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Abstract: This paper suggests a new method to predict the Remaining Useful Life (RUL) of rolling
bearings based on Long Short Term Memory (LSTM), in order to obtain the degradation condition of
the rolling bearings and realize the predictive maintenance. The approach is divided into three parts:
the first part is the clustering to detect the damage state by the density-based spatial clustering of
applications with noise. The second one is the health indicator construction which could give a better
reflection of the bearing degradation tendency and is selected as the input for the prediction model.
In the third part of the RUL prediction, the LSTM approach is employed to improve the accuracy
of the prediction. The rationale of this work is to combine the two methods—the density-based
spatial clustering of applications with noise and LSTM—to identify the abnormal state in rolling
bearings, then estimate the RUL. The suggested method is confirmed by experimental data of bearing
life cycle, and the RUL prediction results of the model LSTM are compared with the nonlinear
au-regressive model with exogenous input model. In addition, the constructed health indicator is
compared with the spectral kurtosis feature. The results demonstrated that the suggested method
is more appropriate than the nonlinear au-regressive model with exogenous input model for the
prediction of bearing RUL.

Keywords: bearings; vibration signal; DBSCAN; health indicator; LSTM; RUL

1. Introduction

Rolling bearings, which is widely used in rotating machinery, are among the main
parts of mechanical equipment. As the equipment runs, their performance will deteriorate
and lead to failure. Consequently, early fault diagnosis and prediction of bearing life and
safety are of high importance for predictive maintenance and the industrial reliability of
mechanical equipment [1].

The vibration signals which are generated by rotating machines and collected can
reflect the different processing conditions of modern industrial equipment. Industrial
equipment is becoming more and more sophisticated and sensitive as technology evolves.
For this reason, availability, reliability, and reduction of downtime and repairs are im-
portant. In that matter, condition monitoring has been determined as an effective means
of increasing safety, health, and optimal equipment performance. Condition monitoring
means the damage assessment and maintenance of machines without disturbing their
operation and is performed based on information obtained from the condition of the equip-
ment [2]. The vibration signals are used to provide real-time monitoring of the different
states of bearings. The presence of intense vibrations in the rotating machinery usually im-
plies the occurrence of faults in bearings. The vibration method is the base to start the data
classification, and then detect the abnormal state of rolling bearings [3]. The density-based
spatial clustering of applications with noise (DBSCAN) is an efficient method recently used
to classify data [4]. The DBSCAN algorithm uses the signal density to separate the dense
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region from the noise region. Several analyses of bearing fault diagnostics and condition
monitoring have been done as well as studying the prognostics of the defect in rolling
bearings [5]. These predictions can reduce machine breakdowns, thereby minimizing the
costs and support maintenance scheduling thus prolonging the life of the equipment.

Generally, data-driven prognostic frameworks comprise four stages: data acquisition,
health indicator (HI) construction, degradation modeling and Remaining Useful Life
(RUL) prediction [6]. Spectral kurtosis is used as a health indicator for wind turbine
high-speed shaft bearings health prognosis analysis [7] as well as for the damage level
assessment in bearing diagnosis [8]. Concerning the data acquisition, the diversity and the
amount of sensor data collected in real-time must be enough to completely characterize
the degradation performance of each component. For rotating machinery components,
vibration signals are collected regularly, and time domain and frequency domain analyses
are used for HI extraction [9]. One of the main queries in the prognostic of bearings is how
to construct and evaluate health indicators from accessible features, which can represent the
degradation states. The health indicator can be extracted from the time domain, frequency
domain and scale domain [10].

For construction, the health indicator must reduce the number of features by using
the Kernel Principal Component Analysis (KPCA) method [11] which is one of the most
importantly used techniques. After the extraction of the health indicator, the mission
is to choose the best model to predict the remaining useful health of the model. With
the elaboration of sensor technologies, many data-driven methods along with statistical
models have been developed to define product failures [12]. Particularly, the remaining
useful life (RUL) of rotating machinery is described as the period between the present
monitoring time and the failure time when the degradation signal surpasses a failure
threshold level [13]. RUL prediction based on degradation signals has evolved as a crucial
technology that gives failure information for health management and condition-based
maintenance [14]. The data-driven RUL prediction methods that are widely used comprise
regression models, Bayesian reasoning [15], Gaussian mixture models [16], and other
statistical analysis methods, in addition to artificial intelligence methods such as fuzzy
decision tree [17], artificial neural network (ANN) [18], and hidden Markov model [19].
The deep learning method is a hopeful tool to reach real-time bearing fault diagnosis,
because it can provide a stable hierarchical feature representation from the raw bearing
vibration signal and then investigate the bearing status online according to the real-time
collected vibration signal. The importance of deep learning consists of its high potential to
bypass false features caused by ambient noise and fluctuations in working conditions [20].

The purpose of RUL prediction is to obtain the deterioration trend of bearings at
the present moment. In the part of RUL prediction, some samples are inserted into a
Long Short Term Memory (LSTM) network in clusters as training sets to achieve model
training and network parameter arrangement. The constructed model is evaluated with
test sets, and the RUL prediction rates of these sets are attained. ANNs with various
configurations has been utilized for short-term wind forecasting, where estimation beyond
the last observations collected in the training data are only devoted to a few time steps [21].
An ANN (consisting of the input layer, hidden layer and output layer) is named shallow if
it uses one hidden layer and deep if it utilizes more than one [22]. The recurrent neural
network (RNN), is an inner structure of deep neural networks, as it makes the repair
of complicated nonlinearities in the data feasible. It contains memory blocks with the
possibility for reminding the information at each time from the preceding samples [23].
The LSTM is one of the well-known kinds of RNN for processing time series that can hold
information for a long duration during the learning process [24]. Billings developed the
Nonlinear Auto-Regressive with Exogenous Inputs (NARX) model as a new description
of a large class of discrete, nonlinear systems [25]. Many systems have been examined by
utilizing the NARX model [26]. It is another kind of RNN in which prediction of wind
speed can be achieved by a procedure with additional meteorological time series data like
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air temperature and wind orientation [27]. Also, the NARX model can be used in other
industrial structures such as modeling the major horizontal axis of wind turbines [28].

This study tests the predictability of rolling bearings by utilizing two different deep
learning data-driven methods, the LSTM network model and the NARX that is also em-
ployed to compare and prove the effectiveness of the proposed method.

The achievability of the proposed process has been validated with experimental data
sets. The following is a compendium of the major achievements of this paper:

(1) Data classification to detect an abnormal state in rolling bearings.
(2) Building of a special HI based on KPCA dimension reduction. This can efficaciously

illustrate the degradation of rolling bearing operation.
(3) Presentation of a deep prognosis network—LSTM—which ameliorates the accuracy

of the HI and RUL estimations significantly.
(4) Proof of the potential of the proposed methodologies based on experimental rolling

bearing datasets. The results show that LSTM accomplished better execution than the
NARX prognosis approach.

This paper is organized as follows: Section 1 is an introduction presenting a general
description of the classification and reduction of dimensions to construct the health indica-
tors, and finally the use of the LSTM neural network model and RUL. Section 2 describes
the DBSCAN method used to classify and detect the degradation states. Section 3 presents
the LSTM method to predict the remaining useful life of the studied equipment. Section 4
discusses the methodology proposed to detect the degradation state and predict the RUL.
Section 5 presents the experimental verification of the suggested method. Then, Section 6
presents a comparison of the proposed methodology with NRAX. Lastly, Section 7 puts
forth the conclusions of the paper.

2. DBSCAN Method

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a well-
known density-based clustering algorithm, first suggested by Ester [29], that is explained
as a density-based clustering non-parametric algorithm in-favor-of a set of points in space.
It is based on linking points that are closely stuffed together in high-density zones, thereby
classifying as outliers the points that are isolated in low-density regions. It is considered one
of the representative clustering algorithms and remarkably widely cited in the scientific
literature. It implies the number of clusters based on the data rather than using it as
requirement parameter. It can also detect clusters of arbitrary shape. The ε- neighborhood
is essential for DBSCAN to estimate local densities, so the algorithm has two parameters: ε,
which is the radius of a neighborhood near a data point p, in addition to MinPts, that is the
minimal number of data points in a neighborhood needed to reveal a cluster.

Utilizing these two parameters, DBSCAN layers the data points in three categories:
Core Points are the foundations for clusters based on the density. The identical ε used

to calculate the neighborhood for every point so the core points are data points that suited
a minimal density requirement. A data point p is a core point if neighborhood (p, ε) [ε-
neighborhood of p] includes at least MinPts; | neighborhood (p, ε) | ≥MinPts.

Border Points are the points in clusters other than core points. A data point q is a
border point if neighborhood (q, ε) comprises less than MinPts data points, however q is
density-reachable of several core point p.

Outliers are points that are not referred to any cluster and maybe considered noisy
points. The data point o is considered as outlier if it is none of the two, core point or border
point. In other words, it is the “other” class.

The DBSCAN algorithm pseudocode can be expressed as the Algorithm 1:
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Algorithm 1. DBSCAN algorithm pseudocode.

1. Entries: DBSCAN (M, ε, MinPts)
2. Outputs: Class sets
3. Initialization arbitrarily choose a point p
4. As long as (there are still untreated points)
5. Find all density-reachable points of p using Eps and MinPts
6. If (p is a point of type center) a cluster is formed
7. If not
8. If (p is border type point and no point is reachable by density of p), the point p is considered

as a noise and DBSCAN goes to the next point in the database.
9. End

3. Long Short-Term Memory

Long short-term memory (LSTM) is a type of artificial recurrent neural network
(RNN) [30] used in the field of deep learning. LSTM networks are used for classifying, pro-
cessing, and making predictions based on time series data in the context of the occurrence
of unknown duration delay between important events in a time series.

LSTMs were developed to treat the vanishing gradient issues that can be encountered
when training traditional RNNs. They are superior to RNNs, hidden Markov models,
and other sequence learning methods in several applications [31]. The advantage consists
predominantly in the LSTMs’ ability to hold long-term memory, whereas due to the short-
term memory, the typical RNN will only be capable of utilizing the contextual information
from the last data which is not helpful at all [32]. They also have a multifactorial structure.
At every time step, the LSTM cell considers three different factors: the current input data,
the short-term memory (hidden state), and lastly the long-term memory (cell state). The
cell then uses gates to analyze the information to be kept at each time step before reaching
the long-term and short-term information to the next cell. These gates are called the Input
Gate, the Forget Gate, and the Output Gate [33]. These gates are defined as follows:

Input Gate. This chooses what new information will be kept in the long-term memory.
It only handles the information from the present input and the short-term memory from
the preceding time step, so it has to extract the non-useful information from these variables.

Forget Gate. It settles which information from the long-term memory should be
preserved. This is achieved by multiplying the incoming long-term memory by a forget
vector produced by the present input and incoming short-term memory.

Output Gate. This will use the present input, the preceding short-term memory, and
the recently computed long-term memory to obtain the new short-term memory, which
will be moved on to the cell in the following time step. The output of the present time step
can also be displayed from the hidden state.

A typical LSTM module, also known as a repeating module, has four neural network
layers linked to each other uniquely as shown in Figure 1. The module has three-gate
activation functions σ and two output activation functions φ as described in Figure 1. This
is usually similar to replacing the addition operation (+) by a Hadamard product (ò) in
the standard Elman-RNN equation. The concatenation operation is represented by the
symbol (ò) bullet. The network can indicate the amount of previous information to flow. It
is controlled through the first layer (σ), given by Equation (1) [34].

Given that Xt the input gate activator vector at time t, it the forget gate activator
vector at time t, ot the output gate activator vector at time t, ct the outcome of cell vector at
time t, ht the outcome of layer vector at time t, Wx, Wi, and Wo the input kernels for the
respective gates, Uf, Ui, and Uo, the recurrent kernels for the respective gates, bf, bi, bo, and
bc the biases, σ the logistic sigmoid function, ò the matrix product, and tanh the hyperbolic
tangent activation function.

xt = σ(Wxxt + Ufht−1+ bf) (1)

it = σ(Wixt + Uiht−1+ bi) (2)
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ot = σ(Woxt + Uoht−1+ bo) (3)

ct = ft ò ct−1+ it ò tanh (Wcxt + Ucht−1+ bc) (4)

ht = ot ò tanh (ct) (5)

The current information to be stored in the cell state is generated using two network
layers. A sigmoid layer (σ) that establishes values to update (it) (Equation (2)) and tanh
layer φ that details a vector of new possible values (ot) as shown in Equation (3). The fusion
of both is then added in the state. Lastly, the cell state is modified using Equation (5) [35].
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Figure 1. The LSTM module, where Xt, it, ot are input, and output gates, respectively.

4. Details of the Proposed Methodology

The proposed methodology consists of online-integrated chains that are shown in
Figures 2 and 3, which make it robust. It starts by determining the healthy state of rolling
bearings and then stratifying the data into healthy and faulty. After detection of the defect,
the prognostics neural network is constructed, that aims to calculate the remaining useful
life. The objective of this methodology is to detect the defect by the DBSCAN method,
then calculate the remaining useful life by the LSTM method to predict the equipment
degradation state evolution.

Figure 1 reflects the proposed approach, which is divided into three parts: the first
part is the clustering to detect the damage state, the second one is the health indicator
construction, the third part of the RUL and HI prediction.

4.1. The Proposed Framework

The chain begins with the data acquisition by collecting signals, then extracting
features. The collected features are described in Section 4.2 Feature Extraction Methods,
where they are separated into a time-domain. After their extraction, these features are
normalized by the z-score method [36] which is described by Equation (6). The KPCA
method was used to reduce the number of features and show them in 3D. The DBSCAN
parameters Minpts and Epsilon are defined in this stage. The calculation of the Minpts
value depends on the initial matrix T which is equal to the first two successive moments
(every successive moments contain eight signals) and the Minpts value is equal to ( 1

2 T).
The epsilon is calculated by the nearest neighbor method for the initial matrix

(Equation (7)). The estimation of epsilon value is realized by generating a k-distance
graph for the input data MF. For every point in MF, the distance to the k-th nearest point
is calculated, then arranged points at this distance are plotted. The graph includes a knee.
The distance connected to the knee is mostly a good choice for epsilon since it is the region
where points start appending off into outlier (noise) region [37].



Entropy 2021, 23, 791 6 of 16

Entropy 2021, 23, 791 6 of 16 
 

 

the input data 𝑀𝐹. For every point in 𝑀𝐹, the distance to the k-th nearest point is calcu-
lated, then arranged points at this distance are plotted. The graph includes a knee. The 
distance connected to the knee is mostly a good choice for epsilon since it is the region 
where points start appending off into outlier (noise) region [37]. 

 
Figure 2. Flowchart of the proposed methodology. 

Prior to plotting the k-distance graph, the Minpts that ae the short pairwise distances 
for examinations in 𝑀𝐹 have to be sited in ascending order. The features matrix 𝑀𝐹, is 
normalized ሾ𝑀𝐹ሿ௜௡௢௥௠ (Equation (6)). The objective of normalization is to transform the 
calculated values to be on a similar scale: ሾ𝑀𝐹ሿ௜௡௢௥௠ = 𝑀𝐹௜ − 𝑀𝐹పതതതതത𝑠𝑡𝑑(𝑀𝐹௜)  (6)ε corresponds to the maximum distance between the center of the class, 𝑐௛ and the MinPts୲୦ neighbor. The outcoming class is so-called healthy class, well known 𝐶௛,with 
center c୦. This class represents a reference state: ε = distance(c୦, MinPts୲୦ neighbor) (7)

Figure 2. Flowchart of the proposed methodology.

Prior to plotting the k-distance graph, the Minpts that ae the short pairwise distances
for examinations in MF have to be sited in ascending order. The features matrix MF, is
normalized [MF]norm

i (Equation (6)). The objective of normalization is to transform the
calculated values to be on a similar scale:

[MF]norm
i =

MFi −MFi
std(MFi)

(6)

ε corresponds to the maximum distance between the center of the class, ch and the
MinPtsth neighbor. The outcoming class is so-called healthy class, well known Ch, with
center ch. This class represents a reference state:

ε = distance
(

ch, MinPtsth neighbor
)

(7)
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The DBSCAN objective is to detect the degradation state. When two or more classes
are detected the first one is the normal state, the second and the third are the degraded
ones. This chain returns to the acquisition phase under the condition of not detecting the
second class. This classification ends with the detection of the second class, which is the
degraded class [38].

The prognostic’s objective is to show the evolution of the degraded state of the
equipment and calculate the RUL. The health indicator is divided into trained and tested
data [39]. After that, the application of the regression model will be done by the LSTM
method to predict the remaining useful life.

4.2. Health Indicator

In the field of fault diagnosis, the time domain features are an essential index to detect
the health condition of mechanical equipment, three pertinent time domain features are
combined and fused with the KPCA method to construct the health indicator, which can
be defined as follows in Table 1.
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Table 1. Health indicator features.

Root mean square: RMS =

(
1
N

N
∑

i=1

(
x2

i
)) 1

2 (8)

Standard deviation: (Std) =
(

1
N

N
∑

i=1
(xi − x)2

) 1
2 (9)

Peak to Peak: xPEAK = max (xi)−min (xi) (10)

HI construction algorithm (Algorithm 2).

Algorithm 2. HI construction algorithm.

Input: raw life-cycle data; combine (RMS, Std, Peak) features;
Sensitive health features selection.
1. Construct a feature space with 3 features referred to in Table 1 by time-domain, from raw
life-cycle data.
2. Reduction of the dimension of 3 features by KPCA.
3. Minimize the weights of each input-sensitive health feature by KPCA.
4. The first Two principal component (1–2) represents the maximum variance direction in the data.
5. Find the sensitive health features by the predetermined termination.
6. Construct the optimal one-dimensional HI.
Output: HI; sensitive health features.

4.3. Feature Extraction Methods

The multi-domain feature set can completely represent the bearing fault feature state
which can provide an efficient diagnosis for different rolling bearing faults occurring
under varying speed and load or anonymous speed conditions. The existence of defects
inmachinery components can be observed in the raw acceleration signals. To get a better
comprehension of the vibration signals we attempt to extract the time domain, frequency
domain, and time-frequency domain features [36].

Time-domain features of vibration signals have proved to be useful to present the
machinery condition. The time-domain features were used to detect bearing damages
such as kurtosis, standard deviation, skewness, root mean square efficiency for detection,
and localized bearing default. In addition to the peak-to-peak value, impulse factor,
Tikhat, Talaf, crest factor, that can detect the changes in the signal when a defect occurs.
These classical time-domain statistical features were applied to represent the bearing
condition [40].

The frequency-domain is based on the spectral analysis technique that can convert
time-domain vibration signals into discrete frequency components using a fast Fourier
transform (FFT) [41]. The signal spectrum contains rich condition information. The
frequency root mean square frms, and the frequency root mean square brut: frmsb , the
frequency center: fc, standard deviation frequency brut: fstdb, the power envelope: PW, the
mean frequency frms f are used in the rolling bearing to detect the defect [42].

The time-scale analysis methods decompose the extracted signals into a set of scale
components that contain several fault features. The wavelet process has an advantage over
the conventional Fourier transform in the condition of the analysis of discontinuous and
short-impulse signals [43]. Wavelet is a well-known signal processing technique used to
examine the frequency composition of the signal [44]. Therefore, technical description will
be omitted. Instead, the two new features extracted will be introduced: WRMS, which is
the effective value of the frequencies of the signal’s wavelets spectrum, and PCWT that
represents the average value of the envelope amplitudes [45].

4.4. Reduction of Dimensions

The reduction of dimensions is a step used to reduce the number of features and
easily plot the observed data in 3D or 2D. There is often a correlation between the feature
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dimensions and the fault detection. Thereby, it is very significant to extract the critical
fault features that reproduce the fault and reduce the dimension data. KPCA is a simple
dimension reduction method which is an extension of PCA. It is an efficient tool for
multivariable and nonlinear data, and its major functions are that it plots the indigenous
spatial data into high dimensional space by kernel function, converts the original nonlinear
issue to linearization one, and utilizes PCA to minimize the dimensions [44].

4.5. Evaluation of Remaining Useful Life (RUL)

The performance of the RUL estimation procedure has been tested extensively to
evaluate the RUL in the fitted LSTM method. According to the criteria adopted in the
methodology (Figure 2), three evaluation criteria are taken into consideration to measure
the prediction performance of different approaches:

4.5.1. Root Mean Square Error (RMSE)

Root mean square error is often used to measure of the differences within predicted
values by a model or observed and estimator values. The RMSE represents the square root
of the second sampling time of the differences between predicted and observed values or
the root mean square of these differences [46].

The RMSE of prognosticate values yi for times t of a regression’s count on variable
xi with observed variables over n are the signals number. It is calculated for T different
predictions and is equal to the square root of the mean of the squares of the deviations:

RMSE =

√
∑n

i=1(yi − xi)
2

T
(11)

4.5.2. Mean Absolute Error (MAE)

Mean absolute error (MAE) is the calculation of errors among paired observations
noticing the same occurrence. Patterns of Y versus X include contrasts of predicted against
observed, initial time versus subsequent time, and unitechnique versus an alternative
technique of measurement [47]. MAE is calculated as:

MAE =
∑n

i=1|yi − xi|
n

=
∑n

i=1|ei|
n

(12)

The mean absolute error is calculated as follows: |ei| = |yi − xi| where yi is the
prediction value and xi is the true value. It utilizes the same scale as the existent in the
measured data and is a familiar measure of forecast errors in time series analysis.

5. Experimental Validation
5.1. Test Bench

The tests were performed on a group of identical single-row thrust bearings. The
objective was to follow the development of spalling from micro to fatigue state. These tests
were performed on a fatigue module of a test bench. A constant axial load of 3000 daN,
was applied to the bearing with the rotation speed remained constant during the tests, i.e.,
1800 rpm. The coolant flow was also constant. Two type DJB3208 and DJB3209 piezoelectric
accelerometers were placed as close as possible to the bearing in two different directions,
axial and radial. The used data is the data of the piezoelectric sensor positioned radially
on the bearing is taken as the best measuring point. The OROS OR34 acquisition system
recorded 8192 points of the vibratory signal in a frequency range of 20 kHz to have a
significant number of cycles.

The test bench shown in Figure 4, is essentially composed of an electric motor (1), that
turns a spindle (2) on which one of the bearing rings is mounted. A shaft (3) transmits the
axial load to the thrust bearing from a hydraulic pump (4), and a continuously operating
lubrication circuit (5) for cooling. This test bench is connected to a control and data
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acquisition system. The ball bearings used are of type FAG 51207 CZECH/ATK. This
bearing allows easy disassembly and immediate visual inspection of defects.
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5.2. Procedure of the Experiments

During the tests, the temperatures of the main shaft bearing, the lubricating oil, and
the ambient air were continuously monitored. As shown in Table 2, three bearings were
used and subjected to a fatigue phenomenon until the bearing broke, Figure 5. The health
indicator was built from the first two principal components which covered 99.1% of the
original data but the first component represented less with 97.9%.

Entropy 2021, 23, 791 10 of 16 
 

 

The test bench shown in Figure 4, is essentially composed of an electric motor (1), 
that turns a spindle (2) on which one of the bearing rings is mounted. A shaft (3) transmits 
the axial load to the thrust bearing from a hydraulic pump (4), and a continuously oper-
ating lubrication circuit (5) for cooling. This test bench is connected to a control and data 
acquisition system. The ball bearings used are of type FAG 51207 CZECH/ATK. This bear-
ing allows easy disassembly and immediate visual inspection of defects. 

 
Figure 4. Module of the thrust bearing fatigue test bench. 

5.2. Procedure of the Experiments 
During the tests, the temperatures of the main shaft bearing, the lubricating oil, and 

the ambient air were continuously monitored. As shown in Table 2, three bearings were 
used and subjected to a fatigue phenomenon until the bearing broke, Figure 5. The health 
indicator was built from the first two principal components which covered 99.1% of the 
original data but the first component represented less with 97.9%. 

   
(a) (b) (c) 

Figure 5. The spalling bearing of the three tested rolling bearing for the bearing number 1 (a,b) for 
bearing number 2 and (c) for the bearing number 3. 

The cases 1–3 were applied on the proposed method LSTM to get the predicted health 
indicator and RUL. Knowing that cases 1 and 2 were the training cases of the bearing 1 
with the testing of the bearings 2 and 3, respectively. As well, case 3 was the training of 
the bearing 2 with the testing of the bearing 3, with 25% of the training data being tested 
in each case. 

Table 2. Summary of fatigue tests on bearings. 

Bearing Number Signal Number Spalling Size (mm2) 
1 592 80.14 
2 592 85.88 
3 592 104.6 

  

Figure 5. The spalling bearing of the three tested rolling bearing for the bearing number 1 (a,b) for
bearing number 2 and (c) for the bearing number 3.

Table 2. Summary of fatigue tests on bearings.

Bearing Number Signal Number Spalling Size (mm2)

1 592 80.14
2 592 85.88
3 592 104.6

The cases 1–3 were applied on the proposed method LSTM to get the predicted health
indicator and RUL. Knowing that cases 1 and 2 were the training cases of the bearing 1
with the testing of the bearings 2 and 3, respectively. As well, case 3 was the training of the
bearing 2 with the testing of the bearing 3, with 25% of the training data being tested in
each case.

5.3. Results of the Experiments

Three different conditions were considered throughout the experiment, operating
with different spalling sizes: the first one with 80.14 mm2, the second one with 85.88 mm2

and the third one with 104.6 mm2. The measured vibration signals of bearing numbers 1–3
are exhibited in Figure 6a–c. During the tests, every bearing was naturally degraded. As a
result, every test bearing collected a different vibration signal pattern.
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As shown in Figure 4, the entire lifetime vibration signals of three test bearings were
demonstrated. The signal amplitudes of bearing 1 displayed a fast increase near the end of
life which designated a sudden degradation. The signal amplitudes of bearings 2 and 3
had a trend of progressive increase. This showed that degradation began to change slightly
at first and then in a severe way.
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Figure 6. The time-domain waveform of bearing, (a) number 1, (b) number 2, and (c) number 3.

To determine the unique optimal value Eps, rate determination for single-level density
was obtained by calculating the slope between points. Figure 7 depicts the result of a plot
that has been sorted in ascending values. Detection of Eps value was done by calculating
the slope of the lines of four Minpts values. The slopes of the lines were located for the
three bearings at the points of 0.170, 0.229 and 0.272, which are the optimal values Eps for
bearings 1, 2 and 3, respectively (Figure 7a–c).
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The DBSCAN method to classify bearing fault was constructed and tested to predict
the conditions of the bearings, then the performance of the classification was evaluated.
The results are shown in Figure 8 for the three bearing numbers. Figure 8a, represents two
classes: the first one being the healthy state with 568 signals, and the second one illustrating
the first stage of the defect, starting from signal number 569. Figure 8b, displays three
classes, the first class being the healthy one with 560 signals, the second one representing
the first stage of the defect, starting with the signal number 561, and third class continuing
from signals number 577 to the end and representing a severe defect. Figure 8c illustrates
three classes, the first one showing the healthy state with 480 signals, the second class goes
from the first stage of the defect, starting with the signal number 481, and the third class
starting from signals number 516 to the end represents a severe defect.
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Figure 8. DBSCAN classification, (a) for case number 1, (b) for case 2, and (c) for case number 3.

The results were proportionally correlated to the amplitude, size of defect, value of
epsilon, and the detected classes. The size of defect increased with the rise of the Eps value
resulting in an augmentation of the classes number. The performance of the proposed
method for calculating the bearing health indicator is based on the fusion of the three
features, standard deviation, RMS, and peak, which are popular choices for bearing health
indicators, then extracting from them the first two principal components.

In Figure 9, the predicted HI and true HI of rolling bearing are demonstrated. As a
result, LSTM regressions for the predicted HI and true HI for testing cases 1–3 are shown
in Figure 9a–c, respectively. In the third case, the LSTM regression of the predicted HI
and true HI were close to each other which indicated that this case was better than cases 1
and 2.
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Figure 10 shows the results of the predicted RUL and the true RUL value, where the
error between the predicted and true was minimal. To achieve RUL prediction, suitable
reliability indicators must be established. Based on the current mapping feature set, the
reliability assessment model was firstly utilized to evaluate the precision of the mapping
time domain. Then, to build the mathematical exemplification relationship among the
component degradation procedure parameters and the prediction RUL model, an LSTM
algorithm was utilized in this section. It was established that the accuracy indicator
attenuation path was determined prior to the current life and modified to be a fraction of
prediction after the present life [47].

Case 3 represented in Figure 10c confirms the results shown in Figure 9c, meaning
that predicted and true RUL were linear. Moreover, this case represented bearing numbers
2 and 3 which are the best to predict RUL because they have the same degradation state
with the three classes of defect.
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value for the LSTM method on datasets of different percentages was 93%. The NARX 
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6. Discussion

To avoid the volatility caused by the trend prediction of the curve by the LSTM
method, the value was taken as the evaluation standard, as shown in Table 3. The next
phase comprised validation of the trained and tested models. The NARX model’s results
shown in Figure 11a,b, present respectively the final results of the model obtained from
case 3. Then, the comparison of the performance was done between the LSTM model and
the NARX one. The mean absolute error (MAE), the root mean square error (RMSE), and
accuracy were adopted to evaluate the performance of the two different prediction models.
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Figure 11. (a) HI Regression, (b) RUL prediction.

As shown in Table 3, the LSTM method case 3 with the proposed HI has the minimum
MAE value compared with NARX, and the average MAE value for the LSTM method on
datasets of different percentages was 0.007. The NARX method has the biggest MAE with
an average value of 0.03. Compared with MAE, the RMSE of the prediction models was
larger. For the LSTM method, the average RMSE on different testing datasets was 0.04.
Moreover, this metric for the NARX method even reached 0.4. The accuracy value for the
LSTM method on datasets of different percentages was 93%. The NARX method has the
smallest accuracy with the kurtosis spectral like a health indicator with an average value of
86%. These values showed that the effectiveness of the LSTM method remaining useful life
prediction is promising. The elapsed time is the time required by the algorithm to give a
response. The LSTM method gave a faster response compared with NARX method.
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Table 3. Evaluation of predicted useful life.

Data Methods LSTM NARX

Proposed HI

Experimental
Case 1

RMSE 0.05 0.3
MAE 0.01 0.02

Accuracy % 89 87
Time Elapsed 49 s 52 s

Experimental
Case 2

RMSE 0.3 0.6
MAE 0.01 0.02

Accuracy % 85 81
Time Elapsed 49 s 52 s

Experimental
Case 3

RMSE 0.04 0.4
MAE 0.007 0.03

Accuracy % 93 90
Time Elapsed 49 s 52 s

Kurtosis Spectral Experimental
Case 3

RMSE 0.1 0.4
MAE 0.02 0.03

Accuracy % 86 85
Time Elapsed 49 s 52 s

7. Conclusions

This paper proposed the LSTM method to extract high-quality degradation models
and predict remaining useful life of rolling bearings from their vibration signals. The
extracted bearing vibration signal features included nine time-domain features that were
used in the detection chain. The health indicator was constructed from the fusion of
three-time domain features: RMS, Std and Peak.

The results showed that the suggested method can adjust to varying operating con-
ditions. The LSTM method was adopted for bearing degradation state and prediction
of the remaining useful life. The performance of the proposed method on the dataset
was compared with the NARX method whom accuracy is 90%. The results present the
superiority and effectiveness of the proposed methodology from the RMSE, MAE and their
accuracy are 0.04, 0.007 and 93%, respectively.

The objective of bearing fault diagnosis is to consolidate an efficient real-time condi-
tion monitoring and recognition system to make continuous production over predictive
maintenance. In order to realize this goal, there are two main topics for future work:

(1) The fault diagnosis model requires the performance of continual and rapid diagnosis
situated on the vibration signals extracted in real-time.

(2) The good performance was maintained under various working conditions, and the
application of the fault diagnosis model must be generalized under different load and
noise conditions.

As future work, we plan to examine the use of other algorithms for resolving bearing
remaining useful life prediction issues and set up cooperative predictions under different
working conditions.
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