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Abstract: In professional soccer, the choices made in forming a team lineup are crucial for achieving
good results. Players are characterized by different skills and their relevance depends on the position
that they occupy on the pitch. Experts can recognize similarities between players and their styles, but
the procedures adopted are often subjective and prone to misclassification. The automatic recognition
of players’ styles based on their diversity of skills can help coaches and technical directors to prepare
a team for a competition, to substitute injured players during a season, or to hire players to fill
gaps created by teammates that leave. The paper adopts dimensionality reduction, clustering and
computer visualization tools to compare soccer players based on a set of attributes. The players
are characterized by numerical vectors embedding their particular skills and these objects are then
compared by means of suitable distances. The intermediate data is processed to generate meaningful
representations of the original dataset according to the (dis)similarities between the objects. The
results show that the adoption of dimensionality reduction, clustering and visualization tools for
processing complex datasets is a key modeling option with current computational resources.

Keywords: dimensionality reduction; clustering; data visualization; soccer; complex systems

1. Introduction

Soccer is a complex system including multiple components that evolve at different
scales both in time and in space. Presently, soccer has a huge economical and social
relevance [1,2], but the study using advanced numerical and computational tools is still
limited. We note that distinct levels of competition have been tackled, namely the technical
progress of a player during his/her career [3–5], the time–space trajectories of the players in
a match [6–10], or the performance of a number of teams along a league and season [11–15].

The prediction of the outcome of soccer matches is another important field, due to
its interest both for the public, clubs, advertising companies, media and odds setters,
besides researchers [16]. A variety of statistics tools have been adopted, namely Poisson
models [17], Bayesian methods [18], rating systems [19] and machine learning schemes [20],
among others [21,22].

The prediction of a match, league, or competition outcome is closely related to the
concept of uncertainty. Uncertainty arouses fans’ emotion, is essential in the betting
business, and is the factor that moves the sports industry. The uncertainty about the
result of a match, a league, or any other competition, is measured by the ‘competitive
balance’ [23,24]. In a league, or multi-team competition, the final standings of the teams is
the main point of interest. If the competitiveness is high, then we have a high uncertainty
in the match outcome, and vice versa, in what concerns the teams ranking in a league
or competition [25]. Classical measures to quantify competitiveness either adopt simple
ratios of standard features [26,27], or are developed based on graph theory [25].
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Recent advances in the analysis of soccer dynamics have been accomplished with the
developments registered in the area of sports analytics [28,29]. Sports analytics consists
of the mathematical and statistical analysis of data related to sports, with the objective
of providing a competitive advantage to a team or an individual. Often, we distinguish
between on-field and off-field analytics [30]. The first deals with the improvement of the
on-field behavior of players and teams, and, for example may address player fitness and
game tactics. The second deals with business and focuses on helping sport organizations
to increase ticket and merchandise sales, improve fans’ engagement and reach good man-
agement decisions, just to mention a few. Sports analytics developed rapidly in the last
few years, supported by the technological advances in data measurement, storage and
computational processing. Object-tracking tools allowed the automatic collection of infor-
mation about players over time. The spatiotemporal datasets were adopted in a number
of research works, including the retrieval of play sequences [31] and the classification of
defensive strategies [32] in basketball, and shot prediction [33] in tennis. Spatiotemporal
data were used in soccer to identify play styles and team formations [34], as well as to
plan coordinated playing tactics [35].

The strategies to form competitive sports teams while having limited resources has
attracted the attention of professionals, scientists and society. Scouting is fundamental in
many sports, namely in professional soccer, to identify talented players [36]. Recognizing
player styles and similarities between them are also crucial in forming a team lineup.
To such purposes, scouts, technical directors and coaches often depend on heuristics
(e.g., wage, specific abilities, previous experience and intuition) to choose players for their
teams [37] independently of the time horizon of interest, that is, prior to, or during, a season
or match. However, the standard adopted procedures are subjective and mistakes can
lead to sport and economic failure. The rapid increase in the volume and quality of soccer
digital data allowed for the application of computer tools to characterize and rank athletes
under the light of their perceived abilities [38]. Nonetheless, the automatic characterization
of players based on such data is challenging in modern soccer [39], since players’ positions
are not rigidly defined. Indeed, many players can occupy various roles on the field and
each position requires a particular set of skills and physical attributes. Tools for searching
relevant information in large soccer datasets motivated the interest of researchers in the
field of computer science. Machine learning methods have been successfully applied in
the prediction of match outcomes [20,40] and athletes’ injuries [41,42], analysis of team
performance [43,44] and talent discovering [45,46], just to cite a few. The characterization
and selection of players based on data is still a challenge.

The multidimensional nature of the data required to analyze soccer player styles and
to compare elements between each other made the dimensionality reduction and clustering
algorithms key tools to deal with soccer datasets. Dimensionality reduction-based schemes
try to preserve in low dimensional representations the information embedded in the origi-
nal datasets. They include linear methods, such as classic multidimensional scaling [47],
principal component [48], canonical correlation [49], linear discriminant [50] and factor
analysis [51], as well as nonlinear approaches, such as non-classic MDS, or Sammon’s
projection [52], isomap [53], Laplacian eigenmap [54], diffusion map [55], t-distributed
stochastic neighbor embedding [56] and uniform manifold approximation and projection
(UMAP) [57]. These techniques are closely connected to the field of information visualiza-
tion, which corresponds to the computational generation of visual portraits of a dataset. Its
main goal is to expose features embedded in the data, in order to understand the system
that generated such data [58,59].

We find nowadays a vast literature on soccer data, but research based on dimensional-
ity reduction, clustering and computer visualization of soccer players data is scarce. We
can cite some works that adopt these techniques, although not necessarily all three together.
Abade et al. [60] classified young players following their physical and physiological profiles
gathered from training sessions in the point of view of age and playing position. The data
from the time motion and the body acceleration/deceleration features were processed
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using repeated-measures factorial ANOVA and two-step cluster analysis to classify players.
Fortuna et al. [61] analyzed the notoriety and international popularity of players in the
viewpoint of Google queries over time. The data streams were processed through K-means
clustering and three semi-metrics using the functional principal component decomposition
and their first and second derivatives. Kirschstein and Liebscher [62] studied the athletes’
market value versus their performance skills by applying principal component analysis.
Gavião et al. [63] used ranking, classification, dynamic evaluation and regularity analysis
within the framework of composition of probabilistic preferences to determine the best
investment opportunities when choosing among players.

This paper adopts dimensionality reduction, clustering and computer visualization
tools to compare soccer players based on a set of attributes. The players are characterized
by numerical data that rate their specific skills. The dataset used is retrieved from the
soccer video game FIFA by Electronic Arts (EA) (https://www.ea.com/, accessed on
12 February 2021), which comprises realistic data about about 18,000 players worldwide.
The players are viewed as objects that are compared by means of metrics that generate
proper inputs to a UMAP algorithm. The UMAP produces meaningful representations
of the original dataset according to the (dis)similarities between the objects. The results
show that the adoption of dimensionality reduction and visualization tools for processing
complex data is a key modeling option with current computational resources.

The paper structure is as follows. Sections 2 and 3 introduce the UMAP algorithm,
used for processing and visualizing the dataset, and the FIFA dataset, respectively. Section 4
analyses the data in a global perspective and interprets the results in the light of the
geometric patterns generated. Section 5 compares the players based on their skills according
to their position on the pitch. Section 6 presents the conclusions.

2. The Uniform Manifold Approximation and Projection

The UMAP is novel technique [57] for dimensionality reduction, clustering and visu-
alization of high-dimensional datasets, which seeks to accurately represent both the local
and global structures that characterize the information [64,65].

Let us consider a set of N objects, vi, i = 1, . . . , N, in a r-dimensional space. Those are
represented in a s-dimensional embedding space, r ≤ s, by ti, while preserving as best as
possible the inter-object distances.

The UMAP computational tool requires a distance, d(vi, vj), between pairs of objects
vi and vj, i, j = 1, . . . , N, and the number of neighbors to consider, k. The algorithm has
two main stages. In the first, it starts by computing the k-nearest neighbors of vi, Ni, with
respect to the distance d(vi, vj). Then, the UMAP calculates the parameters ρi and σi for
each data point vi. The parameter ρi stands for a nonzero distance between vi and its
nearest neighbor and is determined as:

ρi = min
j∈Ni
{d(vi, vj)|d(vi, vj) > 0}. (1)

The parameter ρi plays a key role for assuring the local connectivity of the manifold.
This means that ρi yields a locally adaptive exponential kernel for each point.

The constant σi must be chosen so that the following condition is satisfied:

log2 k = ∑
j∈Ni

exp
[−max(0, d(vi, vj)− ρi)

σi

]
(2)

and it is determined using a binary search.
The algorithm determines a joint probability distribution pij that measures the similar-

ity between vi and vj, in such a way that similar (dissimilar) objects are assigned a higher
(lower) probability:

pij = pj|i + pi|j − pj|i pi|j, (3)

https://www.ea.com/
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pj|i =

 exp
[−max(0, d(vi, vj)− ρi)

σi

]
, j 6= i

0, j = i
, (4)

where pij = pji, pii = 0, ∑i,j pij = 1 and ∑j pj|i = 1, ∀i, j.
In the second stage, the UMAP algorithm calculates the similarities between each pair

of points in the embedding s-dimensional space:

qij = qj|i + qi|j − qj|iqi|j, (5)

qij =

{ [
1 + a||ti − tj||2b

]−1
, j 6= i

0, j = i
, (6)

where qij = qji, qii = 0, ∑i,j qij = 1 and ∑j qj|i = 1, ∀i, j. The parameters a and b are either
user-defined, or are determined by the algorithm given the required separation between
close points, δ, in the embedding space:[

1 + a||ti − tj||2b
]−1
≈
{

1, ti − tj ≤ δ

exp[−(ti − tj)− δ], ti − tj > δ
. (7)

The UMAP performs an optimization, while minimizing the cross-entropy CE between
the distribution of points in the original and the embedding spaces:

CE = ∑
i 6=j

[
pij ln

pij

qij
− (1− pij) ln

1− pij

1− qij

]
. (8)

The minimization procedure starts with a given initial set of points in the embedding
space. The UMAP uses the Graph Laplacian to assign initial low-dimensional coordinates
and, then, proceeds with the optimization using the gradient descent:

∂CE
∂ti

= ∑
j

[
2ab[d(ti, tj)]

2(b−1)

1 + a[d(ti, tj)]2b pij −
2b

[d(ti, tj)]2(1 + a[d(ti, tj)]2b)
(1− pij)

]
(ti − tj). (9)

3. Description of the Dataset

Comprehensive datasets of sports are either obtained by the end-user through ded-
icated hardware and software tools, or are bought from professional service providers.
Soccer-related statistics characterize specific aspects of the teams and players during a
match, such as the percentage of time with ball possession, the number of attempts to goal
and the number of finishes and turnovers. Moreover, we can also have, for a given season,
the accumulated points, the average number of goals scored and suffered per match, and
the average time to score, just to cite a few. These data are generated automatically by
means of sensors, such as video cameras and 3D tracking motions systems, processed using
specific software and organized in databases. Therefore, gathering such rich information
about teams and players is costly and, therefore, has been available only to entities with
high financial resources.

Fortunately, public sports-related datasets, ranging from individual players’ perfor-
mance attributes and game statistics, to event logs of matches, have also became available
to the scientific community and professionals. Concerning data about soccer players’ skills,
besides those obtained using automatic procedures, knowledge comes also from coaches,
former players, journalists and other sports agents. The precise characterization of players
will allow a better understanding of teams, matches and leagues, as well as to improve the
economic aspects of the modern soccer industry.

In this paper we use data from the FIFA 2021 video game. The FIFA was launched in
1995 by the company EA https://www.ea.com/ (accessed on 12 February 2021)and had

https://www.ea.com/
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new releases every year since. The EA provides an extensive database of soccer players. The
players are assigned to five main groups based on their position on the pitch, as summarized
in Table 1, and are characterized by a comprehensive set of attributes, both qualitative
and quantitative. These attributes are gathered, curated and updated on a regular basis to
reflect the real-life performances of the players. This task is carried out by professionals
whose job is to bring the game as close to reality as possible, hence preserving coherence
and representativeness across the dataset. Table 2 summarizes the most important subset of
attributes adopted to characterize the two most popular players of the last decade: L. Messi
and Cristiano Ronaldo (the names of all players are those adopted by the EA). For example,
the sofifa_id is the unique code that identifies the player in the EA database. The overall,
rated on a 0 to 100 scale, measures the quality of the player using a single numerical value
calculated as a weighted sum of some attributes, namely those with number k = 1, . . . , 34.
The potential, also rated on a 0 to 100 scale, measures the margin of progression that is
expected for the player, based on his actual skills, age and some additional factors. The
player_positions corresponds to, at least, one of those positions shown in Table 1, being
that each player can have up to three positions assigned. The international_reputation,
rated in the interval 1 to 5, takes into account the notoriety and the past carrier of the player.
The attributes k = 1, . . . , 34 stand for the player skills and are rated on a 0 to 100 scale [66].
The data are available on the website www.sofifa.com (accessed on 12 February 2021)
and can be viewed for one player at a time. Therefore, in this paper we use the data
scraped from www.sofifa.com (accessed on 12 February 2021) , available at the website
https://www.kaggle.com/stefanoleone992/fifa-21-complete-player-dataset (accessed on
12 February 2021). The information is provided in csv format, one file per year, covering
the period from 2015 up to 2021.

The FIFA 2021 raw dataset contains 18,944 players. However, after data cleaning for
eliminating entries with missing or inaccurate values, we obtain a total of 18,708 players,
distributed within the groups {Goalkeepers, Defenders, Centre Midfielders, Wingers,
Strikers}, comprising {2054, 6725, 3556, 2854, 3519} athletes, as shown in Table 1.

Table 1. List of typical positions of the players on the pitch and the number of players assigned to
these positions in FIFA 2021 (April).

Group Number of Players Position Acronym

Goalkeepers 2054 Goalkeepers GK

Defenders 6725

Centre Back CB
Right Back RB
Left Back LB

Right Wing Back RWB
Left Wing Back LWB

Centre Midfielders 3556
Centre Defensive Midfielder CDM

Centre Midfielder CM
Centre Attacking Midfielder CAM

Wingers 2854

Right Midfielder RM
Left Midfielder LM

Right Wing RW
Left Wing LW

Strikers 3519

Right Forward RF
Centre Forward CF

Left Forward LF
Striker ST

www.sofifa.com
www.sofifa.com
https://www.kaggle.com/stefanoleone992/fifa-21-complete-player-dataset
https://www.kaggle.com/stefanoleone992/fifa-21-complete-player-dataset


Entropy 2021, 23, 793 6 of 19

Table 2. List of attributes of L. Messi and Cristiano Ronaldo in FIFA 2021 (April).

Atributes

Number Name Value Number Name Value

k L. Messi C. Ronaldo k L. Messi C. Ronaldo

1 attacking_crossing 85 84 26 mentality_composure 96 95
2 attacking_finishing 95 95 27 defending_marking 32 28
3 attacking_heading_accuracy 70 90 28 defending_standing_tackle 35 32
4 attacking_short_passing 91 82 29 defending_sliding_tackle 24 24
5 attacking_volleys 88 86 30 goalkeeping_diving 6 7
6 skill_dribbling 96 88 31 goalkeeping_handling 11 11
7 skill_curve 93 81 32 goalkeeping_kicking 15 15
8 skill_fk_accuracy 94 76 33 goalkeeping_positioning 14 14
9 skill_long_passing 91 77 34 goalkeeping_reflexes 8 11

10 skill_ball_control 96 92 35 sofifa_id 158023 20801
11 movement_acceleration 91 87 36 short_name L. Messi Cristiano Ronaldo
12 movement_sprint_speed 80 91 37 age 33 35
13 movement_agility 91 87 38 overall 93 92
14 movement_reactions 94 95 39 potential 93 92
15 movement_balance 95 71 40 value_eur 103.5 Me 63Me
16 power_shot_power 86 94 41 wage_eur 560 ke 220ke
17 powerjumping 68 95 42 player_positions RW, ST, CF ST, LW
18 power_stamina 72 84 43 release_clause_eur 212.2 Me 104Me
19 power_strength 69 78 44 height_cm 170 187
20 power_long_shots 94 93 45 weight_kg 72 83
21 mentality_aggression 44 63 46 preferred_foot left right
22 mentality_interceptions 40 29 47 international_reputation 5 (maximum 5) 5 (maximum 5)
23 mentality_positioning 93 95 48 work_rate medium/low high/low
24 mentality_vision 95 82 49 weak_foot 4 (maximum 5) 4 (maximum 5)
25 mentality_penalties 75 84 50 team_position CAM LS
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Figure 1 depicts the histograms that characterize the distributions of the players’
attributes age and the logarithm of value_eur, wage_eur and release_clause_eur. The
log-transform of the numerical values for the attributes that have large variability is adopted
to improve their visualization. We verify that age and ln(wage_eur) are moderately and
highly right-skewed, respectively, while ln(value_eur) and ln(release_clause_eur) are
almost similar.
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Figure 1. Histograms characterizing the FIFA 2021 dataset according to the attributes: (a) age;
(b) ln(value_eur); (c) ln(wage_eur); (d) ln(release_clause_eur).

Figure 2 shows the attributes age, ln(value_eur), ln(wage_eur) and ln(release_
clause_eur), using box plots, for players in the groups {Goalkeepers, Defenders, Cen-
tre Midfielders, Wingers, Strikers}. In each box, the central trace stands for the median,
while the bottom and top edges give the 25 and 75 percentiles, respectively. Moreover,
the whiskers span between the extreme data points, without the outliers, which are rep-
resented by the symbol ‘+’. We can see that, on average, the Goalkeepers are older than
field players, which translates to having longer carriers, and have lower value, salary
and release clause contracts. Moreover, in all positions, we have many outliers, espe-
cially in ln(value_eur) and ln(release_clause_eur), meaning that we have a number of
exceptions to the mainstream, particularly for the higher values.

In a different dimension, Figure 3 portrays the Goalkeeper’s and Striker’s attributes
ln(value_eur) and potential versus age. We verify that for the attribute ln(value_eur),
the Goalkeepers reach the maximum at the age of 27 and start losing value close to age
34 years old, respectively. For the Strikers, ln(value_eur) has its maximum at the age of
24 and then decreases smoothly. Regarding the attribute potential, for the Goalkeepers it
diminishes slowly and monotonically since youth. For the Strikers, potential decreases
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until the age of 24, has a constant value up to the age of 31 and, then, surprisingly, it
increases slightly almost until retirement.
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Figure 2. Box plots characterizing the attributes of {Goalkeepers, Defenders, Centre Midfielders,
Wingers, Strikers} in the FIFA 2021 dataset.
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Figure 4 shows the attributes k = 1, . . . , 34 for Goalkeepers and Strikers. It should
be mentioned that besides their ‘standard’ attributes, Goalkeepers and Strikers are also
assigned with field player- and goalkeeper-specific attributes, respectively. This seems
somewhat strange, but, in fact, soccer allows goalkeepers and field players to occupy any
position on the pitch as long as they comply with the rules that apply to those positions.
The analysis for other playing positions is not included here for the sake of parsimony.
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Figure 4. Attribute ratings of Goalkeepers and Strikers (FIFA 2021 dataset).

4. The UMAP for Global Comparison and Visualization of Soccer Players

For implementing the UMAP dimensionality reduction, clustering and visualization tool
we used the Matlab UMAP code, version 2.1.3, developed by Stephen Meehan et al. [67].
The function run_umap was called with the parameters n_neighbors and min_dist set to
the values 10 and 0.2, respectively, adjusted by trial and error in order to obtain good
visualization. These parameters correspond directly to k and δ introduced in Section 3. All
other parameters were set to their default values.

We present results for the distances {Arccosine, Canberra, Correlation, Lorentzian}=
{dAr, dCa, dCo, dLo} to compare the objects vi and vj, i, j = 1, . . . , N, that stand for players
and are characterized by the r = 34 attributes (k = 1, . . . , 34) listed in Table 2. The choice for
r = 34 is based on the available database information. We included all players’ technical
attributes (i.e., the maximum possible). The distances are given by [68]:



Entropy 2021, 23, 793 10 of 19

dAr(vi, vj) = arccos


r

∑
k=1

vik · vjk√
r

∑
k=1

v2
ik

√
r

∑
k=1

v2
jk

, (10)

dCa(vi, vj) =
r

∑
k=1

|vik − vjk|
|vik|+ |vjk|

, (11)

dCo(vi, vj) =

1−

r

∑
k=1

[vik − av(vi)][vjk − av(vj)]√
r

∑
k=1

[vik − av(vi)]
2

√
r

∑
k=1

[vjk − av(vj)]
2


1
2

, (12)

dLo(vi, vj) =
r

∑
k=1

ln
(

1 + |vik − vjk|
)

. (13)

Figure 5 depicts the 3D loci of the N = 18, 708 players in the FIFA 2021 dataset obtained
by the UMAP with the distances {dAr, dCa, dCo, dLo}. We verified that the Goalkeepers
form a cluster quite different from the others, while the {Defenders, Centre Midfielders,
Wingers, Strikers} show some superposition. This is expected, since the field players
have characteristics much different than those exhibited by the goalkeepers, but closer to
each other. Moreover, we find players that have skills allowing them to play in different
positions on the pitch. For example, L. Messi can play as RW, ST and CF. We verify also
that the dAr, dCa and dLo separate well the five groups, while dCo reveals more difficulties
to separate the Goalkeepers from the other groups. The dCa and dLo yield very similar loci.

Different distances can lead to valid visual representations, but not all of them are
able to capture the structures of interest hidden in the data. It should be mentioned that
the selection of an adequate distance often requires a number of numerical trials. In this
work, we tested other distances, but the option of including additional metrics would have
led to a huge number of figures. Therefore, we selected those that we found best, in order
to limit space.

We can obtain an alternative representation by changing the fourth dimension from
a categorical to a numerical variable. Figure 6 highlights different aspects of the 2021
dataset by means of colormaps applied to the locus obtained with dCa proportional to the
attributes ln(overall), ln(value_eur), ln(wage_eur) and ln(release_clause_eur). It can
be seen that for all attributes, the UMAP can place similar objects close to each other in
the embedding space. Moreover, the objects tend to distribute uniformly over a smooth
surface. Naturally, other attributes can be represented using a similar procedure.

It should be emphasized that we can compare subsets of players that are selected from
the original dataset by means of some criterion. Figure 7 illustrates this idea by considering
merely the players in the four groups {Defenders, Centre Midfielders, Wingers, Strikers}.
In this case, the Goalkeepers were not included in the processed dataset, since, as shown
in Figure 5, they are quite different from the others. We verify that now the four groups
emerge slightly more clear than before, even though we still have some superposition.
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Figure 5. The 3D loci of players in the FIFA 2021 dataset obtained by the UMAP with the distances:
(a) dAr; (b) dCa; (c) dCo; (d) dLo.
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Figure 6. The 3D loci obtained by the UMAP with the Canberra distance dCa for the FIFA 2021 dataset.
The colormap is proportional to the attributes: (a) ln(overall); (b) ln(value_eur); (c) ln(wage_eur);
(d) ln(release_clause_eur).
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Figure 7. The 3D loci of players in the groups {Defenders, Centre Midfielders, Wingers, Strikers} the
FIFA 2021 dataset obtained by the UMAP with the distances: (a) dAr; (b) dCa; (c) dCo; (d) dLo.

5. The UMAP for Local Comparison and Visualization of Soccer Players

In this section, we analyze the UMAP loci for each group separately. In other words,
we considered each group in the set {Goalkeepers, Defenders, Centre Midfielders, Wingers,
Strikers} and, therefore, we have five cases. Obviously, the study can also be performed for
other groups, for samples extracted from a single or various groups, and for distinct years.

Figure 8 depicts the results obtained for Goalkeepers and Strikers, where the colormap
is proportional to the attribute ln(value_eur). For the other groups, the charts are of the
same type. We verify that, for both cases, the players, represented by points, distribute
regularly in space, with the most valuable ones occupying the edges of the surface. Other
possible patterns (if they exist) are difficult to distinguish due to the large number of
objects and, thus, hide more subtle relationships. Therefore, even adopting 3D loci, to
perceive assertively the location of the objects poses problems for a large number of objects.
Magnifying the cloud of points mitigates the problem, but does not solve it satisfactorily.
One possibility is to consider subsets with just the objects of interest and generate new
(different) loci based on the the new datasets.

In the sequel, we analyze just the top 100 players in view of the criterion value_eur,
in each group {Goalkeepers, Defenders, Centre Midfielders, Wingers, Strikers}. Naturally,
other criteria can be adopted to extract the elements from the groups and we can mix
players from various groups, but the criteria adopted illustrate well the procedure.

Firstly, the players are compared using the Canberra distance and their locus is
generated through the UMAP dimensionality reduction and clustering algorithm. Secondly,
given one element in the locus, freely chosen by the user, the w players who are closer to
the one adopted as reference are identified according to the Euclidean distance in the 3D
embedding space, yielding a small cluster of w elements. Finally, the user can evaluate the
w most ‘interesting’ players in the perspective of additional criteria, such as value_eur,
wage_eur or release_clause_eur. Of course, if w = 1, then we have the player closer to
the reference one.
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Figure 8. The 3D loci obtained by the UMAP with the Canberra distance for the FIFA 2021 dataset:
(a) Goalkeepers; (b) Strikers. The colormap is proportional to the attribute ln(value_eur).

Figures 9–13 depict the UMAP loci generated. For the Goalkeepers, the most valuable
one, J. Oblak, was taken as the reference. Then, choosing w = 10, the closer elements, sorted
by increasing distance, were {B. Leno, N. Guzmán, D. Livaković, S. Romero, E. Martínez,
F. Muslera, K. Schmeichel, Alisson, A. Onana, J. Cillessen}. Therefore, B. Leno emerges
as the best choice for substituting J. Oblak, when merely the player’s skills criterion is
considered. However, if the user decides to choose additional criteria, such as value_eur
and wage_eur, then a compromise exists between skills and cost, and the best choices could
instead correspond to N. Guzmán or S. Romero, since they can be hired with a more limited
economic effort.

For the Defenders, Centre Midfielders, Wingers and Strikers, we chose V. van Dijk, K.
De Bruyne, Neymar Jr and L. Messi as references, and for w = 10, we obtain the sets {M.
Hummels, Piqué, Azpilicueta, L. Hernández, Thiago Silva, T. Alderweireld, J. Vertonghen,
L. Bonucci, H. Maguire, Marquinhos}, {Bruno Fernandes, P. Pogba, L. Modrić, T. Kroos,
D. Alli, Parejo, M. Kovačić, M. Sabitzer, Arthur, Thiago}, {S. Mané, R. Sterling, M. Salah,
Bernardo Silva, A. Di María, H. Ziyech, J. Sancho, C. Eriksen, R. Mahrez, Oyarzabal} and
{Cristiano Ronaldo, K. Mbappé, P. Dybala, K. Benzema, H. Son, K. Havertz, M. Rashford,
M. Reus, R. Lewandowski, E. Hazard}, respectively. By applying the same approach as
before for the Goalkeepers, the best options for substituting the references can be found. Let
us focus on the Strikers. Usually, those are the most valuable and the most popular, as they
are the most effective goal scorers, and goals are the essence of soccer. Let us assume that
the recent conflicts between L. Messi and F. C. Barcelona of Summer 2020 have intensified
and that the club is forced to replace the player. The question that will then be asked is
whom to hire. According to the UMAP loci generated, the first choice will be Cristiano
Ronaldo, if the criterion is exclusively based on the player’s skill. However, if there are no
economic restrictions, as seems to be the case with elite clubs, the K. Mbappé hypothesis
may be a more suitable choice. His value is higher and he earns a higher salary, but, on the
other hand, he is younger and has greater potential for progression than Cristiano Ronaldo.
Thus, it is up to the club to weigh the most convenient factors in deciding who should
replace L. Messi.
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Figure 9. The 3D locus generated by the UMAP with the Canberra distance for the N = 100 most valu-
able goalkeepers in the FIFA 2021 dataset. The reference is J. Oblak and w = 10. The size of the circular
marks and the colormap are proportional to the attributes wage_eur and value_eur, respectively.

Figure 10. The 3D locus generated by the UMAP with the Canberra distance for the N = 100
most valuable defenders in the FIFA 2021 dataset. The reference is V. van Dijkand and w = 10.
The size of the circular marks and the colormap are proportional to the attributes wage_eur and
value_eur, respectively.
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Figure 11. The 3D locus generated by the UMAP with the Canberra distance for the N = 100
most valuable midfielders in the FIFA 2021 dataset. The reference is K. De Bruyne and w = 10.
The size of the circular marks and the colormap are proportional to the attributes wage_eur and
value_eur, respectively.

Figure 12. The 3D locus generated by the UMAP with the Canberra distance for the N = 100
most valuable wingers in the FIFA 2021 dataset. The reference is Neymar Jr and w = 10. The
size of the circular marks and the colormap are proportional to the attributes wage_eur and
value_eur, respectively.

Figure 14 portraits the normalized distance between the most valuable player in each
group {Goalkeepers, Defenders, Centre Midfielders, Wingers, Strikers}, that is, having
for references {J. Oblak, V. van Dijk, K. De Bruyne, Neymar Jr, L. Messi}, and comparing
the UMAP coordinates with relation to their j = 1, . . . , 10 closer elements. We verify that
the distance increases with jumps, which translate in worse skills as we move from first
towards next choice players.
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Figure 13. The 3D locus generated by the UMAP with the Canberra distance for the N = 100 most
valuable strikers in the FIFA 2021 dataset. The reference is L. Messi and w = 10. The size of the circular
marks and the colormap are proportional to the attributes wage_eur and value_eur, respectively.
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Figure 14. The normalized distance between the most valuable player in each group {Goalkeepers,
Defenders, Centre Midfielders, Wingers, Strikers}, with reference {J. Oblak, V. van Dijk, K. De Bruyne,
Neymar Jr, L. Messi}, and with relation to their j = 1, . . . , 10 closer elements.

The UMAP was proven very effective for visualizing clusters of objects, outperforming
other dimensionality reduction, clustering and information visualization techniques both
in terms of their computational time, memory requirements and ability to unveil patterns
embedded in the data [57]. One must note that concrete information about the management
decisions of the soccer teams is not available. Therefore, to have a comparison of “real-
world” data is virtually impossible, not only for researchers, but also for governments
and for soccer associations. The experience gathered in other applications [69,70] allows
us to consider whether a given algorithm is “better” or “worse” based on its clustering
performance. Certainly, this is a subjective point of view, but the fact is that the assessment
of the results provided by such kinds of techniques is based on the user experience and
intuition. Another issue that needs to be highlighted is that the main goal of the paper is
not to straightforwardly provide a commercial/computational tool for sport managers.
Therefore, to avoid unclear legal, commercial, financial and ethical issues, the maximum
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extent for us was limited to refer the names of the players without commenting on their
qualities. In summary, the goal of the paper is to explore the potential associated with the
adoption of advanced clustering techniques for soccer players.

6. Conclusions

This paper adopted the UMAP dimensionality reduction, clustering and information
visualization technique to explore relationships between soccer players. The algorithm
constructs representations of the original dataset of players’ skills without imposing a
priori requirements. The loci generated in a low-dimensional space allow a straightforward
interpretation of the data. The results showed that the adoption of dimensionality-reduction
and visualization tools for processing complex data is a key modeling option with current
computational resources. The approach can be easily extended to deal with more features
and richer descriptions of the data involving a higher number of dimensions.
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