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Abstract: A phase transition in high-dimensional random geometry is analyzed as it arises in a
variety of problems. A prominent example is the feasibility of a minimax problem that represents the
extremal case of a class of financial risk measures, among them the current regulatory market risk
measure Expected Shortfall. Others include portfolio optimization with a ban on short-selling, the
storage capacity of the perceptron, the solvability of a set of linear equations with random coefficients,
and competition for resources in an ecological system. These examples shed light on various aspects
of the underlying geometric phase transition, create links between problems belonging to seemingly
distant fields, and offer the possibility for further ramifications.

Keywords: random geometry; portfolio optimization; risk measurement; disordered systems;
replica theory
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1. Introduction

A large class of problems in random geometry is concerned with the collocation
of points in high-dimensional space. Applications range from optimization of financial
portfolios [1], binary classifications of data strings [2] and optimal stategies in game
theory [3] to the existence of non-negative solutions to systems of linear equations [4,5], the
emergence of cooperation in competitive ecosystems [6,7], and linear programming with
random parameters [8]. It is frequently relevant to consider the case where both the number
of points T and the dimension of space N tend to infinity. This limit is often characterized
by abrupt qualitative changes reminiscent of phase transitions when an external parameter
or the ratio T/N vary and cross a critical value. At the same time, this high-dimensional
case is amenable to methods from the statistical mechanics of disordered systems offering
additional insight.

Some results obtained in different disciplines are closely related to each other without
the connection always being appreciated. In the present paper, we discuss some particular
cases. We will show that the boundedness of the expected maximal loss, as well as the
possibility of zero variance of a random financial portfolio is closely related to the existence
of a linear separable binary coloring of random points called a dichotomy. Moreover, we
point out the connection with the existence of non-negative solutions to systems of linear
equations and with mixed strategies in zero-sum games. On a more technical level and for
the above-mentioned limit of large instances in high-dimensional spaces, we also make
contact between replica calculations performed for different problems in different fields.

In addition to uncovering the common random geometrical background of seemingly
very different problems, our comparative analysis sheds light on each of them from various
angles and points to ramifications in their respective fields.
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2. Dichotomies of Random Points

Consider an N-dimensional Euclidean space with a fixed coordinate system. Choose T
points in this space and color them either black or white. The coloring is called a dichotomy
if a hyperplane through the origin of the coordinate system exists that separates black
points from white ones, see Figure 1.

To avoid special arrangements like all points falling on one line, the points are required
to be in what is called a general position: the position vectors of any subset of N points
should be linearly independent. Under this rather mild prerequisite, the number C(T, N)
of dichotomies of T points in N dimensions only depends on T and N and not on the
particular location of the points. This remarkable result was proven in several works,
among them a classical paper by Cover [2]. Establishing a recursion relation for C(T, N),
the explicit result was derived:

C(T, N) = 2
N−1

∑
i=0

(
T − 1

i

)
. (1)

Figure 1. Two colorings of three points in two dimensions. In the left one, black and white points
can be separated by a line through the origin; this coloring therefore represents a dichotomy. For the
right one, no such separating line exists.

If the coordinates of the points are chosen at random from a continuous distribution,
the points are in a general position with the probability one. Since there are in total 2T

different binary colorings of these points and only C(T, N) of them are dichotomies, we
find for the probability that T random points in N dimensions with random coloring form
a dichotomy with the cumulative binomial distribution:

Pd(T, N) =
C(T, N)

2T =
1

2T−1

N−1

∑
i=0

(
T − 1

i

)
. (2)

Hence, Pd(T, N) = 1 for T ≤ N, Pd(T, N) = 1/2 for T = 2N and Pd(T, N)→ 0 for T → ∞.
The transition from P ' 1 at T = N to P ' 0 at large T becomes sharper with increasing N.
This is clearly seen when considering the case of constant ratio

α :=
T
N

(3)

between the number of points and the dimension of space for different values of N, which
shows an abrupt transition at αc = 2 for N → ∞, cf. Figure 2.

For later convenience, it is useful to reformulate the condition for a certain coloring to
be a dichotomy in different ways. Let us denote the position vector of point t, t = 1, . . . , T,
by ξt ∈ RN and its coloring by the binary variable ζt = ±1. If a separating hyperplane
exists, it has a normal vector w ∈ RN that fulfills

ζt = sign(w · ξt), t = 1, . . . , T, (4)

where we define sign(x) = 1 for x ≥ 0 and sign(x) = −1 otherwise. With the abbreviation

rt := ζtξt, (5)
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Equation (4) translates into w · rt ≥ 0 for all t = 1, . . . , T which for points in a general
position, is equivalent to the somewhat stronger condition

w · rt > 0, t = 1, . . . , T. (6)

A certain coloring ζt of points ξt is hence a dichotomy if a vector w exists such that (6) is
fulfilled, that is, if its scalar product with all vectors rt is positive. This is quite intuitive,
since by going from the vectors ξt to rt according to the (5), we replace all points colored
black by their white-colored mirror images (or vice versa). If we started out with a
dichotomy, after the transformation, all points will lie on the same side of the separating
hyperplane. The meaning of Equation (6) is clear: For T random points in N dimensions
with coordinates chosen independently from a symmetric distribution, there exists with
probability Pd(T, N) a hyperplane such that all these points lie on the same side of the
hyperplane. This formulation will be crucial in Section 3 to relate dichotomies to bounded
cones characterizing financial portfolios.

Figure 2. Probability Pd(T, N) that T randomly colored points in a general position in N-dimensional
space form a dichotomy as a function of the ratio α between T and N for different values of N. The
transition between the limiting values P = 1 at α = 1 and P = 0 at large α becomes increasingly
sharp when N grows.

Singling out one particular point s = 1, . . . , T, this in turn implies that there is, for any
choice of s, a vector w with

w · rt > 0, t = 1, . . . , T, t 6= s and w · (−rs) < 0. (7)

Consider now all vectors r̄ of the form

r̄ = ∑
t 6=s

ctrt, with ct ≥ 0, t = 1, . . . , T, t 6= s, (8)

that is, all vectors that may be written as a linear combination of the rt with t 6= s and
all expansion parameters ct being non-negative. The set of these vectors r̄ is called the
non-negative cone of the rt, t 6= s. Equation (7) then means that −rs cannot be an element of
this non-negative cone. This is clear since the hyperplane perpendicular to w separates
−rs from this very cone, an observation that is known as Farkas’ lemma [9]. Therefore, if a
set of vectors rt forms a dichotomy no mirror image −rs of any of them may be written as
a linear combination of the remaining ones with non-negative expansion coefficients

∑
t 6=s

ctrt 6= −rs, ∀ct ≥ 0. (9)

Finally, adding rs to both sides of (9), we find

∑
t

ctrt 6= o, with ct ≥ 0, t = 1, . . . , T, and ∑
t

ct > 0, (10)
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where o denotes the null vector in N dimensions. Given T points rt in N dimensions
forming a dichotomy, it is therefore impossible to find a nontrivial linear combination of
these vectors with non-negative coefficients that equals the null vector.

Additionally, this corollary to the Cover result is easily intuitively understood. Assume
there were some coefficients ct ≥ 0 that were not all zero at the same time, and that realize

∑
t

ctrt = o. (11)

If the points rt form a dichotomy, then according to (6), there is a vector w that makes a
positive scalar product with all of them. Multiplying (11) with this vector, we immediately
arrive at a contradiction, since the l.h.s. of this equation is positive and the r.h.s. is zero.

Note that the inverse of (10) is also true: if the points do not form a dichotomy, a
decomposition of the null vector of the type (11) can always be found. This is related to the
fact that the non-negative cone of the corresponding position vectors is the complete RN .
For if there were a vector b ∈ RN that lies not in this cone by Farkas’ lemma, there would
be a hyperplane separating the cone from b. However, the very existence of this hyperplane
would qualify the points rt to be a dichotomy in contradiction to what was assumed.

In the limit N → ∞, T → ∞ with α = T/N, keeping the problem of random di-
chotomies constant can be investigated within statistical mechanics. To make this connec-
tion explicit, we first note that no inequality in (6) is altered if w is multiplied by a positive
constant. To decide whether an appropriate vector w fulfilling (6) may be found or not, it
is hence sufficient to study vectors of a given length. It is convenient to choose this length
as
√

N, requiring

N

∑
i=1

w2
i = N. (12)

Next, we introduce for each realization of the random vectors rt an energy function

E(w) :=
T

∑
t=1

Θ

(
−∑

i
wirt

i

)
, (13)

where Θ(x) = 1 if x > 0, and Θ(x) = 0; otherwise it is the Heaviside step function. This
energy is nothing but the number of points violating (6) for a given vector w. Our central
quantity of interest is the entropy of the groundstate of the system, that is, the logarithm of
the fraction of points on the sphere defined by (12) that realize zero energy:

S(κ, α) := lim
N→∞

1
N

ln

∫
∏N

i=1 dwi δ(∑i w2
i − N) ∏αN

t=1 Θ
(
∑i wirt

i − κ
)∫

∏N
i=1 dwi δ(∑i w2

i − N)
. (14)

Here, δ(x) denotes the Dirac δ-function, and we have introduced the positive stability
parameter κ to additionally sharpen the inequalities (6).

The main problem in the explicit determination of S(κ, α) is its dependence on the
many random parameters rt

i . Luckily, for large values of N deviations of S from its typical
value, Styp becomes extremely rare and, moreover, this typical value is given by the average
over the realizations of the rt

i :

Styp(κ, α) = 〈〈S(κ, α)〉〉. (15)

The calculation of this average was performed by a classical calculation [10] which gave
rise to the result:

Styp(κ, α) = extr
q

[
1
2

ln(1− q) +
q

2(1− q)
+ α

∫
Dt ln H

(
κ −√qt√

1− q

)]
, (16)

where the extremum is over the auxiliary quantity q, and we have used the shorthand notations
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Dt :=
dt√
2π

e−
t2
2 and H(x) :=

∫ ∞

x
Dt. (17)

More details of the calculation may be found in the original reference, and in chapter 6
of [11]. Appendix A contains some intermediate steps for a closely related analysis.

Studying the limit q→ 1 of (16) reveals

Styp(κ, α)

{
> −∞ if α < αc(κ)

→ −∞ if α > αc(κ),
(18)

corresponding to a sharp transition from solvability to non-solvability at a critical value
αc(κ). This is because κ = 0 finds αc = 2 in agreement with (2), cf. Figure 2.

Note that Cover’s result (2) holds for all values of T and N, whereas the statistical
mechanics analysis is restricted to the thermodynamic limit N → ∞. On the other hand,
the latter can deal with all values of the stability parameter κ, whereas no generalization of
Cover’s approach to the case κ 6= 0 is known.

3. Phase Transitions in Portfolio Optimization under the Variance and the Maximal
Loss Risk Measure
3.1. Risk Measures

The purpose of this subsection is to indicate the financial context, in which the ge-
ometric problem discussed in this paper appears. A portfolio is the weighted sum of
financial assets. The weights represent the parts of the total wealth invested in the various
assets. Some of the weights are allowed to be negative (short positions), but the weights
sum to 1; this is called the budget constraint. Investment carries risk, and higher returns
usually carry higher risk. Portfolio optimization seeks a trade-off between risk and return
by the appropriate choice of the portfolio weights. Markowitz was the first to formulate
the portfolio choice as a risk-reward problem [12]. Reward is normally regarded as the
expected return on the portfolio. Assuming return fluctuations to be Gaussian-distributed
random variables, portfolio variance offered itself as the natural risk measure. This setup
made the optimization of portfolios a quadratic programming problem, which, especially
in the case of large institutional portfolios, posed a serious numerical difficulty in its time.
Another critical point concerning variance as a risk measure was that variance is symmetric
in gains and losses, whereas investors are believed not to be afraid of big gains, only big
losses. This consideration led to the introduction of downside risk measures, starting
already with the semivariance [13]. Later it was recognized that the Gaussian assump-
tion was not realistic, and alternative risk measures were sought to grasp the risk of rare
but large events, and also to allow risk to be aggregated across the ever-increasing and
increasingly heterogeneous institutional portfolios. Around the end of the 1980s, Value at
Risk (VaR) was introduced by JP Morgan [14], and subsequently it was widely spread over
the industry by their RiskMetrics methodology [15]. VaR is a high quantile, a downside
risk measure (note that in the literature, the profit and loss axis is often reflected, so that
losses are assigned a positive sign. It is under this convention that VaR is a high quantile,
rather than a low one). It soon came under academic criticism for its insensitivity to the
details of the distribution beyond the quantile, and for its lack of sub-additivity. Expected
Shortfall (ES), the average loss above the VaR quantile, appeared around the turn of the
century [16]. An axiomatic approach to risk measures was proposed by Artzner et al. [17]
who introduced a set of postulates which any coherent risk measure was required to satisfy.
ES turned out to be coherent [18,19] and was strongly advocated by academics. After a
long debate, international regulation embraced it as the official risk measure in 2016 [20].

The various risk measures discussed all involved averages. Since the distributions
of financial data are not known, the relative price movements of assets are observed at
a number T of time points, and the true averages are replaced by empirical averages
from these data. This works well if T is sufficiently large; however, in addition to all the
aforementioned problems, a general difficulty of portfolio optimization lies in the fact that
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the dimension N of institutional portfolios (the number of different assets) is large, but the
number T of observed data per asset is never large enough, due to lack of stationarity of
the time series and the natural limits (transaction costs, technical difficulties of rebalancing)
on the sampling frequency. Therefore, portfolio optimization in large dimensions suffers
from a high degree of estimation error, which renders the exercise more or less illusory
(see e.g., [21]). Estimation of returns is even more error-prone than the risk part, so several
authors disregard the return completely, and seek the minimum risk portfolio (e.g., [22–24]).
We follow the same approach here.

In the two subsections that follow, we also assume that the returns are independent,
symmetrically distributed random variables. This is, of course, not meant to be a realistic
market model, but it allows us to make an explicit connection between the optimization
of the portfolio variance under a constraint excluding short positions and the geometric
problem of dichotomies discussed in Section 2. This is all the more noteworthy because
analytic results are notoriously scarce for portfolio optimization with no short positions.
We note that similar simplifying assumptions (Gaussian fluctuations, independence) were
built into the original JP Morgan methodology, which was industry standard in its time,
and influences the thinking of practitioners even today.

3.2. Vanishing of the Estimated Variance

We consider a portfolio of N assets with weights wi, i = 1, . . . , N. The observations rt
i

of the corresponding returns at various times t = 1, . . . , T are assumed to be independent,
symmetrically distributed random variables. Correspondingly, the average value of the
portfolio is zero. Its variance is given by

σ2
p =

1
T ∑

t

(
∑

i
wirt

i

)2

= ∑
i,j

wiwj
1
T ∑

t
rt

i r
t
j =: ∑

i,j
wiwjCij, (19)

where Cij denotes the covariance matrix of the observations. Note that the variance of a port-
folio optimized in a given sample depends on the sample, so it is itself a random variable.

The variance of a portfolio obviously vanishes if the returns are fixed quantities that
do not fluctuate. This subsection is not about such a trivial case. We shall see, however,
that the variance optimized under a no-short constraint can vanish with a certain probability
if the dimension N is larger than the number of observations T.

The rank of the covariance matrix is the smaller of N and T, and for N ≤ T the
estimated variance is positive with the probability one. Thus, the optimization of variance
can always be carried out as long as the number of observations T is larger than the
dimension N, albeit with an increasingly larger error as T/N decreases. For large N
and T and fixed α = T/N, the estimation error increases as α/(α− 1) with decreasing
α and diverges at α ↓ 1 [25,26]. The divergence of the estimation error can be regarded
as a phase transition. Below the critical value αd := 1, the optimization of variance
becomes impossible. Of course, in practice, one never has such an optimization task
without some additional constraints. Note that because of the possibility of short-selling
(negative portfolio weights), the budget constraint (a hyperplane) in itself is not sufficient
to forbid the appearance of large positive and negative positions, which then destabilize
the optimization. In contrast, any constraint that makes the allowed weights finite can act
as a regularizer. The usual regularizers are constraints on the norm of the portfolio vector.
It was shown in [27,28] how liquidity considerations naturally lead to regularization. Ridge
regression (a constraint on the `2 norm of the portfolio vector) prevents the covariance
matrix from developing zero eigenvalues, and, especially in its nonlinear form [29], results
in very satisfactory out-of-sample performance.

An alternative is the `1 regularizer, of which the exclusion of short positions is a
special case. Together with the budget constraint, it prevents large sample fluctuations
of the weights. Let us then impose the no-short ban, as it is indeed imposed in practice
on a number of special portfolios (e.g., on pension funds), or, in episodes of crisis, on the
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whole industry. The ban on short-selling extends the region where the variance can be
optimized, but below α = 1 the optimization acquires a probabilistic character in that the
regularized variance vanishes with a certain probability, and the optimization can only be
carried out when it is positive. (Otherwise, there is a continuum of solutions, namely any
combination of the eigenvectors belonging to zero eigenvalues, which makes the optimized
variance zero).

Interestingly, the probability of the variance vanishing is related to the problem of
random dichotomies in the following way. For the portfolio variance (19) to become zero,
we need to have

∑
i

wirt
i = 0 (20)

for all t. If we interchange t and i, we see that according to (11), this is possible as long as
the N points in RT with position vectors~ri := {rt

i} do not form a dichotomy. Hence, the
probability for zero variance is from (2)

Pzv(T, N) = 1− Pd(N, T) = 1− 1
2N−1

T−1

∑
i=0

(
N − 1

i

)
=

1
2N−1

N−1

∑
i=T

(
N − 1

i

)
. (21)

Therefore, the probability of the variance vanishing is almost 1 for small α, decreases to the
value 1/2 at α = 1/2, decreases further to 0 as α increases to 1, and remains identically zero
for α > 1 [30,31]. This is similar but also somewhat complementary to the curve shown in
Figure 2. Equation (21) for the vanishing of the variance was first written up in [30,31] on
the basis of analogy with the minimax problem to be considered below, and it was also
verified by extended numerical simulations. The above link to the Cover problem is a new
result, and it is rewarding to see how a geometric proof establishes a bridge between the
two problems.

In [30,31], an intriguing analogy with, for example, the condensed phase of an ideal
Bose gas was pointed out. The analogous features are the vanishing of the chemical
potential in the Bose gas, resp. the vanishing of the Lagrange multiplier enforcing the
budget constraint in the portfolio problem; the onset of Bose condensation, resp. the
appearance of zero weights (“condensation” of the solutions on the coordinate planes)
due to the no-short constraint; the divergence of the transverse susceptibility, and the
emergence of zero modes in both models.

3.3. The Maximal Loss

The introduction of the Maximal Loss (ML) or minimax risk measure by Young [32]
in 1998 was motivated by numerical expediency. In contrast to the variance whose opti-
mization demands a quadratic program, ML is constructed such that it can be optimized
by linear programming, which could be performed very efficiently even on large datasets
already at the end of the last century. Maximal Loss combines the worst outcomes of each
asset and seeks the best combination of them. This may seem to be an over-pessimistic risk
measure, but there are occasions when considering the worst outcomes is justifiable (think
of an insurance portfolio in the time of climate change), and, as will be seen, the present
regulatory market risk measure is not very far from ML.

Omitting the portfolio’s return again and focusing on the risk part, the maximal loss
of a portfolio is given by

ML := min
w

max
1≤t≤T

(
−∑

i
wirt

i

)
(22)

with the constraint
∑

i
wi = N. (23)

We are interested in the probability PML(T, N) that this minimax problem is feasible, that
is, ML does not diverge to −∞. To this end, we first eliminate the constraint (23) by putting
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wN = N −
N−1

∑
i=1

wi. (24)

This results in

ML := min
w̃

max
1≤t≤T

(
−

N−1

∑
i=1

wi(rt
i − rt

N)− Nrt
N

)
=: min

w̃
max

1≤t≤T

(
−

N−1

∑
i=1

wi r̃ t
i − Nrt

N

)
(25)

with w̃ := {w1, . . . , wN−1} ∈ RN−1 and r̃ t := {rt
1 − rt

N , . . . , rt
N−1 − rt

N} ∈ RN−1. For ML
to stay finite for all choices of w̃, the T random hyperplanes with normal vectors r̃t have to
form a bounded cone. If the points r̃t form a dichotomy, then according to (6), there is a
vector W ∈ RN−1 with W · r̃t > 0 for all t. Since there is no constraint on the norm of w̃,
the maximal loss (25) can become arbitrarily small for w̃ = λW and λ→ ∞. The cone then
is not bounded. We therefore find

PML(T, N) = Pd(T, N − 1) =
1

2T−1

N−2

∑
i=0

(
T − 1

i

)
(26)

for the probability that ML cannot be optimized.
In the limit N, T → ∞ with α = T/N kept finite, (25) displays the same abrupt change

as in the problem of dichotomies, a phase transition at αc = 2. Note that this is larger than
the critical point αd = 1 of the unregularized variance, which is quite natural, since the ML
uses only the extremal values in the data set. The probability for the feasibility of ML was
first written up without proof in [1], where a comparative study of the noise sensitivity
of four risk measures, including ML, was performed. There are two important remarks
we can make at this point. First, the geometric consideration above does not require any
assumption about the data generating process; as long as the the returns are independent,
they can be drawn from any symmetric distribution without changing the value of the
critical point. This is a special case of the universality of critical points discovered by
Donoho and Tanner [33].

The second remark is that the problem of bounded cones is closely related to that
of bounded polytopes [34]. The difference is just the additional dimension of the ML
itself. If the random hyperplanes perpendicular to the vectors r̃t form a bounded cone
for ML according to (25), then they will trace out a bounded polytope on hyperplanes
perpendicular to the ML axis at sufficiently high values of ML. In fact, after the replacement
N − 1→ N Equation (26) coincides with the result in Theorem 4 of [34] for the probability
of T random hyperplanes forming a bounded polytope in N dimensions (there is a typo in
Theorem 4 in [34]; the summation has to start at i = 0). The close relationship between the
ML problem and the bounded polytope problem, on the one hand, and the Cover problem
on the other hand, was apparently not clarified before.

If we spell out the financial meaning of the above result, we are led to interesting
ramifications. To gain an intuition, let us consider just two assets, N = 2. If asset 1 produces
a return sometimes above, sometimes below that of asset 2, then the minimax problem will
have a finite solution. If, however, asset 1 dominates asset 2 (i.e., yields a return which
is at least as large, and, at least at one time point, larger, than the return on asset 2 in a
given sample), then, with unlimited short positions allowed, the investor will be induced
to take an arbitrarily large long position in asset 1 and go correspondingly short in asset 2.
This means that the solution of the minimax problem will run away to infinity, and the risk
of ML will be equal to minus infinity [1]. The generalization to N assets is immediate: if
among the assets there is one that dominates the rest, or there is a combination of assets
that dominates some of the rest, the solution will run away to infinity, and ML will take
the value of −∞. This scenario corresponds to an arbitrage, and the investor gains an
arbitrarily large profit without risk [35]. Of course, if such a dominance is realized in one
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given sample, it may disappear in the next time interval, or the dominance relations can
rearrange to display another mirage of an arbitrage.

Clearly, the ML risk measure is unstable against these fluctuations. In practice, such a
brutal instability can never be observed, because there are always some constraints on the
short positions, or groups of assets corresponding to branches of industries, geographic
regions, and so forth. These constraints will prevent instabilities from taking place, and the
solution cannot run away to infinity, but will go as far as allowed by the constraints and
then stick to the boundary of the allowed region. Note, however, that in such a case, the
solution will be determined more by the constraints (and ultimately by the risk manager
imposing the constraints) rather than by the structure of the market. In addition, in the
next period, a different configuration can be realized, so the solution will jump around on
the boundary defined by the constraints.

We may illustrate the role of short positions for the instability of ML further by
investigating the case of portfolio weights wi that have to be larger than a threshold γ ≤ 0.
For γ→ −∞, there are no restrictions on short positions, whereas γ = 0 corresponds to a
complete ban on them. For N, T → ∞ with fixed α = T/N, the problem may be solved
within the framework of statistical mechanics. The minimax problem for ML is equivalent
to the following problem in linear programming: minimize the threshold variable κ under
the constraints (23), wi ≥ γ, and

−∑
i

wirt
i ≤ κ ∀t = 1, . . . , T. (27)

Similarly to (14), the central quantity of interest is

Ω(κ, γ, α) =

∫ ∞
γ ∏N

i=1 dwi δ(∑i wi − N) ∏αN
t=1 Θ

(
∑i wirt

i + κ
)∫ ∞

γ ∏N
i=1 dwi δ(∑i wi − N)

, (28)

giving the fractional volume of points on the simplex defined by (23) that fulfill all con-
straints (27). For given α and γ, we decrease κ down to the point κc, where the typical
value of this fractional volume vanishes. The ML is then given by κc(α, γ).

Some details of the corresponding calculations are given in the Appendix A. In
Figure 3, we show some results. As discussed above, the divergence of ML for α < 2
is indeed formally eliminated for all γ > −∞, and the functions ML(α; γ) smoothly
interpolate between the cases γ = 0 and γ → −∞. However, the situation is now even
more dangerous, since the unreliability of ML as a risk measure for small α remains without
being deducible from its divergence.

Figure 3. Left: The Maximal Loss ML = κc as a function of α. The analytical results (solid line) are compared to simulation
results (circles) with N = 200 averaged over 100 samples. The symbol size corresponds to the statistical error. Right: Same
as left with largely extended axis of ML.
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The recognition of the instability of ML as a dominance problem has proved very
fruitful and led to a series of generalizations. First, it was realized [1] that the instability of
the expected shortfall, of which ML is an extreme special case, has a very similar geometric
origin. (The current regulatory ES is the expected loss above a 97.5% quantile, whereas ML
corresponds to 100%.) Both ES and ML are so-called coherent risk measures [17], and it was
proved [35] that the root of this instability lies in the coherence axioms themselves, so every
coherent risk measure suffers from a similar instability. Furthermore, it was proved [35]
that the existence of a dominant/dominated pair of assets in the portfolio was a necessary
and sufficient condition for the instability of ML, whereas it was only sufficient for other
coherent risk measures. It follows that in terms of the variable α used in this paper (which
is the reciprocal of the aspect ratio N/T used in some earlier works, such as [35–37]), the
critical point of ML is a lower bound for the critical points of other coherent measures.
Indeed, the critical line of ES was found to lie above the ML critical value of αc = 2 [36].
Value at Risk is not a coherent measure and can violate convexity, so it is not amenable to
a similar study of its critical point. However, parametric VaR (that is, the quantile where
the underlying distribution is given, only its expectation value and variance is determined
from empirical data) is convex, and it was shown to possess a critical line that runs above
that of ES [37]. The investigation of the semi-variance yielded similar results [37]. It seems,
then, that the geometrical analysis of ML provides important information for a variety of
risk measures, including some of the most widely used measures in the industry (VaR and
ES), and also other downside risk measures.

4. Related Problems

In this section, we list a few problems from different fields of mathematics and physics
that are linked to the random coloring of points in high-dimensional space and point out
their connection with the questions discussed above.

4.1. Binary Classifications with a Perceptron

Feed-forward networks of formal neurons perform binary classifications of input
data [38]. The simplest conceivable network of this type—the perceptron—consists of just
an input layer of N units ξi and a single output bit ζ = ±1 [39]. Each input ξi is directly
connected to the output by a real valued coupling wi. The output is computed as the sign
of the weighted inputs

ζ = sign

(
N

∑
i=1

wi ξi

)
. (29)

Consider now a family of random inputs {ξt
i}, t = 1, . . . , T and ask for the probability

Pp(T, N) that the perceptron is able to implement a randomly chosen binary classification
{ζt} of these inputs. Interpreting the vectors ξt := {ξt

i} as position vectors of T points in N
dimensions and the required classifications ζt as a black/white coloring, we hence need to
know the probability that this particular coloring is a dichotomy. Indeed, if a hyperplane
exists that separates black points from white ones, it has a normal vector w that gives a
suitable choice for the perceptron weights to get all classifications right. Therefore, we have

Pp(T, N) = Pd(T, N) =
1

2T−1

N−1

∑
i=0

(
T − 1

i

)
. (30)

In the thermodynamic limit N, T → ∞, this problem, together with a variety of modifica-
tions, can be analyzed using methods from the statistical mechanics of disordered systems
along the lines of Equations (14)–(16), see [11].

4.2. Zero-Sum Games with Random Pay-Off Matrices

In game theory, two or more players choose among different strategies at their disposal
and receive a pay-off (that may be negative) depending on the choices of all participating
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players. A particularly simple situation is given by a zero-sum game between two players,
where one player’s profit is the other player’s loss. If the first player may choose among
N strategies and the second among T, the setup is defined by an N × T pay-off matrix
rt

i , giving the reward for the first player if he plays strategy i and his opponent strategy
t. Barring rare situations in which it is advantageous for one or both players to always
choose one and the same strategy, it is known from the classical work of Morgenstern and
von Neumann [40] that the best the players can do is to choose at random with different
probabilities among their available strategies. The set of these probabilities pi and qt,
respectively, is called a mixed strategy.

For large numbers of available strategies, it is sensible to investigate typical properties
of such mixed strategies for random pay-off matrices. This can be done in a rather similar
way to the calculation of ML presented in the Appendix A of the present paper [3]. One
interesting result is that an extensive part of the probabilities pi and qt forming the optimal
respective mixed strategies have to be identically zero: for both players, there are strategies
they should never touch.

4.3. Non-Negative Solutions to Large Systems of Linear Equations

Consider a random N × T matrix rt
i and a random vector b ∈ RN . When will the

system of linear equations

∑
t

rt
i x

t = bi, i = 1, . . . , N (31)

typically have a solution with all xt being non-negative? This question is related to the
optimization of financial portfolios under a ban of short-selling as discussed above, and
also occurs when investigating the stability of chemical or ecological problems [6,41]. Here,
the xt denotes concentrations of chemical or biological species, and hence has to be non-
negative. Similar to optimal mixed strategies considered in the previous subsection, the
solution typically has a number of entries xt that are strictly zero (species that died out),
the remaining ones being positive (surviving species). Again for T = αN and N → ∞, a
sharp transition at a critical value αc separates situations with typically no non-negative
solution from those in which typically such a solution can be found [4].

To make contact with the cases discussed before, it is useful to map the problem to a
dual one by again using Farkas’ lemma. Let us denote by

r̄ = ∑
t

ctrt, ct ≥ 0, t = 1, . . . , T (32)

the vectors in the non-negative cone of the column vectors rt of matrix rt
i . It is clear that (31)

has a non-negative solution x if b belongs to this cone, and that no such solution exists if b
lies outside the cone. In the latter case, however, there must be a hyperplane separating b
from the cone. Denoting the normal of this hyperplane by w, we hence have the following
duality: either the system (31) has a non-negative solution x, or there exists a vector w with

w · rt ≥ 0 t = 1, . . . , T and w · b < 0. (33)

If the rt
i is drawn independently from a distribution with finite first and second cumulant

R and σ2
r , respectively, and the components bi are independent random numbers with

average B and variance σ2
b /N, the dual problem (33) may be analyzed along the lines

of (14)–(16). The result for the typical entropy of solution vectors w reads [4]

Styp(γ, α) = extr
q,κ

[
1
2

ln(1− q) +
q

2(1− q)
− κ2γ

2(1− q)
+ α

∫
Dt ln H

(
κ −√qt√

1− q

)]
, (34)

where the parameter
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γ :=
(

B σr

R σb

)2
(35)

characterizes the distributions of rt
i and bi. The main difference to (16) is the additional

extremum over κ regularized by the penalty term proportional to κ2. Considering the limit
q→ 1 in (34), it is possible to determine the critical value αc(γ) bounding the region where
typically no solution w may be found. For nonrandom b, that is, σb → 0 implying γ→ ∞,
we find back the Cover result αc = 2.

The problem is closely related to a phase transition found recently in MacArthur’s
resource competition model [4,6,7], in which a community of purely competing species
builds up a collective cooperative phase above a critical threshold of the biodiversity.

5. Discussion

In this paper, we have reviewed various problems from different disciplines, including
high-dimensional random geometry, finance, binary classification with a perceptron, game
theory, and random linear algebra, which all have at their root the problem of dichotomies,
that is, the linear separability of points carrying a binary label and scattered randomly
over a high-dimensional space. No doubt there are several further problems belonging
to this class; those that spring to mind are theoretical ecology alluded to at the end of
the previous Section, or linear programming with random parameters [8]. Some of these
conceptual links are obvious, and have been known for decades (for example, the link
between dichotomies and the perceptron), and others are far less clear at first sight, such
as the relationship with the two finance problems discussed in Section 3. We regard as
one of the merits of this paper the establishment of this network of conceptual connections
between seemingly faraway areas of study. Apart from the occasional use of the heavy
machinery of the replica theory, in most of the paper we offered transparent geometric
arguments, where our only tool was basically the Farkas’ lemma.

The phase transitions we encountered in all of the problems discussed here are similar
in spirit to the geometric transitions discovered by Donoho and Tanner [33] and interpreted
at a very high level of abstraction by [42]. One of the central features of these transitions is
the universality of the critical point. This universality is different from the one observed
in the vicinity of continuous phase transitions in physics, where the value of the critical
point can vary widely, even between transitions belonging to the same universality class.
The universality in physical phase transitions is a property of the critical indices and other
critical parameters. Critical indices also appear in our abstract geometric problems, and
they are universal, but we omitted their discussion which might have led far from the
main theme.

At the bottom of our geometric problems, there is the optimization of a convex objec-
tive function (which is, by the way, the key to the replica symmetric solutions we found).
The recent evolution of neural networks, machine learning, and artificial intelligence is
mainly concerned with a radical lack of convexity, which points to the direction in which
we may try to extend our studies. Another simplifying feature we exploited was the inde-
pendence of the random variables. The moment that correlations appear, these problems
become hugely more complicated. We left this direction for future exploration. However, it
is evident that progress in any of these problems will induce progress in the other fields,
and we feel that revealing their fundamental unity may help the transfer of methods and
ideas between these fields. This may be the most important achievement of this analysis.

Author Contributions: Conceptualization, I.K. and A.E.; formal analysis, A.P., I.K. and A.E.; software,
A.P.; writing—original draft, A.P., I.K. and A.E. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.



Entropy 2021, 23, 805 13 of 17

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: A.P. and A.E. are grateful to Stefan Landmann for many interesting discussions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Replica Calculation of Maximal Loss

In this appendix, we provide some details for the determination of the maximal loss
of a random portfolio using the replica trick. The calculation is a generalization of the
one presented in [3] for random zero-sum games. A presentation at full length can be
found in [43]. As we pointed out in the main text, maximal loss is a special limit of the
Expected Shortfall risk measure, corresponding to the so-called confidence level going to
100%. In [44] a detailed study of the behavior of ES was carried out, including the limiting
case of maximal loss. That treatment is completely different from the one in here, so the
present calculation can be regarded as complementary to that in [44].

The central quantity of interest is the fractional volume

Ω(κ, γ, α) =

∫ ∞
γ ∏N

i=1 dwi δ(∑i wi − N) ∏αN
t=1 Θ

(
∑i wirt

i + κ
)∫ ∞

γ ∏N
i=1 dwi δ(∑i wi − N)

(A1)

defined in (28). Although not explicitly indicated, Ω(κ, γ, α) depends on all the random
parameters rt

i and is therefore by itself a random quantity. The calculation of its complete
probability density P(Ω) is hopeless but for large N this distribution gets concentrated
around the typical value Ωtyp(κ, γ, α). Because Ω involves a product of many independent
random factors this typical value is given by

Ωtyp(κ, γ, α) = e〈〈ln Ω(κ,γ,α)〉〉 (A2)

rather than by 〈〈Ω(κ, γ, α)〉〉. Here 〈〈. . . 〉〉 denotes the average over the rt
i . A direct

calculation of 〈〈ln Ω〉〉 is hardly possible. It may be circumvented by exploiting the identity

〈〈ln(Ω(κ, γ, α))〉〉 = lim
n→0

1
n
[〈〈Ωn(κ, γ, α)〉〉 − 1] (A3)

For natural n the determination of 〈〈Ωn〉〉 is feasible. The main problem then is to continue
the result to real n in order to perform the limit n→ 0.

The explicit calculation starts with

〈〈Ω(κ, γ, α)n〉〉 =
〈〈∫ ∞

γ ∏N
i=1 ∏n

a=1 dwa
i ∏n

a=1 δ(∑i wa
i − N) ∏αN

t=1 ∏n
a=1 Θ(∑i wa

i rt
i + κ)∫ ∞

γ ∏N
i=1 ∏n

a=1 dwa
i ∏n

a=1 δ(∑i wa
i − N)

〉〉
. (A4)

Using

∫ ∞

γ

N

∏
i=1

dwi δ(∑
i

wi − N) ∼ exp{N[1 + ln(1− γ)]} (A5)

for large N and representing the δ-functions and Θ-functions by integrals over auxiliary
variables Ea, λa

t , and ya
t we arrive at
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〈〈Ω(κ, γ, α)n〉〉 = exp{−nN[1 + ln(1− γ)]}

×
∫ ∞

γ
∏
i,a

dwa
i

∫
∏

a

dEa

2π
exp

[
iN ∑

a
Ea

(
1
N ∑

i
wa

i − 1

)]

×
∫ ∞

−κ
∏
t,a

dλa
t

∫
∏
t,a

dya
t

2π
exp

(
i ∑

t,a
ya

t λa
t

)〈〈
exp(−i ∑

i,t,a
ya

t wa
i rt

i )

〉〉
.

(A6)

The average over the rt
i may now be performed for independent Gaussian rt

i with average
zero and variance σ2 = 1/N. The result is valid also for more general distributions. First,
multiplying the variance by a constant just rescales the maximal loss but does not influence
the optimal w. Second, for N → ∞ only the first two cumulants of the distribution
matter due to the central limit theorem. Crucial is, however, the assumption of the rt

i
being independent.

Performing the average we find〈〈
exp

(
−i ∑

i,t,a
ya

t wa
i rt

i

)〉〉
=∏

i,t

[∫ drt
i√

2πσ2
exp

(
−
(rt

i )
2

2σ2 − irt
i ∑

a
ya

t wa
i

)]

= exp

(
− 1

2N ∑
i,t

∑
a,b

wa
i wb

i ya
t yb

t

)
.

(A7)

To disentangle in (A6) the w-integrals from those over λ and y we introduce the
order parameters

qab =
1
N ∑

i
wa

i wb
i , a ≥ b (A8)

together with the conjugate ones q̂ab. Using standard techniques [11] we end up with

〈〈Ω(κ, γ, α)n〉〉 =
∫

∏
a≥b

dqabdq̂ab
2π/N

∫
∏

a

dEa

2π

× exp

{
−iN ∑

a≥b
qab q̂ab − iN ∑

a
Ea − nN[1 + ln(1− γ)] + NGs + αNGE

}
,

(A9)

where

GS = ln

[∫ ∞

γ
∏

a
dwa exp

(
i ∑

a≥b
q̂abwawb + i ∑

a
Eawa

)]
(A10)

and

GE = ln

[∫ ∞

−κ
∏

a
dλa

∫
∏

a

dya

2π
exp

(
−1

2 ∑
a,b

qabyayb + i ∑
a

yaλa

)]
. (A11)

For N → ∞ the integrals over the order parameters in (A9) may be calculated using
the saddle-point method. The essence of the so-called replica-symmetric ansatz is the
assumption that the values of the order parameters at the saddle-point are invariant under
permutation of the replica indices a and b. In [43] arguments are given why the replica-
symmetric saddle-point should yield correct results in the present context. We therefore
assume for the saddle-point values of the order parameters

qaa = q1 iq̂aa = −
1
2

q̂1 iEa = E ∀a

qab = q0 iq̂ab = q̂0 ∀a > b.
(A12)
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which implies various simplifications in (A9)–(A11). Employing standard manipula-
tions [11] we arrive at

〈〈Ω(κ, γ, α)n〉〉 ∼ exp
{

N extr
q0,q̂0,q1,q̂1,E

[
−n(n− 1)

2
q0q̂0 +

n
2

q1q̂1 − nE− n(1 + ln(1− γ)) + GS + αGE

]}
. (A13)

Using the shorthand notations (17) the functions GS and GE are now given by

GS = ln
∫

Dl

[
exp

(
(
√

q̂0l + E)2

2(q̂0 + q̂1)

)√
2π

q̂0 + q̂1
H

(
−
√

q̂0l + E− γ(q̂0 + q̂1)√
q̂0 + q̂1

)]n

(A14)

and

GE = ln
∫

Dm H
(√

q0m− κ
√

q1 − q0

)n
. (A15)

We may now treat n as a real number and perform the limit n→ 0. In this way we find for
the averaged entropy

S(κ, γ, α) := lim
N→∞

1
N
〈〈ln[Ω(κ, γ, α)]〉〉 = lim

N→∞

1
N

lim
n→0

1
n
[〈〈Ω(κ, γ, α)n〉〉 − 1] (A16)

the expression

S(κ, γ, α) = extr
q0,q̂0,q1,q̂1,E

[
q0q̂0

2
+

q1q̂1

2
− E− 1− ln(1− γ) +

1
2

ln(2π)− 1
2

ln(q̂0 + q̂1)

+
q̂0 + E2

2(q̂0 + q̂1)
+
∫

Dl ln H

(
−
√

q̂0l + E− γ(q̂0 + q̂1)√
q̂0 + q̂1

)

+α
∫

Dm ln H
(√

q0m− κ
√

q1 − q0

)]
.

(A17)

The remaining extremization has to be done numerically. Before embarking on this task it
is useful to remember that Ω and S are only instrumental in determining the maximal loss
which in turn is given by the value κc of κ for which Ω tends to zero. At the same time the
typical overlap q0 between two different vectors in Ω has to tend to the self-overlap q1. To
investigate this limit we replace the order parameter q1 by

v := q1 − q0 (A18)

and study the saddle-point equations for v→ 0. In this limit it turns out that the remaining
order parameters may either also tend to zero or diverge. It is therefore convenient to make
the replacements

q̂0 →
q̂0

v2 , q̂1 → ŵ :=
q̂1 + q̂0

v
, E→ E

v
. (A19)
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Rescaled in this way the saddle-point values of the order parameters remain O(1) for
v→ 0. After some tedious calculations the saddle-point equations acquire the form

0 = ŵ− αH
(

κc√
q0

)
0 = −q̂0 + ŵ(q0 + κ2

c )− α
√

q0κc G
(

κc√
q0

)
0 = E(1− γ)− ŵ(q0 − γ) + q̂0

0 = ŵ− H

(
−E− γŵ√

q̂0

)

0 = ŵ(E− 1) +
√

q̂0 G

(
E− γŵ√

q̂0

)
+ γŵ(1− ŵ)

(A20)

where

G(x) :=
1√
2π

e−
x2
2 . (A21)

From the numerical solution of the system (A20) we determine κc(α, γ) as shown in
Figure 3.
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