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Abstract: The multi-agent information fusion (MAIF) system can alleviate the limitations of a
single expert system in dealing with complex situations, as it allows multiple agents to cooperate
in order to solve problems in complex environments. Dempster–Shafer (D-S) evidence theory has
important applications in multi-source data fusion, pattern recognition, and other fields. However,
the traditional Dempster combination rules may produce counterintuitive results when dealing with
highly conflicting data. A conflict data fusion method in a multi-agent system based on the base
basic probability assignment (bBPA) and evidence distance is proposed in this paper. Firstly, the new
bBPA and reconstructed BPA are used to construct the initial belief degree of each agent. Then, the
information volume of each evidence group is obtained by calculating the evidence distance so as to
modify the reliability and obtain more reasonable evidence. Lastly, the final evidence is fused with
the Dempster combination rule to obtain the result. Numerical examples show the effectiveness and
availability of the proposed method, which improves the accuracy of the identification process of the
MAIF system.

Keywords: Dempster–Shafer evidence theory; uncertainty; multi-agent information fusion; base
basic probability assignment

1. Introduction

With the increasing popularity of artificial intelligence, agent technology has become
a hot topic in the field of distributed artificial intelligence. Agents with autonomy and
collaboration can deal with complex, collaborative, and unpredictable problems. They
can modify their goals with changes in the environment, expand their knowledge, and
improve their ability. Due to the constraints of ability and relationships with other agents,
it is impossible to solve complex problems using a single agent. Artificial intelligence
is maturing. It is committed to solving more complex, more realistic, and larger scale
problems. These problems are beyond the capability of a single agent. Therefore, the
multi-agent system (MAS) [1] has emerged as an important tool. It is a collection of agents,
and its purpose is to solve the problems of large-scale, complex, real-time, and uncertain
information. Its theoretical research value lies in two aspects: one is the development of a
closed and isolated knowledge system into a distributed and open intelligent knowledge
system, and the other is the development of a centralized intelligent system into a non-
independent distributed intelligent system. The key point of MAS research is to enable
independent agents to complete complex control tasks or solve complex problems through
negotiation, coordination, and cooperation. However, uncertainty is the biggest challenge
for MAS research. In many problems, the state of the environment will be uncertain due
to the limitation of noise or sensor capacity. An agent can only observe the state of the
environment through its own sensors. Therefore, the ability of an agent to predict the trend
of other agents is limited. As a result, cooperation becomes complicated, and, therefore,
conflicting information may appear in MAS.
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Information fusion [2] is an application field that combines data from multiple sources
to support decision analysis. Applying information fusion technology to MAS can process
the information and provide more complete judgment, evaluation, and decision making.
Using the appropriate information fusion method, the local information perceived by an
agent is fused in space, time, and function. Therefore, identifying the way by which to
fuse conflicting information and make correct judgments represents the main challenge in
multi-agent information fusion (MAIF).

As an uncertain reasoning method, Dempster–Shafer evidence theory (D-S theory) has
a strong ability to express and process uncertain information. It serves as a powerful tool in
the representation and fusion of decision making with uncertain information. It has been
widely used in the fields of information fusion [3], target recognition [4,5], risk analysis [6],
classification [7–9], and decision making [10–12].

1.1. Motivation

In modern engineering applications, electronic information systems tend to be highly
integrated, multi-component, and complex functions. Therefore, concurrency, sudden-
ness, and complexity are the three major problems that may occur when the equipment
fails [13–15]. In many information systems, multi-source information systems occupy a cer-
tain proportion, and they are usually used to represent complex information from multiple
sources [16]. However, in the process of information fusion and diagnosis, many scholars
have begun to focus on identifying methods of effectively integrating multi-source informa-
tion [3] and measuring its uncertainty to ensure correctness and anti-interference [17,18].

The MAIF system mainly studies the communication, coordination, and conflict reso-
lution between multiple agents. It is an autonomous solution to the problem of information
fusion among agents in MAS. It focuses on the analysis of information fusion between
multiple agents rather than the autonomy and development of a single agent. In the process
of MAIF, even if all agents use the same original detection data, the conclusions given
may be inconsistent, because the reasoning model used by each agent is not necessarily
the same. There have been many attempts to improve performance, such as distributed
weighting [19] and relative reliability evaluation [20,21]. However, they do not focus on
the measurement of uncertainty between information sources from different institutions.
Moreover, the methods somewhat struggle to combine conclusions in the process of MAIF.

D-S theory is a good choice for uncertain information processing in MAIF. However,
D-S theory may fail in highly conflicting situations, which makes it difficult to guarantee
the fusion result. This may lead to unreasonable results [22]. Two methods to improve
the performance of MAIF are proposed: modifying the fusion rules and preprocessing the
uncertain information before data fusion. Previous studies have proposed preprocessing
strategies. They provided distance measurement to effectively measure the uncertainty
of MAIF. However, the measurement object is mainly based on multiple data sources as
a whole, and there is no specific distinction between the two data sources. Therefore,
this paper proposes a new method for better data preprocessing. In this study, we add
a new base basic probability assignment(nbBPA) based on base basic probability assign-
ment (bBPA) [23,24] and reconstructed BPA [25] to preprocess the data, and we combine it
with evidence distance to prove its effectiveness in the application of MAIF system.

1.2. Contributions

The main contributions of this method are different from those of a large number of
existing methods and are summarized as follows:

• It is feasible and extensible to integrate evidence theory into the MAIF system. How-
ever, D-S theory may result in counterintuitive results in highly conflicting situations.
In order to address D-S conflicting information fusion in MAIF, the method based on
nbBPA and evidence distance is proposed.

• In the improved MAIF method, nbBPA provides a kind of prior information to pre-
process the data. The evidence distance is used to judge the difference between the
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bodies of evidence. The weight of each belief function is calculated according to the
evidence distance so as to recalculate the revised BPA.

1.3. Organization

The following remainder this paper are organized as follows: Section 2 investigates
previous work related to this study. In Section 3, we review some basic concepts. Then, in
Section 4, we propose a new preprocessing method, nbBPA, which is based on bBPA, and
we propose an improved method using nbBPA. In Section 5, we show the performance
of our proposed method based on three numerical examples. Finally, conclusions of the
proposed method are given in Section 6.

2. Related Work

D-S theory was first proposed by Dempster in 1967 [26] and then further extended
by Shafer [27]. Due to its strong ability to express and process uncertain information,
the theory is widely used in information fusion systems, such as target recognition and
remote sensing [28]. Although the application of D-S theory has made some progress,
the D-S combination rule often obtains results contrary to common sense when it fuse
highly conflicting evidence [29]. In view of these paradoxes, scholars have proposed
some solutions that can be divided into two categories: one is based on modifying the
D-S combination rule [30–32]; the other is based on modifying evidence sources [33,34].
The methods of relevant evidence fusion based on the modified evidence source can be
divided into two types: one is based on the correlation source evidence model [35], and the
other is based on the discount correction model.

The perspective of the discount correction model is the overestimation of the com-
posite result. Because the D-S combination rule is used to fuse the relevant evidence
directly, the relevant parts of the evidence are repeatedly calculated. The basic idea of
this kind of method is that the relevant evidence should be discounted. The discount
coefficient depends on the degree of correlation. Compared with independent evidence,
relevant evidence has overlapping information that cannot be given the same weight in the
fusion process.

Yager proposed a weighted fusion method of relevant evidence with the relative
independence degree set as weight [36]. The so-called degree of relative independence
refers to the degree of independence of the latter evidence relative to all previous evidence.
The evidence uses the relative independence degree as a means of discounting the factors
to process. In doing so, it can be regarded as independent of the previous evidence, and,
thus, D-S combination rule can be used for fusion. The method depends on the order
of evidence fusion. The evidence in the front has a great impact on the fusion results.
Therefore, a method based on the information quantity of evidence is proposed in [36]
to reduce the loss of information as much as possible. However, this method does not
provide the basis for determining the degree of relative independence. When the amount
of evidence is large, the computational complexity of the method greatly increases. In order
to determine the correlation degree of the discount model, a method to solve the correlation
discount coefficient based on the network analysis method is proposed in [37]. This method
needs to rely on expert opinion for modeling, which has certain subjectivity.

Tessem [38] designed the pignistic probability distance to describe evidence similarity
based on pignistic probability. The distance was used to evaluate the effectiveness of the
approximate calculation algorithm of evidence combination. Bauer [39] also conducted a
similar study. Pignistic probability distance has been widely used. However, there remain
misunderstandings regarding its definition, and it is misused. Liu et al. [40] indirectly de-
fined evidence distance based on DSMP probability. Cuzzolin [41] designed and proposed
a geometric interpretation of evidence theory. On this basis, Jousselme et al. [42] defined
the evidence distance. Then, many studies of evidence distance applications emerged.
Deng et al. [43] defined the similarity between evidence volume using Jousselme evidence
distance, and then the weight correction evidence to be combined was generated. Liu [44]
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used pignistic probability distance and Dempster combination conflict coefficient K to form
a binary, which was used to describe the conflict between evidence bodies. Ristic et al. [45]
realized target identity association based on multiple uncertain information sources in a
TBM framework by using evidence distance. Zouhal et al. [46] introduced a mean square
deviation distance based on pignistic probability, which corresponds to BPA. The distance
effectively improved the accuracy rate of evidence of the k-nearest neighbor classifier. Schu-
bert [47] used evidence distance for clustering analysis, and an ideal clustering performance
was observed.

In addition, in order to solve the conflicting data in uncertain information, some
methods attempt to assign initial belief to events in the frame of discernment (FOD). A
new strategy to consider the initial belief degree of propositions in the power set of FOD
is proposed in [23], but it may lead to decentralized belief allocation. An improved base
basic probability assignment approach is proposed in [24]. These methods can introduce
additional information to uncertain information modeling and processing.

3. Background
3.1. Dempster–Shafer Evidence Theory
3.1.1. Framework of Discernment

Assuming that there is a problem to judge, all possible solutions N identified in this
problem are described as a set. N are mutually exclusive and exhaustive. The set is also
known as the framework of discernment (FOD). The FOD is shown as follows:

Θ ={θ1, θ2, · · · , θn} (1)

Its power set is

2Θ =

{
∅, {θ1}, {θ2}, . . . , {θN}, {θ1, θ2},
. . . , {θ1, θ2, . . . , θi}, . . . , Ω

}
. (2)

3.1.2. Basic Probability Assignment

D-S theory assigns a probability to each possible solution within the framework of
discernment (FOD), which is called basic probability assignment (BPA). The corresponding
assignment function is called the mass function. BPA satisfies the following conditions:

m(∅) = 0, ∑
A∈Θ

m(A) = 1. (3)

where m is the mass function of the FOD 2Θ and m(A) is the BPA value of proposition A,
which represents how strongly the evidence supports the proposition A. If m(A) > 0, A is
called a focal element.

3.1.3. D-S Combination Rule

The D-S combination rule is a key step in synthesizing the information produced by
multiple hypotheses. Two independent mass functions, m1 and m2, can be combined with
the D-S combination rule as follows:

m(A) = (m1 ⊕m2)(A)=
1

1− k ∑
B∩C=A

m1(B)m2(C), (4)

where k = ∑
B∩C=∅

m1(B)m2(C) where k represents the conflict degree between two bodies of

evidence. If k = 0, m1 and m2 have no conflict. If k = 1, m1 and m2 are in complete conflict.

3.2. Base Basic Probability Assignment

The D-S combination rule may result in counterintuitive results when data with high
conflict are fused. Thus, the bBPA is proposed to modify the BPA before data fusion.
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3.2.1. Base Basic Probability Assignment

Let Ω be a group of N mutually exclusive possible hypotheses. The power set of Ω is
2Ω in which the number of elements is 2N . If the FOD is complete, m(∅) = 0, then the base
belief function mb is defined as follows:

mb(Ai) =
1

2N − 1
(5)

where Ai is the subset in Ω, except for the empty set ∅.
The initial belief allocated between basic events can introduce prior probability in-

formation to elements. In the unknown case, the average distribution of belief maximizes
the entropy. The maximum entropy principle shows that when the entropy is maximum,
the possible loss is small.

3.2.2. Use the bBPA to Modify Initial BPA

bBPA is combined with the initial BPA to modify the BPA before data fusion, and it is
defined as follows:

m′(Ai) =
mb(Ai) + m(Ai)

2
(6)

where Ai is the subset in Ω, except for the empty set ∅.

3.3. Evidence Distance

In order to resolve the problem that the D-S combination rule produces, namely,
counterintuitive results when fusing conflicting data, a previous study proposed a theory
of evidence distance to measure the difference between two bodies of evidence. Then, some
studies calculated the weight of each belief function based on the evidence distance so as
to recalculate the modified BPA.

3.3.1. Jousselme Evidence Distance

Let m1 and m2 be two BPAs on the same FOD Θ. Θ contains N mutually exclusive
and exhaustive hypotheses. The distance between m1 and m2 is

dBPA(mi, mj) =

√
1
2
(−→mi −−→mj)

T D(−→mi −−→mj) (7)

where D is an 2N × 2N matrix whose elements are D(A,B)= |A
⋂

B|
|A
⋃

B| , A, B ∈ P(x)
From the previous definition, another way to write dBPA is as follows:

dBPA(mi, mj) =

√
1
2
(
∥∥−→mi

∥∥2
+
∥∥−→mj

∥∥2 − 2 < −→mi ,
−→mj >) (8)

< −→mi ,
−→mj >=

2θ

∑
i=1

2θ

∑
j=1

m1(As)m2(Bt)
|As

⋂
Bt|

|As
⋃

Bt|
(9)

where As,Bt are the subsets of the FOD. For dBPA ∈ [0, 1], the greater the value of dBPA,
the greater the difference between the two bodies of evidence.

3.3.2. Combined Belief Function Based on Evidence Distance

In general, if a body of evidence is well supported by other bodies of evidence,
the evidence is more important in the final fusion. On the contrary, if one piece of evidence
conflicts with other bodies of evidence, it should have a smaller proportion in the final
fusion. That is, the more similar one piece of evidence is to another, the higher its proportion
in the final fusion.
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The similarity between two bodies of evidence is denoted as sim(mi, mj), which is
defined as

sim(mi, mj) = 1− dBPA(mi, mj) (10)

Supposing the number of bodies of evidence is k, we can construct a similarity measure
matrix (SMM) by obtaining all of the degrees of similarity between the bodies of evidence;
sij is short for Sim(mi, mj).

SMM =



1 s12 · · · s1j · · · s1k
...

...
...

...
...

...
si1 si2 · · · sij · · · sik
...

...
...

...
...

...
sk1 sk2 · · · skj · · · 1

 (11)

The support degree of a body of evidence mi (i = 1,2, . . ., k) is defined as

Sup(mi) =
k

∑
j=1,j 6=i

sij =
k

∑
j=1,j 6=i

sim(mi, mj) (12)

The credibility degree Crdi of the body of evidence is defined as

Crdi =
Sup(mi)

∑k
i=1 Sup(mi)

(13)

It is clear that ∑k
i=1 Crdi = 1. Thus, the credibility degree is a weight that reflects the

relative importance of the evidence collected. If a body of evidence is well supported by
other bodies of evidence, its credibility degree is high. On the contrary, if one evidence body
conflicts with other bodies of evidence, its credibility is low. After defining the credibility
degree, the modified average of evidence (MAE) is given by assigning the weight:

MAE(m) =
k

∑
i=1

(Crdi ×mi) (14)

If there are n bodies of evidence, one can use the classical D-S combination rule to combine
the weighted average of the masses n-1 times.

3.4. Reconstructed BPA

The uncertainty of the recognition set is related to the number of elements it contains.
The more elements a recognition set contains, the more uncertain its information will be,
which corresponds to higher uncertainty. In order to gradually reduce the uncertainty,
a reconstructed BPA mr is proposed [25]. It builds the relationship of a supporting degree
between sets and its supporting source, not only from its own set but also from the sets
that contain it. It is defined as follows:

mr(Ai) = ∑
Ai⊆Aj

m(Aj)

2k−1
∀Ai, Aj ⊂ Θ, m(Ai) 6= 0

mr(Θ) = m(Θ)
2m−1

(15)

where Ai,Aj are the subsets in the FOD. Ai set can be composed by either a single element
or multiple elements. K is the number of elements corresponding to the set Aj. In order to
meet the format requirements of the mass function in the revised D-S theory, it is necessary
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to normalize the reconstructed BPA. The sum of all mr results is used as a denominator,
and normalization operation is as follows:

m′(Ai) =
mr(Ai)

∑2Θ

i mr(Ai)
(16)

4. Multi-Agent Information Fusion
4.1. New Base BPA Definitions

bBPA is proposed for uncertain information processing, which equally distributes the
probabilities to each BPA [23]. Although entropy can be maximized and the conflicting
evidence can be fused more effectively without any initial conditions using this method, it
also increases the uncertainty under certain conditions. The mass function of single-element
subsets is effective in decision making, because in practical application, each mutually
exclusive event is independent of each other. There can only be one element at a time, and
multiple subset events represent the uncertainty of different elements. Therefore, increasing
the value of single-element subsets allows for clearer results. Rather than assigning initial
belief to the whole power set space, nbBPA is carried out for the single-element subsets. It is
based on the proportion of the single-element subset in all of the mass functions. The initial
belief assigned among the basic events can introduce prior probability information to the
element. The nbBPA is defined as follows:{

mb(Ai) =
Mx(Ai)

n Ai is a single subset event
mb(Ai) = 0 other

(17)

where Mx(Ai) is the group number of mass functions, where Ai is the highest in its single
element subsets, and n is the group number of the mass functions where at least one single
element is a focal element. The following is an example of calculating the nbBPA. For FOD
Θ = {A, B, C}, the BPAs are as follows:

m1(a) = 0.8 m1(b) = 0.2
m2(a) = 0.3 m2(b) = 0.5 m2(c) = 0.2
m3(a, b) = 0.5 m3(a, b, c) = 0.5
m4(a) = 0.6 m4(b) = 0.1 m4(c) = 0.1 m4(a, b) = 0.2
m5(a) = 0.4 m5(a, b, c) = 0.6

In m1,m2,m4 and m5, at least one single element is a focal element, so n = 4.
In m1, m4 and m5, a is the highest in the single-element subsets, so Mx(a) = 3.
In m2, b is the highest in the single-element subsets, so Mx(b) = 1.
Thus, mb(a) = 0.75 ,mb(b) = 0.25.
mb(c) = mb(a,b) = mb(b,c) = mb(a,c) = mb(a,b,c) = 0.

Then, mb is adopted to modify the initial BPA by calculating the arithmetic mean:

m′(Ai) =
mb(Ai)+m(Ai)

2 m(Ai) 6= 0 (18)

where Ai is the subset in the FOD. The Ai set can consist of either a single element or
multiple elements. To satisfy the format of mass function in evidence theory after correction,
it is necessary to normalize the nbBPA. The sum of the calculation results is used as the
denominator, and the operation of normalization is as follows:

m′(Ai) =
m′(Ai)

∑2Θ

i m′(Ai)
(19)

4.2. Steps for Multi-Agent Information Fusion

The method of the MAIF system is presented below, and the comprehensive processing
flow chart is shown in Figure 1.
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Step 1 The data of agent Ai are converted into a mass function, and the form is (Ai, mi) =

([{si
1}, ci

1], [{si
2}, ci

2], · · · , [{si
2n}, ci

2n ]).
Step 2 nbBPA is generated by Equation (17), and it is combined with the original BPA to

modify the BPA by Equation (18). Then, normalization is executed with Equation (19).
Step 3 The reconstructed BPA is generated according to Equation (15), and normalization is

executed with Equation (16).
Step 4 The distance among different BPAs is measured with Jousselme evidence distance in

Equation (8).
Step 5 Evidence modification based on Equations (10) and (14).
Step 6 Evidence combination with the D-S combination rule in Equation (4).

Figure 1. The proposed method for uncertain information fusion in the multi-agent information
fusion system.

5. Numerical Examples
5.1. Example of Disturbed Agents

In real life [48–50], the agent may be disturbed when reading data information; thus, it
may not work normally. One of the most common cases is that the interfered agents will
have a high degree of conflict when making decisions [51] or reasoning [52] compared with
that of other agents in the system. Therefore, the following example shows how to use the
proposed method to effectively avoid such problems in the MAIF system. In the offshore
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operation, a group of multi-class sensor agents A = {A1, A2, A3, A4, A5} is used to identify
the maritime target. An acoustic sensor agent, a speed sensor agent, a pressure sensitive
sensor agent, and a photosensitive sensor agent are included. The FOD is Θ = {A, B, C}.
The data obtained by the corresponding agent are as follows:

A1 =

{
A B C

0.5 0.2 0.3

}
A2 =

{
A B C
0 0.9 0.1

}
A3 =

{
A B A, C

0.55 0.1 0.35

}
A4 =

{
A B A, C

0.55 0.1 0.35

}
A5 =

{
A B A, C

0.6 0.1 0.3

}
he data monitored by agent A2 are different from the data in other agents. This agent assigns
most of the credibility to object B, while other agents assign higher reliability to object A.
Therefore, the level of uncertainty among agents should be analyzed. The following is the
main procedure to address this situation.

(1) The form of mass function is converted as follows:

(A1, m1) = ([{A}, 0.5], [{B}, 0.2], [{C}, 0.3])
(A2, m2) = ([{A}, 0], [{B}, 0.9], [{C}, 0.1])
(A3, m3) = ([{A}, 0.55], [{B}, 0.1], [{A, C}, 0.35])
(A4, m4) = ([{A}, 0.55], [{B}, 0.1], [{A, C}, 0.35])
(A5, m5) = ([{A}, 0.6], [{B}, 0.1], [{A, C}, 0.3])

(2) The nbBPA is generated, and the initial BPA is modified:

mb(A) = 0.8 mb(B) = 0.2 mb(C) = mb(A, C) = 0
m′1(A) = 0.5+0.8

2 = 0.65 m′1(B) = 0.2+0.2
2 = 0.2 m′1(C) =

0.3+0
2 = 0.15

m′2(A) = 0 m′2(B) = 0.9+0.2
2 = 0.55 m′2(C) =

0.1+0
2 = 0.05

m′3(A) = 0.55+0.8
2 = 0.675 m′3(B) = 0.1+0.2

2 = 0.15 m′3(A, C) = 0.35+0
2 = 0.175

m′4(A) = 0.55+0.8
2 = 0.675 m′4(B) = 0.1+0.2

2 = 0.15 m′4(A, C) = 0.35+0
2 = 0.175

m′5(A) = 0.6+0.8
2 = 0.7 m′5(B) = 0.1+0.2

2 = 0.15 m′5(A, C) = 0.3+0
2 = 0.15

BPA is normalized:

m′1(A) = 0.65 m′1(B) = 0.2 m′1(C) = 0.15
m′2(A) = 0 m′2(B) = 0.9167 m′2(C) = 0.0833
m′3(A) = 0.675 m′3(B) = 0.15 m′3(A, C) = 0.175
m′4(A) = 0.675 m′4(B) = 0.15 m′4(A, C) = 0.175
m′5(A) = 0.7 m′5(B) = 0.15 m′5(A, C) = 0.15

(3) The original BPAs are reconstructed and normalized, and the results are shown as
Table 1:

Table 1. The reconstructed and normalized BPAs

m′
1 m′

2 m′
3 m′

4 m′
5

A 0.65 0 0.7788 0.7788 0.7895

B 0.2 0.9167 0.1593 0.1593 0.1579

C 0.15 0.0833 0 0 0

A,C 0 0 0.0619 0.0619 0.0526

(4) The SMM is obtained by calculating the Jousselme evidence distance:
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SMM =

∣∣∣∣∣∣∣∣∣∣

1 0.3142 0.8529 0.8529 0.8484
0.3142 1 0.2145 0.2145 0.2107
0.8529 0.2145 1 1 0.9928
0.8529 0.2145 1 1 0.9928
0.8484 0.2107 0.9928 0.9928 1

∣∣∣∣∣∣∣∣∣∣
(5) The support and corresponding credibility degree are obtained by Equations (12) and (13).

Sup(m1) = 2.8685 Sup(m2) = 0.9540 Sup(m3) = 3.0603
Sup(m4) = 3.0603 Sup(m5) = 3.0448
Crd1 = 0.2209 Crd2 = 0.0735 Crd3 = 0.2356
Crd4 = 0.2356 Crd5 = 0.2344

(6) The credibility weights is assigned to the mass functions for MAE.

m(A) = 0.6956 m(B) = 0.2236 m(C) = 0.0393 m(A, C) = 0.0415

(7) Evidence is fused using the MAE four times, and the fusion result in the MAIF
system is as follows:

m(A) = 0.9974 m(B) = 0.0026 m(C) = 0.00002 m(A, C) = 0.0000006

Table 2 shows the final data fusion results using different methods. From the final
results, the test case has the highest trust in A. This is consistent with the actual situation
and shows the rationality of the proposed method. In addition, the confidence level of
the proposed method for A is 0.9974, which is higher than that of the original method by
0.9966. On this basis, the validity and rationality of the method are verified.

Table 2. Fusion result of the example of disturbed agents.

Method m(A) m(B) m(C)

D-S combination rule 0 0.1228 0.8772
Modified average combination rule of Deng et al. [43] 0.8909 0.0086 0.1005
Original method [25] 0.9966 0.0028 0.0005
Proposed method 0.9974 0.0026 0.00002

5.2. Example of Real-Time Processing

In some practical engineering applications, the objects identified from the system may
change over time [53]. In this case, the MAIF system needs to collect information in real
time and conduct corresponding decision analysis [54]. Supposing a military base has an
MAIF system to identify targets, the system uses three agents to read real-time information.
A1 is an expert system agent, A2 is a neural network agent, and A3 is a GPS positioning
agent. The FOD of the system refers to an aircraft, helicopter, and fighter. In order to
correctly detect the type of dataset, the three agents must read this information in real time.
Table 3 shows the details of the information read by MAS at three points in a certain period
of time. Table 4 shows the results of different methods.
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Table 3. Identification information read by agents.

t1 t2 t3

A1 m(A) = 0.3666 m(H) = 0.8176 m(H) = 0.6229
m(H) = 0.4563 m(F) = 0.0003 m(Θ) = 0.3771
m(A,H) = 0.1185 m(A,H) = 0.1553
m((Θ) = 0.0586 m((Θ) = 0.0268

A2 m(A) = 0.2793 m(H) = 0.5658 m(H) = 0.7660
m(H) = 0.4151 m(F) = 0.0009 m((Θ) = 0.2340
m(A,H) = 0.2652 m(A,H) = 0.0646
m((Θ) = 0.0404 m((Θ) = 0.3687

A3 m(A) = 0.2897 m(H) = 0.2403 m(H) = 0.8598
m(H) = 0.4331 m(F) = 0.0004 m((Θ) = 0.1402
m(A,H) = 0.2470 m(A,H) = 0.0141
m((Θ) = 0.0302 m((Θ) = 0.7452

Table 4. Fusion results of the example of real-time processing.

t1 t2 t3

D-S combination rule m(A) = 0.3376 m(H) = 0.9399 m(H) = 0.9876
m(H) = 0.6317 m(F) = 0.0001 m(Θ) = 0.0124
m(A,H) = 0.0305 m(A,H) = 0.0526
m(Θ) = 0.0001 m(Θ) = 0.0074

Modified average combination
rule of Deng et al.

m(A) = 0.3347 m(H) = 0.9065 m(H) = 0.9845

m(H) = 0.6319 m(F) = 0.0002 m(Θ) = 0.0155
m(A,H) = 0.0332 m(A,H) = 0.0403
m(Θ) = 0.0002 m(Θ) = 0.0530

original method m(A) = 0.3786 m(H) = 0.9451 m(H) = 0.9979
m(H) = 0.6094 m(F) = 0.0189 m(Θ) = 0.0021
m(A,H) = 0.0120 m(A,H) = 0.0298

m(Θ) = 0.0062

proposed method m(A) = 0.0250 m(H) = 0.9992 m(H) = 0.999992
m(H) = 0.9749 m(F) = 0.0002 m(Θ) = 0.000008
m(A,H) = 0.0018 m(A,H) = 0.0005
m(Θ) = 0.00000006 m(Θ) = 0.00003

From Table 3, we can see that from the time t1 to t3, the probability of identifying the
target as H gradually increases. H can be accurately identified at t1. The fusion results
show that the fusion effect of this method is consistent with the original method and has
higher recognition accuracy.

5.3. Example of Setaria

In [55], Yuan et al. selected 120 samples as the training set and the remaining 30 sam-
ples as the test set to generate BPAs. Table 5 shows the BPAs of the four properties of the
Setaria sample, where Θ represents the three species a, b, c.

Table 5. BPAS of the four properties of the Setaria sample.

Attribute m(a) m(b) m(a, b) m(b, c) m(a, b, c)

SL 0.2712 0 0 0 0.7288
SW 0 0.9 0 0.1 0
PL 0.6486 0 0 0 0.3514
PW 0.7477 0 0 0 0.2523
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If only the D-S combination rule is used, the fusion result may be illogical because of
the zero value. Therefore, according to the method shown in Figure 1, all BPAs generated by
the four attributes of the Setaria sample are corrected by using the nbBPA and reconstructed
BPA. Then, the evidence distance is used to analyze the remaining steps of the method.
The final combination results of different methods are shown in Table 6.

Table 6. Fusion result of the example of Setaria.

Attribute m(a) m(b) m(a, b) m(b, c) m(a, b, c)

D-S combination rule 0 0.9 0 0.1 0
Modified average combination

rule of Deng et al.
0.9133 0.0489 0 0.0037 0.0341

Original method 0.9997 0.0002 0 0 0.0001
Proposed method 0.999985 0.00001 0 0 0.000005

From the combination of the two methods, we can see that the BPA of proposition a is
the highest. According to the final results, the samples are obviously a. In addition, in the
BPA of the proposed method, a is higher than that in the original method. The experimental
results verify the effectiveness and rationality of the method.

6. Conclusions

Due to the variability and interference of multi-source information, it is very impor-
tant to consider the uncertainty relationship in the process of multi-source fusion. When
processing information of multiple sources, it is easy to cause data conflicts due to various
external factors, such as equipment damage. At the same time, the traditional D-S combi-
nation rule may produce counterintuitive results when addressing highly conflicting data.
The nbBPA can be used as a method to solve this problem. nbBPA is based on the basic
event. Other uncertain events in the power set of the FOD may not help in the process
of decision making. Therefore, we only specify the initial base beliefs regarding the basic
events. In this study, we improve the modeling of the uncertain relationship between the
recognition objects in the MAIF system, and in this paper, an uncertainty model is estab-
lished by adding nbBPA before reconstructing the BPA, combining it with the evidence
distance factor and using the uncertainty relationship in evidence theory. The experimental
results show that the method is effective and reasonable, especially when the multi-agent
is faced with a highly unfavorable situation. This method can obtain correct results more
accurately and quickly than other methods can, even in the case of equipment failure. Thus,
it can be stated that this method improves the accuracy of the identification process of the
MAIF system.

Author Contributions: Conceptualization, J.L. and Y.T.; methodology, J.L. and Y.T.; writing—original
draft, J.L.; writing—review and editing, Y.T. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was partially supported by the National Key Research and Development
Project of China (grant no. 2020YFB1711900).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Weiss, G. Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1999.
2. Catano, V.; Gauger, J. Information Fusion: Intelligence Centers and Intelligence Analysis; Springer: Cham, Germany, 2017.



Entropy 2021, 23, 820 13 of 14

3. Xiao, F. Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy. Inf. Fusion 2018, 46,
23–32. [CrossRef]

4. Han, Y.; Deng, Y. An Evidential Fractal Analytic Hierarchy Process Target Recognition Method. Def. Sci. J. 2018, 68, 367–373.
[CrossRef]

5. Ding, B.; Wen, G.; Huang, X.; Ma, C.; Yang, X. Target Recognition in Synthetic Aperture Radar Images via Matching of Attributed
Scattering Centers. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017. [CrossRef]

6. Wu, D.; Tang, Y. An improved failure mode and effects analysis method based on uncertainty measure in the evidence theory.
Qual. Reliab. Eng. Int. 2020, 36, 1786–1807. [CrossRef]

7. Liu, Z.G.; Pan, Q.; Dezert, J.; Martin, A. Combination of classifiers with optimal weight based on evidential reasoning.
IEEE Trans. Fuzzy Syst. 2017, 26, 1217–1230. [CrossRef]

8. Tang, Y.; Wu, D.; Liu, Z. A new approach for generation of generalized basic probability assignment in the evidence theory.
Pattern Anal. Appl. 2021, 1–17. [CrossRef]

9. Wu, D.; Liu, Z.; Tang, Y. A new classification method based on the negation of a basic probability assignment in the evidence
theory. Eng. Appl. Artif. Intell. 2020, 96, 103985. [CrossRef]

10. Fu, C.; Hou, B.; Chang, W.; Feng, N.; Yang, S. Comparison of evidential reasoning algorithm with linear combination in decision
making. Int. J. Fuzzy Syst. 2020, 22, 686–711. [CrossRef]

11. Fu, C.; Wang, Y. An interval difference based evidential reasoning approach with unknown attribute weights and utilities of
assessment grades. Comput. Ind. Eng. 2015, 81, 109–117. [CrossRef]

12. Xiao, F. A Multiple-Criteria Decision-Making Method Based on D Numbers and Belief Entropy. Int. J. Fuzzy Syst. 2019,
21, 1144–1153. [CrossRef]

13. Seiti, H.; Hafezalkotob, A.; Najafi, S.E.; Khalaj, M. A risk-based fuzzy evidential framework for FMEA analysis under uncertainty:
An interval-valued DS approach. J. Intell. Fuzzy Syst. 2018, 35, 1–12. [CrossRef]

14. Xu, X.; Li, S.; Song, X.; Wen, C.; Xu, D. The optimal design of industrial alarm systems based on evidence theory. Control Eng. Pract.
2016, 46, 142–156. [CrossRef]

15. Zhou, Z.; Liu, T.; Hu, G.; He, W.; Zhao, F.; Li, G. Fault-alarm-threshold optimization method based on interval evidence reasoning.
Sci. China Inf. Sci. 2019, 62, 89202 [CrossRef]

16. Zhou, Z.J.; Hu, G.Y.; Zhang, B.C.; Hu, C.H.; Zhou, Z.G.; Qiao, P.L. A Model for Hidden Behavior Prediction of Complex Systems
Based on Belief Rule Base and Power Set. IEEE Trans. Syst. Man Cybern. Syst. 2017, 48, 1649–1655. [CrossRef]

17. Fei, L.; Xia, J.; Feng, Y.; Liu, L. An ELECTRE-based multiple criteria decision making method for supplier selection using
Dempster-Shafer theory. IEEE Access 2019, 7, 84701–84716. [CrossRef]

18. Su, X.; Li, L.; Shi, F.; Qian, H. Research on the Fusion of Dependent Evidence Based on Mutual Information. IEEE Access 2019,
6, 71839–71845. [CrossRef]

19. Fu, C.; Xu, D.L.; Yang, S.L. Distributed preference relations for multiple attribute decision analysis. J. Oper. Res. Soc. 2016,
67, 457–473. [CrossRef]

20. Song, Y.; Wang, X.; Wu, W.; Quan, W.; Huang, W. Evidence combination based on credibility and non-specificity.
Pattern Anal. Appl. 2018, 21, 167–180. [CrossRef]

21. Liu, Z.; Pan, Q.; Dezert, J.; Han, J.W.; He, Y. Classifier Fusion With Contextual Reliability Evaluation. IEEE Trans. Cybern. 2017, 48,
1605–1618. [CrossRef]

22. Su, X.; Li, L.; Qian, H.; Mahadevan, S.; Deng, Y. A new rule to combine dependent bodies of evidence. Soft Comput. 2019,
23, 9793–9799. [CrossRef]

23. Wang, Y.; Zhang, K.; Deng, Y. Base belief function: An efficient method of conflict management. J. Ambient Intell. Humaniz. Comput.
2019, 10, 3427–3437. [CrossRef]

24. Jing, M.; Tang, Y. A new base basic probability assignment approach for conflict data fusion in the evidence theory. Appl. Intell.
2021, 51, 1056–1068. [CrossRef]

25. Weng, J.; Xiao, F.; Cao, Z. Uncertainty Modelling in Multi-agent Information Fusion Systems. In Proceedings of the 19th
International Conference on Autonomous Agents and MultiAgent Systems, Auckland, New Zealand, 9–13 May 2020; pp. 1494–1502.

26. Dempster, A.P. Upper and Lower Probabilities Induced by a Multivalued Mapping. In Classic Works of the Dempster-Shafer Theory
of Belief Functions; Springer: Berlin/Heidelberg, Germany, 2008; pp. 57–72.

27. Shafer, G.A. A Mathematical Theory of Evidence. Technometrics 1978, 20, 106.
28. Guan, X.; He, Y.; Yi, X. Radar emitter recognition of gray correlation based on D-S reasoning. Editor. Board Geomat. Inf. Ence

Wuhan Univ. 2005, 30, 274–277.
29. You, H.E.; Lifang, H.U.; Xin, G. A new method of measuring the degree of conflict among general basic probability assignments.

Sci. Sin. Inform. 2011, 41, 989–997.
30. Pchon, F.; Destercke, S.; Burger, T. A consistency-specificity trade-off to select source behavior in information fusion.

IEEE Trans. Cybern. 2015, 45, 598–609. [CrossRef]
31. Deng, Y. Generalized evidence theory. Appl. Intell. 2015, 43, 530–543. [CrossRef]
32. Jiang, W.; Zhan, J. A modified combination rule in generalized evidence theory. Appl. Intell. 2017, 46, 630–640. [CrossRef]
33. Martin, A. Conflict Management in Information Fusion with Belief Functions; Springer: Zurich, Switzerland, 2019.
34. Weiquan, Z.; Yong, D. Combining conflicting evidence using the DEMATEL method. Soft Comput. 2018, 23, 8207–8216.

http://doi.org/10.1016/j.inffus.2018.04.003
http://dx.doi.org/10.14429/dsj.68.11737
http://dx.doi.org/10.1109/JSTARS.2017.2671919
http://dx.doi.org/10.1002/qre.2660
http://dx.doi.org/10.1109/TFUZZ.2017.2718483
http://dx.doi.org/10.1007/s10044-021-00966-0
http://dx.doi.org/10.1016/j.engappai.2020.103985
http://dx.doi.org/10.1007/s40815-019-00746-3
http://dx.doi.org/10.1016/j.cie.2014.12.031
http://dx.doi.org/10.1007/s40815-019-00620-2
http://dx.doi.org/10.3233/JIFS-169684
http://dx.doi.org/10.1016/j.conengprac.2015.10.014
http://dx.doi.org/10.1007/s11432-018-9560-6
http://dx.doi.org/10.1109/TSMC.2017.2665880
http://dx.doi.org/10.1109/ACCESS.2019.2924945
http://dx.doi.org/10.1109/ACCESS.2018.2882545
http://dx.doi.org/10.1057/jors.2015.71
http://dx.doi.org/10.1007/s10044-016-0575-6
http://dx.doi.org/10.1109/TCYB.2017.2710205
http://dx.doi.org/10.1007/s00500-019-03804-y
http://dx.doi.org/10.1007/s12652-018-1099-2
http://dx.doi.org/10.1007/s10489-020-01876-0
http://dx.doi.org/10.1109/TCYB.2014.2331800
http://dx.doi.org/10.1007/s10489-015-0661-2
http://dx.doi.org/10.1007/s10489-016-0851-6


Entropy 2021, 23, 820 14 of 14

35. Smets, P. The concept of distinct evidence. In IPMU 92 Proceedings; Springer: Berlin/Heidelberg, Germany, 1993.
36. Yager, R.R. On the fusion of non-independent belief structures. Int. J. Gen. Syst. 2009, 38, 505–531. [CrossRef]
37. Su, X.; Mahadevan, S.; Xu, P.; Deng, Y. Handling of Dependence in Dempster–Shafer Theory. Int. J. Intell. Syst. 2015, 30, 441–467.

[CrossRef]
38. Tessem, B. Approximations for efficient computation in the theory of evidence. Artif. Intell. 1993, 61, 315–329. [CrossRef]
39. Bauer, M. Approximation Algorithms and Decision Making in the Dempster-Shafer Theory of Evidence—An Empirical Study.

Int. J. Approx. Reason. 1997, 17, 217–237. [CrossRef]
40. Liu, Z.; Dezert, J.; Pan, Q.; Mercier, G. Combination of sources of evidence with different discounting factors based on a new

dissimilarity measure. Decis. Support Syst. 2012, 52, 133–141. [CrossRef]
41. Cuzzolin, F. A geometric approach to the theory of evidence. IEEE Trans. Syst. Man Cybern. Part C 2008, 38, 522–534. [CrossRef]
42. Jousselme, A.L.; Grenier, D.; Bossé, É. A new distance between two bodies of evidence. Inf. Fusion 2001, 2, 91–101. [CrossRef]
43. Han, D.; Deng, Y.; Liu, Q. Combining belief functions based on distance of evidence. Decis. Support Syst. 2005, 38, 489–493.
44. Liu, W. Analyzing the degree of conflict among belief functions. Artif. Intell. 2006, 170, 909–924. [CrossRef]
45. Ristic, B.; Smets, P. The TBM global distance measure for the association of uncertain combat ID declarations. Inf. Fusion 2014,

7, 276–284. [CrossRef]
46. Zouhal, L.M.; Denoeux, T. An evidence-theoretic k-NN rule with parameter optimization. Syst. Man Cybern. Part C Appl. Rev.

IEEE Trans. 1998, 28, 263–271. [CrossRef]
47. Schubert, J. Clustering decomposed belief functions using generalized weights of conflict. Int. J. Approx. Reason. 2008, 48, 466–480.

[CrossRef]
48. Deng, X.; Jiang, W. Evaluating Green Supply Chain Management Practices Under Fuzzy Environment: A Novel Method Based

on D Number Theory. Int. J. Fuzzy Syst. 2019, 21, 1389–1402. [CrossRef]
49. Xiao, F.; Zhang, Z.; Abawajy, J. Workflow scheduling in distributed systems under fuzzy environment. J. Intell. Fuzzy Syst. 2019,

37, 1–11. [CrossRef]
50. Xu, X.; Weng, X.; Xu, D.; Xu, H.; Hu, Y.; Li, J. Evidence updating with static and dynamical performance analyses for industrial

alarm system design. ISA Trans. 2020, 99, 110–122.10.1016/j.isatra.2019.09.006. [CrossRef] [PubMed]
51. Liao, H.; Mi, X.; Xu, Z. A survey of decision-making methods with probabilistic linguistic information: Bibliometrics, preliminaries,

methodologies, applications and future directions. Fuzzy Optim. Decis. Mak. 2020, 19, 81–134. [CrossRef]
52. Zhou, M.; Liu, X.; Yang, J. Evidential reasoning approach for MADM based on incomplete interval value. J. Intell. Fuzzy Syst.

2017, 33, 3707–3721. [CrossRef]
53. He, Z.; Jiang, W. An evidential dynamical model to predict the interference effect of categorization on decision making results.

Knowl. Based Syst. 2018, 150, 139–149. [CrossRef]
54. Barrière, A.; Maubert, B.; Murano, A.; Rubin, S. Reasoning about Changes of Observational Power in Logics of Knowledge and

Time. In AAMAS 2019: International Conference on Autonomous Agents and Multiagent Systems, Montreal, QC, Canada, 13–17
May 2019; International Foundation for Autonomous Agents and Multiagent Systems: Richland, SC, USA, 2019; pp. 971–979.

55. Yuan, K.; Deng, Y. Conflict evidence management in fault diagnosis. Int. J. Mach. Learn. Cybern. 2019, 10, 121–130. [CrossRef]

http://dx.doi.org/10.1080/03081070902753630
http://dx.doi.org/10.1002/int.21695
http://dx.doi.org/10.1016/0004-3702(93)90072-J
http://dx.doi.org/10.1016/S0888-613X(97)00013-3
http://dx.doi.org/10.1016/j.dss.2011.06.002
http://dx.doi.org/10.1109/TSMCC.2008.919174
http://dx.doi.org/10.1016/S1566-2535(01)00026-4
http://dx.doi.org/10.1016/j.artint.2006.05.002
http://dx.doi.org/10.1016/j.inffus.2005.04.004
http://dx.doi.org/10.1109/5326.669565
http://dx.doi.org/10.1016/j.ijar.2007.03.002
http://dx.doi.org/10.1007/s40815-019-00639-5
http://dx.doi.org/10.3233/JIFS-190483
http://dx.doi.org/10.1016/j.isatra.2019.09.006
http://www.ncbi.nlm.nih.gov/pubmed/31522822
http://dx.doi.org/10.1007/s10700-019-09309-5
http://dx.doi.org/10.3233/JIFS-17522
http://dx.doi.org/10.1016/j.knosys.2018.03.014
http://dx.doi.org/10.1007/s13042-017-0704-6

	Introduction
	Motivation
	Contributions 
	Organization 

	Related Work
	Background
	Dempster–Shafer Evidence Theory 
	Framework of Discernment
	Basic Probability Assignment
	D-S Combination Rule

	Base Basic Probability Assignment 
	Base Basic Probability Assignment
	Use the bBPA to Modify Initial BPA

	Evidence Distance 
	Jousselme Evidence Distance
	Combined Belief Function Based on Evidence Distance

	Reconstructed BPA 

	Multi-Agent Information Fusion
	New Base BPA Definitions 
	Steps for Multi-Agent Information Fusion 

	Numerical Examples
	Example of Disturbed Agents
	Example of Real-Time Processing 
	 Example of Setaria 

	Conclusions
	References

