤ a, x1 > 0 or 2 ≤ t1 ≤ b, x1 < 0 or t1 = 1

(40)

and Eτa,b = aρF̄(a) + bρ̄F̄(b)+

ρE(t11t1≤a) + ρ̄E(t11t1≤b) + (ρ̄F(b) + ρF(a))Eτ′a,b

Here, 1A = 1 if the event A holds and is 0 otherwise. Thus, we finally obtain

Eτa,b =
ρ
(
aF̄(a) +E(t11t1≤a)

)
+ ρ̄
(
bF̄(b) +E((t11t1≤b)

)
ρ̄F̄(b) + ρF̄(a)

(41)

If b→ ∞, then bF̄(b)→ 0 and we recover the mean hitting time to level a as

Eτa = a +
1

ρF̄(a)
(
E(t1)− ρE

(
t11t1>a

))
(42)

Particularly interesting is the symmetric case a = b. Here,

Eτ
ρ
a,a = Eτ1

a = a +
E(t11t1≤a)

F̄(a)
= a +

( a

∑
n=1

npn

)
/(

∞

∑
n=a+1

pn) (43)

Note how this implies equation (35).

5.3. Distribution of the Exit Time

Finally, we consider the distribution of τa,b. We evaluate its generating function

G(z) =
∞

∑
n=1

zn Pr(τa,b = n) (44)

by using Equation (40). Here, z ∈ C, |z| ≤ 1. Recall that

τa,b = a1x1>0,t1>a + b1x1<0,t1>b +
(
t1 + τ′a,b

)
12≤t1≤a,x1>0 + 12≤t1≤b,x1<0 + 1t1=1 (45)

Note also that

E
(
zt1+τ′a,b 12≤t1≤a,x1>0

)
= E

(
zt1 12≤t1≤a,x1>0

)
E
(
zτa,b

)
= ρ p̂a(z)Gτa,b(z)

where we define the truncated generating function p̂a(z) = ∑a
k=1 zk pk.

It follows from Equation (40) that Gτa,b(z) is the sum of the following terms
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Gτa,b(z) = E1 + E2Gτ′a,b
(z) (46)

where

E1 := za Pr(x1 > 0, t1 > a) + zb Pr(x1 < 0, t1 > b) = zaρF̄(a) + zbρ̄F̄(b),

E2 := E
(
zt1 1t1≤a,x1>0) +E

(
zt1 1t1≤b,x1<0

)
+E(1t1=1)

Thus finally, in Laplace space, the generating functions read

Gτa,b(z) =
zaρF̄(a) + zbρ̄F̄(b)

1− ρ p̂a(z)− ρ̄ p̂b(z)
(47)

Hence, the mass function of τa,b is

P(τa,b = n) =
F̄(a)
2πi

∮
dz

Gτa,b(z)
zn+1 , n ≥ 1 (48)

If either b = a (symmetric case) or ρ = 1, b = 1 (one-sided case), it simplifies to

Gτa,a(z) =
za F̄(a)

1− p̂a(z)
(49)

P(τa,a = n) =
F̄(a)
2πi

∮
dz

dz
zn+1−a(1− p̂a(z))

, n ≥ a (50)

The FPT to a is recovered letting b→ ∞; then, p̂b(z)→ p̂(z) := ∑∞
n=1 zn pn and

Gτa(z) =
zaρF̄(a)

1− ρ p̂a(z)− ρ̄ p̂(z)
(51)

5.4. FPT under the Model (11)

If Equation (11) holds, the distribution of τa,a simplifies. The generating function and
distribution of the exit time read p̂a(z) = q̄1z(1− (zq1)

a)/(1− zq1) and

Gτa,a(z) =
(q1z)a(1− q1z)

1− z + qa
1q̄1za+1 (52)

Hence, when a = 1 we recover Gτ1,1(z) = q1z/(1− q̄1z) corresponding to a geometric
distribution. Note

Pr(t1 = n) = qn−1
1 (1− q1), Pr(τ1,1 = n) = q̄n−1

1 q1 (53)

For a = 2, we have

Gτ2,2(z) =
(q1z)2

1− q̄1z− q1q̄1z2 (54)

If s± := q̄1 ±
√

q̄2
1 + 4q1q̄1, this can be inverted as

P(τ2,2 = n) = q2
1

n−2

∑
j=0

(
n− 2− j

j

)
qj

1q̄n−2−j
1 =

q2
1

(
sn−1
+ − sn−1

−

)
2n−2(s+ − s−)

(55)

Hence, summing an arithmetic-geometric series, we find if ` = 1/q1

Eτa,a = a +
1

qa
1q̄2

1

(
q1(1− qa+1

1 − q̄1(a + 1)qa+1
1

)
=

`a − 1
`− 1

(56)
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Let ξa denote the number of trials until the first consecutive a successes occur in a
sequence of Bernoulli trials (or unfair coin-tosses) with probability of individual success q1.
This problem does not have a simple answer except when a = 1. Clearly, ξ1 ∼ Geom(q1).

To handle the case a ≥ 2, we note that the distribution of ξa is that of the FPT to level
a provided ρ = 1; it is recovered letting b→ ∞ (see Equation (36) ) and using Equation (52)
as

ξa = τ1
a,∞ = τ1

a = τ
ρ
a,a and Gξ(z) =

(q1z)a(1− q1z)
1− z + qa

1q̄1za+1 (57)

The mean number of trials until the first consecutive a successes is

a +
E(t11t1≤a)

F̄(a)

6. Discussion

We considered a discrete-time random walk (xt) which at random times is reset to the
starting position and performs a deterministic motion between them. We discussed how to
interpret the property that the system is averse, neutral or inclined towards resetting. We
showed that such a behavior is critical for the existence and properties of the stationary dis-
tribution. We obtained double barrier probabilities, first passage times and the distribution
of the escape time from intervals. We pointed out that the distribution of the FPT to level
k ≥ 1 solves a classical problem in probability, namely that of the number of trials required
in an unfair coin-toss or Bernoulli trial to obtain k successes in a row.
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