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Abstract: Imbalance ensemble classification is one of the most essential and practical strategies
for improving decision performance in data analysis. There is a growing body of literature about
ensemble techniques for imbalance learning in recent years, the various extensions of imbalanced
classification methods were established from different points of view. The present study is initiated
in an attempt to review the state-of-the-art ensemble classification algorithms for dealing with
imbalanced datasets, offering a comprehensive analysis for incorporating the dynamic selection
of base classifiers in classification. By conducting 14 existing ensemble algorithms incorporating a
dynamic selection on 56 datasets, the experimental results reveal that the classical algorithm with
a dynamic selection strategy deliver a practical way to improve the classification performance for
both a binary class and multi-class imbalanced datasets. In addition, by combining patch learning
with a dynamic selection ensemble classification, a patch-ensemble classification method is designed,
which utilizes the misclassified samples to train patch classifiers for increasing the diversity of base
classifiers. The experiments’ results indicate that the designed method has a certain potential for the
performance of multi-class imbalanced classification.

Keywords: dynamic selection; ensemble classification; imbalanced data classification; multi-class
classification

1. Introduction

Data imbalance is ubiquitous and encountered in the field of classification problems. It
occurs when the number of instances for different classes are significantly out of proportion.
The minority classes with fewer instances usually contain the essential information, which
has been observed in broad application areas, such as medical diagnosis [1–6], sentiment
or image classification [7,8], fault identification [9,10], etc. Many typical classifiers may
generate unsatisfactory results due to a concentration on global accuracy while ignoring
the identification performance for minority samples.

It is a significant task to identify minority samples among majority samples to accu-
rately attain essential information. With the rising prominence of machine learning and
artificial intelligence, as well as the continuous emergence of new problems and technolo-
gies involving imbalanced data, imbalanced classification methods are widely concerned
and developed because of its development prospects [11–18]. Improving classification
algorithms, introducing cost sensitive strategies, and using balance algorithms are common
methods in imbalanced learning.

One of the most widely-used strategies is ensemble learning [19–21], which combines
classification algorithms with data processing techniques or cost-sensitive solutions. The
superiority of ensemble learning in dealing with imbalanced data is that it implements a
combined strategy for the classification results based on multiple base classifiers, so that
the classifier group can identify a skewed distribution between data categories as much as
possible. It has seen great success in improving the identification of minority class samples
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for imbalanced classification problems. During the training process, the construction way
of ensemble classifiers is diverse and flexible. A single classification algorithm can be used
to construct homogeneous ensemble classifiers, whereas different classification algorithms
can be used to obtain heterogeneous classification systems [22].

The existing body of research on the application of the ensemble model suggests
ensemble classification algorithms for imbalanced data have great potential effectiveness
in practice [23–26]. For further improving the classification efficiency, multiple effective
ways [27,28] have been developed from several perspectives. In more recent studies, one
of the most promising strategies is dynamic selection [29], in which the most competent or
an ensemble classifier is selected by estimating each classifier’s competence level in the
classification pool. The benefit of this approach is to identify different unknown samples by
choosing different optimum classifiers. Therefore, each base classifier can be regarded as an
expert for a special sample in the classification space. Dynamic selection classifiers exhibit
a higher accuracy over traditional combined approaches in solving several real-world
problems, such as face recognition [30] and text verification [31].

Due to a dynamic selection strategy emerging as an interesting technique for extend-
ing ensemble algorithms, we are motivated to provide a comprehensive review of the
development of the latest ensemble classification algorithms for imbalanced datasets, and
offer a detailed experimental comparison of the performance of the state-of-the-art existing
ensemble algorithms incorporating dynamic selection. This study is arranged as follows.
We collect several sources of imbalanced datasets and discuss several pertinent evaluation
indexes in Section 2. In Section 3, we categorically summarize the latest progress in imbal-
ance ensemble algorithms. In an attempt to improve the classification performance for both
binary class and multi-class imbalanced datasets, an experimental scheme is designed by
adopting a dynamic selection strategy in Section 4. A series of experimental comparisons
are conducted to support the role of imbalance ensemble classification with the dynamic
selection strategy in Section 5. Section 6 draws conclusions.

2. Imbalanced Datasets and Evaluation Measures

In this section, the public access of data sources and comparison criteria used in the
related literature are summarized.

2.1. Sources of Imbalanced Datasets

Although imbalanced datasets exist widely, most researchers generally select experi-
mental datasets from public access databases to compare the performance of classification
models. Table 1 provides a summary of several databases used in the literature.

Table 1. Sources of imbalanced datasets.

Name Source

UCI https://archive.ics.uci.edu/ml/index.php (accessed on 9 November 2019)
OpenML https://www.openml.org (accessed on 20 March 2020)
KEEL https://sci2s.ugr.es/keel/imbalanced.php (accessed on 7 January 2020)
DefectPrediction http://tunedit.org/repo/PROMISE/DefectPrediction (accessed on 10 April 2020)

The UCI database covers 376 datasets used for machine learning classification tasks,
including binary class and multi-class datasets. OpenML is an online machine learning
platform for sharing or organizing data, machine learning algorithms, and experiments,
with a total of 3121 datasets. KEEL includes a module named imbalanced data for imbalance
learning containing multi-class imbalanced datasets. In the Defect Prediction database, a
series of typical imbalanced datasets concerning network fault detection are available.

2.2. Evaluation of Imbalanced Classification

Owing to the skewed distribution of imbalanced data, overall accuracy and pre-
cision cannot be enough to measure the recognition performance of the model for the

https://archive.ics.uci.edu/ml/index.php
https://www.openml.org
https://sci2s.ugr.es/keel/imbalanced.php
http://tunedit.org/repo/PROMISE/DefectPrediction
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minority classes, especially when the imbalance is extremely high. The G-mean [32] and
F-measure [33] are typical evaluations of imbalance learning, which can describe cate-
gorization situations from different perspectives. During the experimental process, a
comprehensive evaluation relying on multiple indicators should be recruited to examine
the effectiveness of a classification model. Suppose n is the number of classes, the following
performance measures of imbalanced classification are suitable for both binary class and
multi-class classification.

(I) MAvA:

MAvA =
n

∑
i=1

Acci/n, (1)

where Acci is the accuracy of the i-th class;
(II) G-mean:

G-mean = n

√
n

∏
i=1

Acci; (2)

(III) Precision:

Precision =
1
n
·

n

∑
i=1

TPi
TPi + FPi

, (3)

where TPi denotes the number of correctly classified samples in the i-th class, and
FPi is the number of instances misclassified into the i-th class;
(IV) F-measure:

F-measure =
2
n
·

n

∑
i=1

Precisioni · Recalli
Precisioni + Recalli

, (4)

where Recalli =
TPi

TPi+FNi
, FNi denotes the number of samples in the i-th class which

are misclassified into the other class label.

3. Ensemble Approaches for Imbalanced Classification

The challenges of imbalanced classification and its prevalence have resulted in much
research in this area. An effective solution is to design classifiers based on ensemble
approaches [34–42]. Ensemble schemes for imbalanced classification have been developed
from the perspectives of data decomposition, cost-sensitive schemes, sampling methods,
and dynamic selection. These methods can achieve desirable results for binary imbalanced
classification problems. However, multi-class classification involving multiple minority
classes has to face the complexity of the internal structure of multi-class imbalanced
datasets, and the differences of a decision boundary of two classes bring more difficulties
to the classification task and require additional effort. Therefore, multi-class imbalanced
classification [43–48] has always attracted attention in the machine learning field. This part
summarizes the state-of-the-art imbalance ensemble classification algorithms for binary
class and multi-class imbalanced datasets. Some of the pertinent methods are shown in
Figure 1 and later elucidated in our comparative study.
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Multi-class imbalance ensemble 

Algorithms based on 
Cost-sensitive scheme 

Algorithms based on 
decomposition strategy 

Algorithms based on 
sampling methods 

Algorithms based on 
dynamic selection 

Other 
algorithms 

[34] ImECOCOVA
ImECOCdense
ImECOCsparse
FuzzyImbECOC
HDDTECOC

[46] MCHDDT
[47] Deep Learning
[49] OVA
[50] OVO

[58] [59]
[60] [61]

[34] [49] [50] [51]
[52] [53] [55] [56]

[62] [63] [64] [65]
[66] [67] [68] [69]

[71-83] 
[84] [87]

[46] [47] [70]

[51] AO
[52] OAHO
[53] MultiIMAO
[55] HDDT+OVA

MultiImOVA
MultiImOVO
MultiImOAHO

[56] IMECOC
[58] AdaBoostM1

SAMME

[59] AdaC2M1 

[60] AdaBoostNC
[61] PIBoost
[62-64] Classification + Undersampling
[65-66] Classification + Oversampling
[67-69] Classification + Hybrid resampling
[70] Improved SMOTE-Decision-Tree
[71-83] Classification + Dynamic selection
[84] DES-IM
[87] DPHS-MDS

Figure 1. Multi-class imbalance ensemble classification.

3.1. Imbalanced Learning Based on Ensemble Classification and a Decomposition Strategy

The most notable characteristic of multi-class classification is the diversity of categories
compared with binary classification. A common method is to convert a multi-class dataset
into several binary datasets via decomposition, for example, OVA [49], OVO [50], AO [51],
and OAHO [52].

OVA is a relatively straightforward decomposition strategy and is designed for dis-
assembling data by marking each category as a positive class and all the other classes
as a negative part, on which a classifier is trained. If the original dataset has n classes,
n binary classifiers can be obtained. OVO trains one binary classifier for each pair of
classes, a total of n(n− 1)/2 classifiers are required to be trained. Based on OVA and OVO,
Garcia-Pedrajas et al. [51] proposed the AO strategy, which employs OVA to obtain two
predicted results with the label (li, lj), and other predicted results from OVO classifiers
related to li and lj are chosen to make the final prediction. OAHO sorts classes according to
the number of instances in descending order {l1, l2, · · · , ln}, where l1 is the class which has
the largest number of samples. The training process starts from l1 until ln and sequentially
regards the current class as the positive class and all the lower ranking classes as negative
classes. Binary classifiers will be trained on sub-datasets.

Data decomposition is an easily applicable conversion method for multi-class prob-
lems and has been combined with ensemble classification in succession. For instance,
to address the multi-class imbalance ensemble classification issue, Ghanem et al. [53]
combined AO and the PRMS-IM algorithm [54] to design the MultiIMAO classifier. It
effectively demonstrated that the data decomposition strategy could enhance classifica-
tion performance to a certain extent. Besides, Bi et al. [55] incorporated the OVA, OVO,
and OAHO methods in PRMs-IM classification, named MultiIMOVA, MultiIMOVO, and
MultiIMOAHO, respectively, to further investigate their cooperative performance. Diet-
terich and Bakiri proposed the ECOC decomposition method [48] to classify multi-class
datasets using error correction output coding. On the basis of ECOC, the IMECOC method
developed in [56] was an improved ECOC method that simultaneously premeditated the
between-class and the within-class imbalance in classifying imbalanced datasets. Further-
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more, different weights were assigned to different binary classifiers in the IMECOC [56].
According to different encoding methods, IMECOC was further extended to ImECOCOVA,
ImECOCsparse, ImECOCdense [34], and so on.

The above classification approaches provide a basic starting point for discovering the
potential synergy between ensembles for imbalanced data and data decomposition strategies.

3.2. Imbalanced Learning Based on Ensemble Classification and Cost-Sensitive Scheme

By considering the cost of classifications, numerous effective cost-sensitive-based
ensemble algorithms have been developed [57], which favor the minority class by assigning
different weights for different samples. Ensemble classification incorporating cost-sensitive
schemes can promote more robust performances than a single classification by merely
combining multiple classifiers. The representative algorithm for binary classification is
AdaBoost (Adaptive Boosting) [46], proposed by Freund and Schapire, in which weak
classifiers were integrated to build a stronger classifier by updating weights. Given a
training dataset {(x1, y1), (x2, y2), · · · , (xN , yN)}, the weight updating rule in AdaBoost was
defined as:

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt
, (5)

where the initial weight takes D1(i) = 1/N, αt is the weight parameter of the t-th weak
classifier, ht is a weak classifier in the t-th iteration, and Zt is a normalization factor. The
output of AdaBoost was defined as:

H(x) = sign

(
T

∑
t=1

αtht(x)

)
. (6)

To tackle multi-class classification problems, a series of AdaBoost extensions were
presented. Both AdaBoost.M1 and SAMME [58] extended AdaBoost in terms of updating
weights and the combination strategy of classifiers. AdaC2.M1 [59] inherited the general
learning framework of AdaBoost.M1 except that it introduced misclassification costs into
the weight update formula. The optimal cost setting in AdaC2.M1 was determined by
employing a genetic algorithm. AdaBoost.NC [60] was an algorithm emphasizing ensemble
diversity in the training process, in which a weight update rule with a penalty term
was introduced. The PIBoost classifier [61] based on the ensemble method and cost-
sensitivity scheme dealt with multi-class imbalanced data via a series of binary weak-
learners and a margin-based exponential loss function. In addition, cost-sensitive schemes
and data balancing algorithms have synergistic effects for handling imbalanced datasets in
ensemble learning.

3.3. Imbalanced Learning Based on Ensemble Classification and Sampling Methods

For relieving the impact of the imbalanced training data on the classification model, a
large number of ensemble algorithms have been improved by incorporating data-balancing
algorithms. The training set is re-sampled before constructing the classification model so
that the imbalance rate among various categories is close to an equilibrium. In general,
ensemble methods with balancing algorithms mainly combine classifiers with under-
sampling, over-sampling, or mixed sampling methods.

Under-sampling is a common method for minimizing the proportion of majority class
samples in imbalanced data and improving predictive performance. Seiffert et al. [62]
proposed the RUSBoost algorithm by combining the under-sampling and boosting method,
which randomly removes the instances from majority classes until the desired proportion
is achieved. Galar [63] presented a new EUSBoost algorithm based on RUSBoost and the
random under-sampling algorithm. The diversity of base classifiers were promoted because
more subclassifiers were embedded in the ensemble process. In [64], Luo et al. presented
an innovative XGBoost classification method based on bagging to handle classification
problems involving imbalanced data. The bagging procedure was designed with random
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under-sampling. XGBoost synthesizes new samples in a sufficiently small neighborhood of
minority samples which averts increasing noisy samples near the classification boundary.

In terms of over-sampling, Ramentol et al. [65] construct a new synthetic minority
over-sampling technique, based on the rough set theory and the lower approximation of
a minority sample subset. Similarly, Douzas et al. [66] proposed an effective ensemble
algorithm based on K-means clustering and SMOTE, stipulating the generation of new
data in crucial areas of the space produced by clustering. The imbalance ratio, as well
as the average distance among minority samples, was used as the assessment criteria to
determine whether new instances should be generated.

When the imbalance rate closes to 1 after the sampling process, the dataset will achieve
equilibrium. In addition, the classification accuracy is an alternative for measuring whether
data strikes a balance between different classes. This was adopted by Lu et al. for designing
HSBagging [67], in which a pre-processing step was conducted by using both random
under-sampling and SMOTE at each bagging iteration. The classifier employed the predic-
tive accuracy on out-of-bag instances as an optimal sampling rate for SMOTE and random
under-sampling. Among classical imbalanced learning based on ensemble classification
and sampling methods, UnderBagging and SMOTEBagging are used to achieve excellent
performances [19]. However, HSBagging was demonstrated to show a better classification
performance compared to single UnderBagging or SMOTEBagging in [67].

Some other related works based on ensemble classification and sampling methods also
contribute to resolving imbalanced classification. For example, Ahmed [68] applied hybrid
sampling in the RSYNBagging classifier, which considered the diversification of imbalanced
data. Additionally, the ADASYNBagging algorithm [69] was coined by incorporating an
algorithm and over-sampling. Although most of the above work was aimed at binary class
datasets, it provided a solid foundation for the classification of multi-class imbalanced
datasets. Wei et al. [70] put forward a SMOTE-decision-tree classifier that modified a binary
classification algorithm for handling multi-class imbalance problems effectively.

3.4. Imbalanced Learning Based on Ensemble Classification and Dynamic Selection

With the extensive application of ensemble approaches, it has become an important
issue for designing a more efficient ensemble classification algorithm. Compared with static
ensemble algorithms, dynamic selection ensemble algorithms [71–83] have been shown
to effectively improve the F-measure and G-mean values. A dynamic selection ensemble
algorithm predicts the label of the test sample by evaluating the capability level of each
classifier and selects the set of the most capable or competitive classifiers. In the process of
dynamic ensemble classification (Figure 2), each test sample or each subset can select the
optimal classification model. Generally, the selection of classifiers is realized by estimating
the classification ability in the local region of the test samples or calculating the prediction
accuracy of the classifiers.

A function to evaluate the classification capability can be considered as a tool to
assist in the selection of classifiers. For example, Garcia et al. [84] constructed a capability
function by calculating the classification score of each base classifier and selected out the
top nine classifiers with the highest capability values. Specifically, the selection structure for
base classifiers was a key component in their dynamic selection model. The classification
accuracy can be regarded as another measure for the selection of classifiers. The approach
proposed by Lin et al. [85] used a selective ensemble model to deal with multi-class
classification by choosing the classifier with the highest classification accuracy in the local
region of the test sample. Mendialdua et al. [86] established a more intensive approach to
select classifiers for each pair of classes. The model attempted to extract the best classifier
in every sub-dataset of OVO. They demonstrated that OVO and dynamic selection have
a positive synergy during classification, which enabled the extension of decomposition
algorithms to dynamic ensemble selection strategies. Woloszynski et al. [87] used a
probability model to evaluate the classification ability of the base classifiers and introduced
a random reference classifier in the process of ensemble classification. The probability of
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the correct classification of the random reference classifier was employed as the measure
of the competence of the actual classifier, which combined the dynamic selection of the
classifiers with the probabilistic method.

Figure 2. The process of dynamic ensemble classification.

In addition to the selection manner of classifiers, base classifiers’ generalization ability
also has an extremely important impact on dynamic selection results. Cruz et al. [88]
developed an improved dynamic selection approach. In the first stage, prototype selection
techniques were applied to the training data to reduce the overlap between classes. In the
next generalization process, a local adaptive K-nearest neighbor algorithm was adopted
to minimize the influence of noisy samples on the competency area. Meanwhile, they
demonstrated that the distribution of imbalanced datasets would directly affect selecting
the optimal classifier during the dynamic selection process, and datasets with a complex
structure would result in poor classification. Focusing on the complex structure of im-
balanced data, Brun et al. [89] selected the classifier trained on the data subset whose
complexity is similar to the neighborhood of the test instances. They also conducted an
in-depth consideration and analysis of the data structure in the field of dynamic ensemble
learning. Cruz et al. developed a novel dynamic selection framework [90] which extracted
meta-features from the training data for training meta-classifiers to judge whether the base
classifier had the sufficient ability to classify test instances.

Although each of the strategies mentioned above has its own merits and improves
the performance in the design of classifiers, there is still room for improvement in terms
of performance optimization by designing dynamic selection in multi-class imbalanced
classification. Inspired by the related literature, this study focuses on the investigation of
the classification performance of classic multi-classification algorithms combining dynamic
selection approaches.

4. Experimental Comparison of Multi-Class Imbalanced Classifiers by Incorporating
Dynamic Selection

Due to the significant advantages of ensemble classification algorithms in dealing
with class imbalance, this study merges dynamic selection with popular ensemble classi-
fication algorithms for multi-class datasets, aimed towards verifying the effectiveness of
dynamic selection.

4.1. Experimental Procedure

We employ a homogeneous classifier to generate the candidate classifier pool, and
14 multi-class imbalance ensemble classification algorithms (Figure 1) are employed as
base classifiers, respectively. By combining the above-mentioned base classifiers and the
dynamic selection process proposed in [84], dynamic ensemble classifiers are designed for
both binary class and multi-class imbalanced datasets. The overall process of dynamic
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selection is shown in Figure 2. The function for capability evaluation referred to in [84] is
defined as follows.

Given a test sample xi and a classifier h, we calculate the classification capability of
classifier h for xi:

Fh|xi
=

k

∑
t=1

I(xit)× wit, (7)

I(h(xit) = yt) =

{
0, h(xit) 6= yt,
1, h(xit) = yt,

where k is the number of nearest neighbor instances of xi in the training data; xit is the
t-th neighbor instance of xi; yt is the true label of instance xit; wit is the weight of nearest
neighbor sample xit, wit = 1

1+exp(λ∗m)
, λ is the scaling coefficient, and m is the number

of samples with the same class as xit. Obviously, the more samples with the same class
as xit, the lower the weight, which indirectly increases the weight of a minority sample.
Meanwhile, if the predicted labels of the K-nearest neighbor samples are identical to the
true label, I returns 1; otherwise, I returns 0. The classification capability of classifier h for xi
is reflected by the classification performance of its neighbor samples. Taking AdaBoostNC
as the base classifier, the procedure of the dynamic AdaBoostNC model is described in
Algorithm 1. The other 13 dynamic ensemble algorithms are constructed similarly.

Algorithm 1: Dynamic AdaBoostNC classifier.

Input: D = {di}M
i=1 be a collection of training data, X = {xi}T

i=1 be a collection of testing
data and the number of nearest neighbor is k; N denotes dynamic selection
parameter; the number of base classifiers is p.

Output: Predicted labels PL.
1 Initialize an empty matrix V .
2 Generate p base classifiers of AdaBoostNC type {h1, ..., hp} on training dataset D.
3 for each xi in D, i = 1, 2, ..., T do
4 Find its k nearest neighbors from D .
5 Calculate and standardize the weight [84] for each neighbor sample.
6 for each hj , j = 1, 2, ..., p do
7 Calculate the classification capability of hj to xi, respectively.
8 end
9 Sort the capability values, and select the top N classifiers to predict xi.

10 Add the current predict results to V .
11 end
12 Vote using V , and gain predicted labels PL.
13 return PL.

The datasets for the experiments come from the four repositories mentioned in Table 1,
including 56 datasets, 32 of which are suitable for binary classification, and the other
24 datasets are available for multi-class classification. These data are closely related to the
fields of life sciences, medical research, bank credit evaluation, network fault detection,
etc. More information concerning these datasets is offered in Table 2 and 3. As can be seen
from these tables, the experimental datasets are diverse in the number of attributes (4∼40),
classes (2∼10), continuous or discrete attributes, class distribution, and imbalance ratio
(1.003∼853).
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Table 2. Description of binary datasets.

Datasets Number of Data Number of Attribute Continuous Attribute Discrete Attribute Classes Distribution Classes Imbalance Ratio

transfusion 748 4 4 0 178, 570 2 3.202
heart 270 13 13 0 150, 120 2 1.250
chess 3196 35 35 0 1669, 1527 2 1.093
sick 2800 27 27 0 2629, 171 2 15.374

redwinequality 691 11 11 0 681, 10 2 68.100
ar1 121 29 9 20 112, 9 2 12.444
ar3 63 29 9 20 55, 8 2 6.875
ar4 107 29 9 20 87, 20 2 4.350
ar5 36 29 9 20 28, 8 2 3.500
ar6 101 29 9 20 86, 15 2 5.733

cm1_req 89 8 0 8 69, 20 2 3.450
jEdit_4.0_4.2 274 8 0 8 140, 134 2 1.045
jEdit_4.2_4.3 369 8 0 8 165, 204 2 1.236

kc2 522 21 7 14 415, 107 2 3.879
kc3 458 39 14 25 415, 43 2 9.651
mc2 161 39 15 24 109, 52 2 2.096
mw1 403 37 13 24 372, 31 2 12.000

pc1_req 320 8 0 8 213, 107 2 1.991
banknote-authentication 1372 4 4 0 762, 610 2 1.249

blood-transfusion-service-center 748 4 0 4 570, 178 2 3.202
breast_w 699 9 0 9 458, 241 2 1.900

climate-model-simulation-crashes 540 20 17 3 46, 494 2 10.739
diabetes 768 8 2 6 268, 500 2 1.866

ilpd 583 9 5 4 416, 167 2 2.491
monks-problems1 556 6 0 6 272, 284 2 1.044
monks-problems2 601 6 0 6 300, 301 2 1.003
monks-problems3 554 6 0 6 275, 279 2 1.015

mozilla4 15,545 4 0 4 10,437, 5108 2 2.043
pc1 1109 21 17 4 77, 1032 2 13.403
pc3 1563 37 14 23 160, 1403 2 8.769
pc4 1458 37 12 25 178, 1280 2 7.191

phoneme 5404 5 5 0 3818, 1586 2 2.407
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Table 3. Description of multi-class imbalanced datasets.

Datasets Number of Data Number of Attribute Continuous Attribute Discrete Attribute Classes Distribution Classes Imbalance Ratio

wine 178 13 11 2 59, 71, 48 3 1.479
hayesroth 132 4 0 4 51, 51, 30 3 1.700

contraceptive 1473 9 0 9 629, 333, 511 3 1.889
penbased 1100 16 0 16 114, 114, 106, 114, 106, 105, 115, 105, 106, 115 10 1.095

newthyroid 215 5 4 1 150, 35, 30 3 5.000
dermatology 366 34 0 34 112, 61, 72, 49, 52, 20 6 5.600

balance 625 4 0 4 49, 288, 288 3 5.878
glass 214 9 9 0 70, 76, 17, 13, 9, 29 6 8.444
auto 406 7 1 6 254, 73, 79 3 3.479
yeast 1484 9 9 0 288, 480, 626, 35, 30, 20, 5 7 125.200

thyroid 720 21 6 15 17, 37, 666 3 39.176
lymphography 148 18 0 18 57, 37, 18, 10, 8, 8, 8, 2 8 28.500

ecoli 336 7 7 0 143, 77, 2, 2, 35, 20, 5, 52 8 71.500
pageblocks 548 10 4 6 492, 33, 3, 8, 12 5 164.000

shuttle 2175 9 0 9 1706, 2, 6, 338, 123 5 853.000
wan_2 750 2 2 0 100, 150, 250, 250 4 2.500

zoo 101 16 0 16 41, 20, 5, 13, 4, 8, 10 7 10.250
hayes 132 5 0 5 51, 51, 30 3 1.700

waveform 5000 40 40 0 169, 1653, 1655 3 1.024
auto_205 205 25 18 7 54, 32, 27, 67, 22, 3 6 22.333

car 1728 6 6 0 1210, 384, 69, 65 4 18.615
vehicle 846 18 18 0 217, 217, 216, 196 4 1.107

balance-scale 625 4 0 4 49, 288, 288 3 5.878
vowel 990 10 10 0 180, 180, 180, 90, 180, 180 6 2.000



Entropy 2021, 23, 822 11 of 22

In this study, 14 groups of comparative experiments between dynamic ensemble
algorithms and state-of-the-art methods are carried out on both binary and multi-class
imbalanced datasets. In the experimentation, the nearest neighbor number k is set to 9.
The dynamic selection parameter N takes 9 (the settings for both parameters are based on
reference [84]), the number of base classifiers p is chosen to be 16. Five-fold cross-validation
is carried out for all methods for each dataset. The average values of 5 runs of experimental
results are calculated for obtaining the predictive performance of the designed methods.

4.2. Experiments Results for Binary Class Datasets

This study first examines the performance of the designed dynamic model on 32 binary
class datasets. Aiming to illustrate the performance of the classifier more distinctly, we
compare the MAvA, G-mean, precision, and F-measure results with classic algorithms
before and after adding the dynamic selection process (Figure 3), where the dashed line
at “Number of datasets = 16” means half of the number of binary datasets, and the points
represent numbers of datasets on which prediction results are improved after dynamic
selection. If the points are above the dashed line, it indicates that the dynamic selection
effect on the corresponding index is satisfactory, i.e., the performance of the dynamic
selection ensemble classifiers are better than original algorithms and vice versa.
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Figure 3. The total number of binary class imbalanced datasets on which prediction results are improved after adding the
dynamic selection.

We observe from Figure 3 that by incorporating with the dynamic selection strategy,
the results of 12 classical imbalanced classification algorithms are improved under the
MAvA, precision, and F-measure indicators, which mean higher precision is obtained for
more than half of the binary datasets. The effect of dynamic selection is not obvious for
MHDDTECOC and HDDTOVA. The points are below the dashed line under MAvA and
F-measure indicators, which indicate the higher results only shown on individual datasets.
However, other results for 12 classical imbalanced classification algorithms are over the
dashed line except the above two classification algorithms, which indicate incorporating
dynamic selection can promote predictive performance (MAvA, precision, and F-measure)
for binary class datasets.
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4.3. Experiments Results for Multi-Class Imbalanced Datasets

In this study, the above-mentioned classifiers are tested on 24 multi-class imbalanced
datasets, where the dashed line at “Number of datasets = 12” means half of the number
of multi-class datasets. The multi-class results are shown in Figure 4, and the main
observations are enumerated as follows:

(I) The effect of dynamic selection for MCHDDT and HDDTOVA are not satisfactory
(the points of 3 indicators are below the dashed line), and the performance of the
other 12 dynamic selection ensemble classifiers are better than the original algorithms.
The MAvA, precision, and F-measure indicators of the improved classifiers have
been distinctly improved after dynamic selection. However, due to the extremely low
representation of the minority samples, the recognition rate for the minority category
may drop sharply, resulting in a lower G-mean value. In fact, 11 of the classifiers
demonstrate favorable G-mean results on more than half of the multi-class datasets
after syncretizing with dynamic selection. In this regard, it is obvious that dynamic
selection models for multi-class imbalanced datasets showed superior characteristics
compared to those for binary data.

(II) By combining dynamic selection algorithms, MultiImOVA, MultiImOVO, Multi-
ImOAHO, and MultiImAO have exceptional performance, on which predictive
performances are effectively improved compared to using a single classification
algorithm, on the whole. Therefore, we further validate the conclusion that data
decomposition techniques and dynamic selection have a positive synergy during
classification [86]. In particular, the classification MAvA values of the above four
algorithms on all 56 datasets are shown in Figure 5–8.
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Figure 4. The total number of multi-class imbalanced datasets on which prediction results are improved after adding the
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Figure 5. The MAvA results of MultiImAO for 56 datasets.

The results indicate that dynamic selection provides potential strategies for deal-
ing with imbalanced datasets covering binary class and multi-class imbalanced datasets.
Moreover, for the same dataset, we have counted the number of classification algorithms
with improved classification results after dynamic selection. As shown in Tables 4–7, re-
gardless of the structure of the data (both binary class and multi-class imbalanced data),
the classification algorithms, for the most part, can better classify imbalanced data after
employing dynamic selection. The results reveal that incorporating dynamic selection can
relieve the impact of imbalanced training data on the classifier performance. Therefore,
a dynamic selection ensemble algorithm can be a potential solution for the imbalanced
classification problem.
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Figure 6. The MAvA results of MultiImOVO for 56 datasets.
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Figure 7. The MAvA results of MultiImOVA for 56 datasets.
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Figure 8. The MAvA results of MultiImOAHO for 56 datasets.

Table 4. Numbers of improved classification algorithms after dynamic selection under the MAvA index.

Datasets Number Datasets Number Datasets Number

wine 4 ar3 8 shuttle 6
hayesroth 7 ar4 10 wan_2 7

contraceptive 10 ar5 9 zoo 14
penbased 12 ar6 12 transfusion 14

newthyroid 10 cm1_req 10 waveform 14
dermatology 10 jEdit_4.0_4.2 6 chess 13

balance 6 jEdit_4.0_4.3 11 auto_205 13
glass 12 kc2 7 car 11
auto 9 kc3 9 vehicle 9
yeast 8 mc2 13 heart 13

thyroid 12 mw1 9 hayes 11
lymphography 10 pc1_req 5 sick 13

ecoli 11 balance-scale 7 redwinequality 8
pageblocks 7 banknote-authentication 2 ar1 12

blood-transfusion-service-center 9 breast_w 9 climate-model-simulation-crashes 14
diabetes 7 ilpd 10 vowel 14

monks-problems1 2 monks-problems2 10 monks-problems3 2
mozilla4 10 pc1 9 pc3 6

pc4 10 phoneme 12
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Table 5. Numbers of improved classification algorithms after dynamic selection under the G-mean index.

Datasets Number Datasets Number Datasets Number

wine 8 ar3 11 shuttle 10
hayesroth 9 ar4 11 wan_2 7

contraceptive 10 ar5 5 zoo 14
penbased 12 ar6 13 transfusion 11

newthyroid 11 cm1_req 12 waveform 13
dermatology 11 jEdit_4.0_4.2 6 chess 12

balance 8 jEdit_4.0_4.3 13 auto_205 13
glass 9 kc2 10 car 10
auto 9 kc3 10 vehicle 9
yeast 9 mc2 14 heart 8

thyroid 13 mw1 11 hayes 12
lymphography 0 pc1_req 8 sick 11

ecoli 8 balance-scale 8 redwinequality 12
pageblocks 12 banknote-authentication 5 ar1 12

blood-transfusion-service-center 9 breast_w 9 climate-model-simulation-crashes 13
diabetes 7 ilpd 10 vowel 14

monks-problems1 2 monks-problems2 10 monks-problems3 2
mozilla4 10 pc1 9 pc3 7

pc4 10 phoneme 12

Table 6. Numbers of improved classification algorithms after dynamic selection under the Precision index.

Datasets Number Datasets Number Datasets Number

wine 4 ar3 7 shuttle 7
hayesroth 7 ar4 11 wan_2 9

contraceptive 10 ar5 6 zoo 14
penbased 13 ar6 13 transfusion 11

newthyroid 9 cm1_req 10 waveform 10
dermatology 5 jEdit_4.0_4.2 5 chess 11

balance 4 jEdit_4.0_4.3 11 auto_205 12
glass 11 kc2 8 car 13
auto 9 kc3 8 vehicle 9
yeast 10 mc2 12 heart 13

thyroid 10 mw1 9 hayes 13
lymphography 11 pc1_req 7 sick 11

ecoli 11 balance-scale 6 redwinequality 9
pageblocks 5 banknote-authentication 7 ar1 11

blood-transfusion-service-center 9 breast_w 9 climate-model-simulation-crashes 13
diabetes 6 ilpd 10 vowel 14

monks-problems1 2 monks-problems2 10 monks-problems3 2
mozilla4 10 pc1 8 pc3 5

pc4 9 phoneme 12
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Table 7. Numbers of improved classification algorithms after dynamic selection under the F-measure index.

Datasets Number Datasets Number Datasets Number

wine 4 ar3 7 shuttle 7
hayesroth 7 ar4 9 wan_2 7

contraceptive 9 ar5 8 zoo 9
penbased 13 ar6 11 transfusion 12

newthyroid 10 cm1_req 10 waveform 5
dermatology 5 jEdit_4.0_4.2 4 chess 12

balance 10 jEdit_4.0_4.3 12 auto_205 11
glass 11 kc2 9 car 12
auto 9 kc3 8 vehicle 9
yeast 10 mc2 11 heart 12

thyroid 11 mw1 8 hayes 8
lymphography 7 pc1_req 5 sick 10

ecoli 13 balance-scale 11 redwinequality 11
pageblocks 7 banknote-authentication 11 ar1 11

blood-transfusion-service-center 9 breast_w 9 climate-model-simulation-crashes 12
diabetes 7 ilpd 10 vowel 14

monks-problems1 2 monks-problems2 10 monks-problems3 2
mozilla4 10 pc1 9 pc3 6

pc4 10 phoneme 12

5. Patch-Ensemble Classification for Imbalanced Data

Dynamic selection strategies and ensemble classification algorithms have a synergistic
effect in classification. Training a dynamic selection ensemble classification scheme with
excellent performance is usually an uncertain task, which depends on previous experience
and a trial-and-error experiment process. Patch Learning (PL), proposed by Wu et al. [91],
is a new machine learning strategy for solving the fitting problem in classification. As
shown in Figure 9, patch learning is a combination of parallel and serial models, which
focuses on the misclassified samples during the training procedure, and enhances the
classification diversity with the construction of multiple local classifiers [91]. In this study,
a patch-ensemble classification method is designed for classifying imbalanced data, which
connects patch learning with a dynamic selection ensemble classification scheme.

Training 

data

Global 

classifier

Patch 

classifier 1

Patch 

classifier 2

Patch 

classifier n

 Patch 1

Patch 2

Patch n

...

...

Select

classifier

Figure 9. Patch classifier.

5.1. Patch Learning

Patch learning consists mainly of the following three steps [91]:

(I) Train an initial global model using all the training data;
(II) Select the incorrectly classified training data to construct several local patch models;
(III) The correctly classified training samples are utilized to update the global model.
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For a new testing sample, PL firstly determines if the sample belongs to a patch so that the
corresponding local patch model is selected for a classification task. Otherwise, the global
model is employed.

5.2. Patch-Ensemble Classifier

In classification, a classifier tries to distinguish boundaries between binary or multi-
class. If the training samples belong to the same class, we can directly detect whether a new
testing sample belongs to this class during the predicted phase. One-Class SVM can better
solve the above problem [92]. Considering that in patch learning, when the testing sample
selects the global classifier or several patch classifiers, it is necessary to detect the similarity
between the samples and several patches. The ensemble classification method with patch
designed in this paper uses the existing imbalanced ensemble classification algorithm as
the global classifier and One-Class SVM as the patch classifier for experimental design. The
specific process is shown in Algorithm 2.

In the training process, the number of patch classifiers is determined according to the
number of classes misclassified by the global classifier. To ensure that the global classifier
maintains its best classification effect for multi-class imbalanced datasets, we weaken the
boundary between global and patch training data allowing the training samples of the
global classifier to partly overlap with that of the patch classifier. During the testing process,
the distances between the new sample and various center points of the training sample
are calculated, used as the selection condition to dynamically choose a patch classifier or a
global classifier for dealing with the testing data.

5.3. Experiments and Analysis

To explore the effectiveness of patch ensemble classifiers for imbalanced classifica-
tion, in this study, the patch ensemble classifier is compared with the classical imbalance
ensemble algorithms. We choose the AdaC2M1 algorithm as the global classifier and
One-Class SVM as the patch classifier, and the relevant experimental data are detailed in
Tables 2 and 3. The performance of the designed patch ensemble classifiers are evaluated
by five-fold cross validation on multiple data sets. The results of the designed patch
ensemble classifier in this paper are compared with the top five of 14 classical imbalance
ensemble algorithms. To show the results more clearly, the classification results of each
method are sorted as a whole. The times of dominant classification results of each al-
gorithm in 56 datasets are counted respectively under MAVA, Precision, G-Mean, and
F-Measure indexes.

Algorithm 2: Patch ensemble classifier.
Input: The training data, the testing data, the initial global classifier C0 and the patch

classifier is Cp.
Output: Patch ensemble classifier.

1 Train the initial global classifier C0 by using training samples D and predict the
training labels.

2 Update the global classifier by selecting correctly classified samples in the training set.
3 Utilize the misclassified samples in the training set and calculate the number of classes N.
4 for i = 1 : N do
5 Select the corresponding class in the training set to train the patch classifier i.
6 end
7 Calculate the distances from the test data to the centers of the training data set and to the

centers of each class.
8 Choose the nearest classifier to make predictions and save classification results.
9 return Patch ensemble classifier.

As shown in Table 8–11, the proposed patch ensemble classification method achieves
better MAvA, Precision, and F-measure values in more than half of the datasets. If only
the top two results of the classification are considered, the same conclusion can be drawn.
Under the G-mean indicator, the proposed method obtains the optimal and suboptimal
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classification results on 12 imbalanced datasets, which has a certain degree classification
potential compared with other methods.

Table 8. MAvA results.

Patch Ensemble A B C D E F G H I G K L M N

Times of the optimal MAvA 7 1 3 8 1 1 3 2 4 3 7 8 8 7 5
Times of the second MAvA 7 3 8 3 8 1 4 3 6 2 5 4 3 5 1
Times of the third MAvA 7 1 12 1 4 4 7 4 6 4 2 2 3 2 1

Total 21 5 23 12 13 6 14 9 16 9 14 14 14 14 7

1. The 14 classical imbalanced classification algorithms are AdaBoostNC (A), AdaC2M1 (B), FuzzyImbECOC (C), MHDDTECOC (D),
HDDTOVA (E), ImECOCdense (F), ImECOCOVA (G), ImECOCsparse (H), MCHDDT (I), MultiIMAO (J), MultiIMOAHO (K), MultiIMOVA
(L), MultiIMOVO (M), and Piboost (N). 2. “Times of the optimal MAvA” in the table represents the times of best classification result of
each algorithm in 56 datasets. “Times of the second MAvA” in the table represents the times of suboptimum classification result of each
algorithm, and so on. 3. The bold number indicates that the classification result is equal to or better than that of the Patch Ensemble
classifier.

Table 9. G-mean results.

Patch Ensemble A B C D E F G H I G K L M N

Times of the optimal MAvA 6 3 5 8 0 0 2 2 3 1 10 10 9 9 3
Times of the second MAvA 6 3 5 3 7 1 6 5 8 3 7 5 5 7 0
Times of the third MAvA 6 1 9 1 6 4 11 7 8 5 4 5 4 4 2

Total 18 7 19 12 13 5 19 14 19 9 21 20 18 20 5
The bold number indicates that the classification result is equal to or better than that of the Patch Ensemble classifier.

Table 10. Precision results.

Patch Ensemble A B C D E F G H I G K L M N

Times of the optimal MAvA 4 2 4 3 4 2 0 0 0 3 0 1 0 0 8
Times of the second MAvA 10 2 6 3 2 0 3 0 1 2 0 0 0 0 1
Times of the third MAvA 8 4 8 0 4 4 2 1 5 3 0 0 2 0 1

Total 22 8 18 6 10 6 5 1 6 8 0 1 2 0 10
The bold number indicates that the classification result is equal to or better than that of the Patch Ensemble classifier.

Table 11. F-measure results.

Patch Ensemble A B C D E F G H I G K L M N

Times of the optimal MAvA 3 3 2 4 3 5 0 0 0 5 0 0 0 0 12
Times of the second MAvA 7 2 7 2 8 2 3 1 2 3 0 0 0 0 1
Times of the third MAvA 9 2 10 1 7 4 0 0 2 6 1 0 0 1 0

Total 19 7 19 7 18 11 3 1 4 14 1 0 0 1 13
The bold number indicates that the classification result is equal to or better than that of the Patch Ensemble classifier.

6. Conclusions

In this study, we reviewed state-of-the-art ensemble classification algorithms for
imbalanced data and compared the performance of 14 existing multi-class imbalanced
classification algorithms by incorporating a dynamic selection strategy. By applying these
dynamic imbalance ensemble classifiers to 56 public datasets, the experimental results
demonstrate that the dynamic ensemble classification methods obtain significantly better
MAvA, precision, G-mean, and F-measure performances than the original 14 algorithms.
In particular, dynamic multi-class ensemble classifiers have the potential to achieve an
ideal identification performance. We also designed a patch ensemble classification method,
which uses misclassified samples to train patch classifiers for increasing classification
diversity. Experiments showed that this method has a certain classification potential for
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multi-class imbalanced classification. In future work, we will consider the imbalance ratio
to further improve the classification performance and tackle practical problems under
its guidance.
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