
entropy

Article

Reversible Data Hiding in Encrypted Image Based on (7, 4)
Hamming Code and UnitSmooth Detection

Lin Li 1,2 , Chin-Chen Chang 2,*,† and Chia-Chen Lin 3,*

����������
�������

Citation: Li, L.; Chang, C.-C.; Lin,

C.-C. Reversible Data Hiding in

Encrypted Image Based on (7, 4)

Hamming Code and UnitSmooth

Detection. Entropy 2021, 23, 790.

https://doi.org/10.3390/e23070790

Academic Editors: Boris Ryabko, Tzu

Chuen Lu and David Megías

Received: 23 May 2021

Accepted: 18 June 2021

Published: 22 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computer Engineering College, Ji Mei University, Xiamen 361021, China; jmulilin@jmu.edu.cn
2 Department of Information Engineering and Computer Science, Feng Chia University, 100 Wenhwa Road,

Seatwen, Taichung 40724, Taiwan
3 Department of Computer Science and Information Engineering, National Chin-Yi University of Technology,

Taichung 411030, Taiwan
* Correspondence: ccc@o365.fcu.edu.tw (C.-C.C.); ally.cclin@ncut.edu.tw (C.-C.L.)
† IEEE Fellow.

Abstract: With the development of cloud storage and privacy protection, reversible data hiding
in encrypted images (RDHEI) plays the dual role of privacy protection and secret information
transmission. RDHEI has a good application prospect and practical value. The current RDHEI
algorithms still have room for improvement in terms of hiding capacity, security and separability.
Based on (7, 4) Hamming Code and our proposed prediction/ detection functions, this paper proposes
a Hamming Code and UnitSmooth detection based RDHEI scheme, called HUD-RDHEI scheme for
short. To prove our performance, two database sets—BOWS-2 and BOSSBase—have been used in
the experiments, and peak signal to noise ratio (PSNR) and pure embedding rate (ER) are served
as criteria to evaluate the performance on image quality and hiding capacity. Experimental results
confirm that the average pure ER with our proposed scheme is up to 2.556 bpp and 2.530 bpp under
BOSSBase and BOWS-2, respectively. At the same time, security and separability is guaranteed.
Moreover, there are no incorrect extracted bits during data extraction phase and the visual quality of
directly decrypted image is exactly the same as the cover image.

Keywords: RDHEI; Hamming Code; MED; US (UnitSmooth); HUD-RDHEI; PSNR; ER

1. Introduction

Digital images are widely used in media, publishing, medicine, military, and other
fields. Therefore, it is very important to protect the copyright and integrity of digital images.
Because the image itself has the characteristics of large amount of data, high correlation and
high redundancy between pixels, it cannot be used to encrypt the image with the common
text encryption algorithm [1–5]. For above purposes, various technologies have been devel-
oped for images, such as image authentication [6–8] and watermarking [9,10]. As a branch
of digital watermarking technology, data hiding is a critical technology to guarantee the
security of confidential information. Data hiding can be implemented in many different
ways to achieve the purpose of imperceptible embedding of secret data [11,12]. Depending
on whether the receiver can fully recover the cover image, data hiding can be divided into
two types: irreversible data hiding and reversible data hiding (RDH) [13,14].

With the growing maturity of cloud storage and cloud computing technology, data
storage, image processing and other work has been transferred from local to cloud server.
More and more data are uploaded to the cloud to be broadly shared, efficiently processed,
stored centrally, or authenticated by a third party for the data source. In order to protect
cloud stored data and user privacy, data will be encrypted before it is sent to the cloud
server. For example, in the process of telemedicine, when the local hospital sends the
patient’s medical image to the remote hospital through the network, the medical image
needs to be encrypted before it is sent through communication channel to the cloud so

Entropy 2021, 23, 790. https://doi.org/10.3390/e23070790 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-1848-845X
https://orcid.org/0000-0002-7319-5780
https://doi.org/10.3390/e23070790
https://doi.org/10.3390/e23070790
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23070790
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23070790?type=check_update&version=2

Entropy 2021, 23, 790 2 of 23

that the patient’s privacy can be protected. At this time, the channel service provider
may need to embed verification information in the transmitted data. As you can see from
this example, the person who uploads the image, what we technically call the content
owner, may want to upload encrypted images instead of plaintext images before adopting
the functions offered by the cloud platforms. Encryption technology [15] can transfer
the plaintext image into a meaningless image that is unrecognizable to the naked eye
or even to powerful algorithms run in machines, which is technique we can apply in
this scenario. Moreover, for the sake of management, some information such as owner
information, timestamp, tagging, and source information of the encrypted media may
need to be embedded into the encrypted image by service provider, also called as data
hider. When needed, the user, more technically known here as the receiver can download
the marked encrypted image to get the hiding message and original image with keys,
as described in Figure 1. To achieve security and reversibility of the secret message, the
RDH scheme is required to work on the encrypted image, which is called reversible data
hiding in encrypted images (RDHEI) technique. RDHEI technique embeds the secret
information into the encrypted image rather than the plaintext image, and the embedded
secret information can be extracted correctly, along with the original plaintext image being
recovered without loss. Therefore, RDHEI technique has the advantages of both RDH and
encryption, realizing multimedia data privacy and copyright protection, content integrity
authentication and ciphertext management, which is a research direction of intersection of
data hiding and privacy protection.

Entropy 2021, 23, 790 2 of 24

needs to be encrypted before it is sent through communication channel to the cloud so
that the patient's privacy can be protected. At this time, the channel service provider may
need to embed verification information in the transmitted data. As you can see from this
example, the person who uploads the image, what we technically call the content owner,
may want to upload encrypted images instead of plaintext images before adopting the
functions offered by the cloud platforms. Encryption technology [15] can transfer the
plaintext image into a meaningless image that is unrecognizable to the naked eye or even
to powerful algorithms run in machines, which is technique we can apply in this scenario.
Moreover, for the sake of management, some information such as owner information,
timestamp, tagging, and source information of the encrypted media may need to be em-
bedded into the encrypted image by service provider, also called as data hider. When
needed, the user, more technically known here as the receiver can download the marked
encrypted image to get the hiding message and original image with keys, as described in
Figure 1. To achieve security and reversibility of the secret message, the RDH scheme is
required to work on the encrypted image, which is called reversible data hiding in en-
crypted images (RDHEI) technique. RDHEI technique embeds the secret information into
the encrypted image rather than the plaintext image, and the embedded secret infor-
mation can be extracted correctly, along with the original plaintext image being recovered
without loss. Therefore, RDHEI technique has the advantages of both RDH and encryp-
tion, realizing multimedia data privacy and copyright protection, content integrity au-
thentication and ciphertext management, which is a research direction of intersection of
data hiding and privacy protection.

Figure 1. Sketch of RDHEI scheme.

As shown in Figure 2, there are usually three participants involved in RDHEI algo-
rithm, which are content owner, data hider and receiver. In the RRBE scheme, the content
owner will preprocess the original image to vacate hiding space, then the image is en-
crypted and sent to the data hider. Next, data hider embeds secrets into the encrypted
images. Finally, the receiver can either use the hiding key Kh to get secret data or use the
encryption key Ke to get the original image. Or, receiver can hold two keys to do both.

Figure 1. Sketch of RDHEI scheme.

As shown in Figure 2, there are usually three participants involved in RDHEI algo-
rithm, which are content owner, data hider and receiver. In the RRBE scheme, the content
owner will preprocess the original image to vacate hiding space, then the image is en-
crypted and sent to the data hider. Next, data hider embeds secrets into the encrypted
images. Finally, the receiver can either use the hiding key Kh to get secret data or use the
encryption key Ke to get the original image. Or, receiver can hold two keys to do both.

RDHEI algorithms can be divided into two categories, one vacates room after en-
cryption and is called the VRAE algorithm [16–18] while the other reserves room before
encryption and is called the RRBE algorithm [19–21]. Since VRAE algorithms perform
the work of encrypting the image in the first place, the pixel correlation of the original
plaintext image is completely destroyed, so the hiding capacity with VRAE algorithms is
not high. By contrast, RRBE algorithms have a natural advantage in that they make use of
the redundant space of the image to reserve as the hiding space before encryption, thus the
hiding space of this algorithm is much larger than the former one. However, we believe
the hiding capacity and the visual quality of the decrypted images still has the room to

Entropy 2021, 23, 790 3 of 23

be improved while maintaining the good properties as the previously mentioned RRBE
schemes. Therefore, a hybrid separable hiding strategy RDHEI is proposed in this paper.

Entropy 2021, 23, 790 3 of 24

Figure 2. The overall process of RDHEI scheme.

RDHEI algorithms can be divided into two categories, one vacates room after encryp-
tion and is called the VRAE algorithm [16–18] while the other reserves room before en-
cryption and is called the RRBE algorithm [19–21]. Since VRAE algorithms perform the
work of encrypting the image in the first place, the pixel correlation of the original
plaintext image is completely destroyed, so the hiding capacity with VRAE algorithms is
not high. By contrast, RRBE algorithms have a natural advantage in that they make use of
the redundant space of the image to reserve as the hiding space before encryption, thus
the hiding space of this algorithm is much larger than the former one. However, we be-
lieve the hiding capacity and the visual quality of the decrypted images still has the room
to be improved while maintaining the good properties as the previously mentioned RRBE
schemes. Therefore, a hybrid separable hiding strategy RDHEI is proposed in this paper.

The rest of the paper is arranged as follows. In the next section, knowledge of back-
ground information and related works, some closely related methods and the advantages
of the proposed HUD-RDHEI scheme are present. In Section 3, the details of the proposed
HUD-RDHEI scheme are described, including some new preprocessing methods de-
signed by our research team are introduced. The experimental results and performance
comparisons on ER and PSNRs with some state-of-the-art schemes are demonstrated in
Section 4. Finally, a conclusion is given in Section 5.

2. Preliminaries
This section begins with some background information, then introduces and dis-

cusses some representative methods. At the end of this section, the highlights of the pro-
posed HUD-RDHEI scheme and the key techniques used to overcome the current short-
comings of existing methods are given.

2.1. Backgound Information and Related Works
Data hiding is an interdisciplinary subject in the field of information security, cover-

ing cryptography, mathematics, computer vision and computer application technology. It
is mainly to carry or hide secret information by using the redundancy in carrier data to
achieve secure communication, copyright maintenance and other functions. It is one of
the important research contents in the field of information security. Traditional infor-
mation hiding mostly belongs to irreversible data hiding. In the process of embedding
and extracting additional information, it will cause irreversible modification to the image
and other carriers, and its application scenarios are relatively limited. Barton [22] first pro-
posed the concept of reversible data hiding (RDH). So far, many RDH methods for
plaintext images have been proposed [23–25]. The aim of these papers is to realize RDH
method within images using interpolation-based scheme. Typically, the traditional RDH
algorithms mainly use the following techniques, such as different expansion (DE) [26,27],

Figure 2. The overall process of RDHEI scheme.

The rest of the paper is arranged as follows. In the next section, knowledge of back-
ground information and related works, some closely related methods and the advantages
of the proposed HUD-RDHEI scheme are present. In Section 3, the details of the proposed
HUD-RDHEI scheme are described, including some new preprocessing methods designed
by our research team are introduced. The experimental results and performance compar-
isons on ER and PSNRs with some state-of-the-art schemes are demonstrated in Section 4.
Finally, a conclusion is given in Section 5.

2. Preliminaries

This section begins with some background information, then introduces and discusses
some representative methods. At the end of this section, the highlights of the proposed
HUD-RDHEI scheme and the key techniques used to overcome the current shortcomings
of existing methods are given.

2.1. Backgound Information and Related Works

Data hiding is an interdisciplinary subject in the field of information security, covering
cryptography, mathematics, computer vision and computer application technology. It
is mainly to carry or hide secret information by using the redundancy in carrier data to
achieve secure communication, copyright maintenance and other functions. It is one of the
important research contents in the field of information security. Traditional information
hiding mostly belongs to irreversible data hiding. In the process of embedding and
extracting additional information, it will cause irreversible modification to the image
and other carriers, and its application scenarios are relatively limited. Barton [22] first
proposed the concept of reversible data hiding (RDH). So far, many RDH methods for
plaintext images have been proposed [23–25]. The aim of these papers is to realize RDH
method within images using interpolation-based scheme. Typically, the traditional RDH
algorithms mainly use the following techniques, such as different expansion (DE) [26,27],
histogram shifting (HS) [28,29], pixel value ordering (PVO) [30,31] and the modification of
prediction errors [32,33]. All these methods take advantage of the spatial correlation and
information redundancy between pixel values of the cover image to conceal secret message.
These algorithms cannot directly work on the encrypted images due to correlations and
redundancy cannot remain after the encryption processing. Thus RDHEI algorithms are
proposed to solve data hiding in encrypted images, which are divided into two categories,
VRAE and RRBE.

The idea of the VRAE method [16] was first introduced by Puech et al. in 2008. In
their idea, the original image is encrypted with Advanced Encryption Standard (AES) and

Entropy 2021, 23, 790 4 of 23

divided into blocks, then with the help of secret key k, the bit substitution-based method
is used to replace a bit of a pixel for each block. The ER (embedding rate), which is the
secret message bits carried by each pixel of an image, of Puech et al.’s scheme is 1/n bpp.
With the analysis of the local standard deviation, the decryption and rebuilding of the
original image can be performed. Unlike [16], in 2011 Zhang [17] used bit-wise cipher
stream and XOR (EXCLUSIVE-OR) operation to encrypt an image. Then, the data hider
segments the encrypted image into non-overlapping blocks. For each block, the encrypted
pixels are randomly divided into two sets, S0 and S1. To embed a secret message, Zhang’s
method flips the three least significant bits (LSBs) of each pixel of the encrypted image
in set S0. At the receiver side, the decrypted image is divided into blocks, and one of the
two sets is flipped to create new blocks. By measuring the fluctuation in two new blocks,
data extraction and image restoration with an error rate can be realized. The error rate is
directly affected by block size. When the block has 32 bits or more, most of the embedded
bits of the cover image can be extracted correctly, and the original image can be restored
successfully. Hereinto, the removing of embedded data takes place during the decryption
process, so the data extracting and image recovering process are inseparable. In the next
year, Zhang [18] designed a separable RDHEI method. First, using an encryption key, the
content owner encrypts the original image. The data hider then adopts matrix operations to
compress the LSBs of pixels in the encrypted image to make redundant room for the secret
message. At the receiving end, depending on different keys, data extraction and image
restoration can be performed separately. For an encrypted image that contains secret data,
if the receiver has a data hiding key, s/he can extract the secret data with no information of
the image. If the receiver has an encryption key, s/he can decrypt the received image and
obtain an image similar to the original image without any secret data information. If both
the data hiding key and the encryption key are owned by the receiver, they will extract the
additional data and restore the original image completely error-free.

Due to the correlation of adjacent pixels that are damaged during the encryption
processing, the hiding capacity of VRAE methods are relatively low in most cases and
may encounter some errors in the procedure of data extraction and image recovery. In
order to deal with such misjudgment problems, Ma et al. [19] proposed an RRBE method
by reserving room before encryption. In their method, the original image is first divided
into two parts: the smooth area and complex area. Then, standard RDH algorithms are
applied to embed two or more LSB planes of the complex part into a smooth part to reserve
room before encryption. After that, the preprocessed image is encrypted to generate
the encrypted image. The vacated room of LSBs in complex parts can be applied for
embedding a secret message. On the basis of the original algorithm, Mathew et al. [20]
improved Ma et al.’s method in ER and PSNR, mainly adding the steps of dividing the
original image into small blocks and classifying the small blocks into smooth blocks and
complex blocks. In [21], Zhang et al. introduced a lossless, a reversible, and a combined
data hiding scheme for ciphertext image encryption based on public-key cryptosystems
with probabilistic and homomorphic properties. In the lossless scheme, the embedded
data can be extracted directly from the encrypted image, and the embedding of the data
has no effect on the decryption of the original plaintext image. In the reversible scheme,
embedded data can be extracted, and the original image can be recovered from the directly
decrypted image. Combined with these two schemes, the receiver can extract part of the
embedded data before decryption, and extract another part after decryption, and restore
the original plaintext image at the same time.

2.2. Some Closely Related Methods and the Advantages of the Proposed HUD-RDHEI Scheme

Unlike the algorithms mentioned above, in order to achieve the purpose of increasing
embedding capacity, some recent RDHEI methods use an auxiliary bitmap to supplement
the description of the pixel coordinates where the hidden information or the potentially
misjudged information is located. Puteaux et al. introduced two methods in [34], CPE-
HCRDH (high-capacity reversible data hiding approach with correction of prediction

Entropy 2021, 23, 790 5 of 23

errors) and EPE-HCRDH (high-capacity reversible data hiding approach with embedded
prediction errors), one using predictive error correction and the other using embedded
predictive error. CPE-HCRDH corrects the prediction error by slightly modifying the pixel
values. By sacrificing a little image quality, it can obtain a higher storage. In EPE-HCRDH,
the pixel values are not modified, but the secret is not hidden in the block when its value
of bitmap is equal to ‘1’. This method can obtain a high-quality image by sacrificing
hiding capacity. After that, the image is bitwise encrypted. At the receiver end, the
secret information can be reversibly extracted from the bitmaps. Based on a similar idea,
Puyang et al. [35] introduced a two-MSB (MSB and the second MSB) prediction scheme. In
the scheme, the correlation between adjacent pixels is well explored, and the reversibility,
separability and error-free of data extraction are realized. At the same time, the aim of
increasing the hiding capacity is achieved. However, the scheme proposed by Yi et al. in [36]
is different from [35]. In [36], the PBTL-DE (parametric binary tree labeling scheme data
embedding) method is applied to the encryption domain by utilizing spatial redundancy,
and a reversible data hiding method (PBTL-RDHEI) based on PBTL is proposed. Separately,
the recovery of the original image and the extraction of the secret data can be realized in
a lossless manner. When the block size is set to 2 × 2 and 3 × 3, the average ER can reach
1.752 bpp and 2.003 bpp, respectively. Recently, Chen et al. proposed a scheme in [37], in
which a joint lossless compression scheme is realized to vacate embedding room. Image
recovery can be realized from encrypted images with only the encryption key directly, and
secret data extraction can be achieved with only the data hiding key.

The proposed scheme belongs to the RRBE RDHDI method, and it is hybrid, separable
and completely reversible. The highlights of the proposed HUD-RDHEI scheme are
as follows:

(1) The (7, 4) Hamming Code is adopted to encode the LSBs of the original image to
partial non-LSBs of pixels in an image to vacate room for the data hider so that the
secret message can be concealed safely.

(2) A novel detection function US is defined and used to guarantee the hiding capacity is
highly improved.

(3) A flipping-MSB operation combined with the MED prediction method to record the
modified position of the non-LSBs is applied to achieve the complete recovery without
any error.

(4) Secret information is encrypted before being hidden, at the same time, the auxiliary
information used for recovery is also encrypted, which increases the security.

(5) The proposed HUD-RDHEI scheme uses stream encryption to avoid the information
leakage and plaintext attack caused by edge effect and other unsafe risks.

(6) The proposed HUD-RDHEI scheme is separable. It enables the scheme to be applied
in a wider range of scenarios.

3. The Proposed HUD-RDHEI Scheme

The framework of our proposed RDHEI scheme is depicted in Figure 3. It is noted that
there are three phases: encrypted image generation, data hiding, and data extraction/image
recovery, and two keys are conducted at different phases. At the beginning, the content
owner uses an encryption key Ke to encrypt image, with the vacating room for hiding at
the same time. Then, data hider uses a hiding key Kh to hide the secret data in the vacated
room. At the receiver side, s/he can obtain different images based on which key(s) s/he
holds: (a) obtaining a directly decrypted image if s/he only has an encryption key Ke,
(b) obtaining hidden secret data if s/he only has a hiding key Kh, and (c) obtaining the
original image and the hidden secret data as long as s/he holds two keys: Ke and Kh.

To improve the hiding capacity, we first designed the US (UnitSmooth) function.
Then, a self-embedding method based on (7, 4) Hamming Code [38–40] and our proposed
flipping-MSB method is proposed. For the content owner, the proposed UnitSmooth
bitmap (BMPus) according to US function is recorded first. Then, a (7, 4) Hamming Code is
used to hide the LSB bits to partial non-LSB bits of the pixels. Through these two steps,

Entropy 2021, 23, 790 6 of 23

two rooms for hiding information are reserved. Then, the image will be encrypted and sent
to the data hider, with CAInfo (compressed auxiliary information) embedded. At the data
hider side, the LSBs and the 6 bits of UnitSmooth pixels of the received encrypted image
are substituted with binary bits of the secret message, which has been scrambled with the
data hiding key Kh. On the receiver end, processing is different on the basis of the keys
held by the receiver end and the role the receiver plays. If the receiver is a data hider and
only holds data hiding key Kh, s/he can extract the hidden message without knowing any
information of the original image. If the receiver is an image owner and s/he only holds
the encryption key Ke, s/he can decrypt the marked encrypted image to generate a directly
decrypted image with visual quality of PSNR tending to +∞. This can also be regarded as
the proof of the separability of the algorithm. If the receiver holds both the data hiding key
Kh and the encryption key Ke, s/he would not only perform the data extraction but also the
error-free image recovery.

Entropy 2021, 23, 790 6 of 24

hiding at the same time. Then, data hider uses a hiding key Kh to hide the secret data in
the vacated room. At the receiver side, s/he can obtain different images based on which
key(s) s/he holds: (a) obtaining a directly decrypted image if s/he only has an encryption
key Ke, (b) obtaining hidden secret data if s/he only has a hiding key Kh, and (c) obtaining
the original image and the hidden secret data as long as s/he holds two keys: Ke and Kh.

To improve the hiding capacity, we first designed the US (UnitSmooth) function.
Then, a self-embedding method based on (7, 4) Hamming Code [38–40] and our proposed
flipping-MSB method is proposed. For the content owner, the proposed UnitSmooth bit-
map (BMPus) according to US function is recorded first. Then, a (7, 4) Hamming Code is
used to hide the LSB bits to partial non-LSB bits of the pixels. Through these two steps,
two rooms for hiding information are reserved. Then, the image will be encrypted and
sent to the data hider, with CAInfo (compressed auxiliary information) embedded. At the
data hider side, the LSBs and the 6 bits of UnitSmooth pixels of the received encrypted
image are substituted with binary bits of the secret message, which has been scrambled
with the data hiding key Kh. On the receiver end, processing is different on the basis of the
keys held by the receiver end and the role the receiver plays. If the receiver is a data hider
and only holds data hiding key Kh, s/he can extract the hidden message without knowing
any information of the original image. If the receiver is an image owner and s/he only
holds the encryption key Ke, s/he can decrypt the marked encrypted image to generate a
directly decrypted image with visual quality of PSNR tending to +∞. This can also be re-
garded as the proof of the separability of the algorithm. If the receiver holds both the data
hiding key Kh and the encryption key Ke, s/he would not only perform the data extraction
but also the error-free image recovery.

Figure 3. The framework of the proposed HUD-RDHEI scheme.

The following subsections describe US function, data hiding method based on (7, 4)
Hamming Code, MED prediction and our defined compressed auxiliary information
(CAInfo) in detail

3.1. US Function and BMPus
Here we define and utilize the unit smoothness of the cells to improve the hiding

capacity for the data hider. A bitmap of unit smoothness (BMPus) of all the cells of the
image will be calculated and recorded for complete recovery when needed. The details
are shown as follows: when a grayscale image Io of size 512 × 512 is given, according to the
raster scan sequence, except the first line and first column, we consider every three con-
secutive pixels 1

kPixel , 2
kPixel , and 3

kPixel as a non-overlapping cell. Thus, there will be
(1) (1) / 3M N− × −   cells in the image Io, each of which is called Cellk, where

Figure 3. The framework of the proposed HUD-RDHEI scheme.

The following subsections describe US function, data hiding method based on (7, 4)
Hamming Code, MED prediction and our defined compressed auxiliary information
(CAInfo) in detail.

3.1. US Function and BMPus

Here we define and utilize the unit smoothness of the cells to improve the hiding
capacity for the data hider. A bitmap of unit smoothness (BMPus) of all the cells of the
image will be calculated and recorded for complete recovery when needed. The details
are shown as follows: when a grayscale image Io of size 512 × 512 is given, according
to the raster scan sequence, except the first line and first column, we consider every
three consecutive pixels Pixel1

k , Pixel2
k , and Pixel3

k as a non-overlapping cell. Thus, there
will be (M− 1)× b(N − 1)/3c cells in the image Io, each of which is called Cellk, where
k ∈ [1, (M− 1)× b(N − 1)/3c]. The conversion between the cell number and the coordi-
nate (i, j) of a pixel in Io is formulated as Equation (1):

k =

⌊
(i− 2)× 510 + (j + 1)

3

⌋
, (1)

where i ∈ [2, 512], j ∈ [2, 511] and b·c rounds down a real number to the nearest integer
that is smaller than it.

Then we define a utility function called the US function to measure the smoothness of
each cell based on the cell structure depicted in Figure 4. For each pixel, its 7th to 5th bits
are selected as a unit. Three determined units are compared with each other to generate
the US value according to Equation (2) for a given Cellk:

Entropy 2021, 23, 790 7 of 23

US(Cellk) =
{

1, i f bitget(Pixel1
k , 7,−1, 5) = bitget(Pixel2

k , 7,−1, 5) = bitget(Pixel3
k , 7,−1, 5)

0, else,
(2)

where the US function is used to determine whether a cell is smooth or not, and
bitget(Pixeli

k, 7,−1, 5) means to fetch the 7th to 5th bits of Pixeli
k to form a 3-bits binary unit.

As described in Figure 4, Unit1
k= bitget(Pixeli

k, 7,−1, 5) = ‘001’, Unit2
k = ‘001’, Unit3

k = ‘001’,
and the conclusion can be drawn that Unit1

k = Unit2
k = Unit3

k . According to the definition
of US in Equation (1), the function result of US(Cellk) is ‘1’ in this case. On this occasion,
Unit2

k and Unit3
k can be cleared and used to embed a secret message without any worry

about not being able to recover, because Unit1
k has saved their values. A BMPus is used

to indicate if the corresponding unit is smooth or not is generated, as demonstrated in
Figure 5, where ‘1’ represents US(Cellk) = 1.

Entropy 2021, 23, 790 7 of 24

[1, (1) (1) / 3]k M N∈ − × −   . The conversion between the cell number and the coordinate (i,
j) of a pixel in Io is formulated as Equation (1):

(2) 510 (1)
3

,i jk − × + + 
  

= (1)

where i ∈ [2, 512], j ∈ [2, 511] and ⋅   rounds down a real number to the nearest integer that is
smaller than it.

Then we define a utility function called the US function to measure the smoothness
of each cell based on the cell structure depicted in Figure 4. For each pixel, its 7th to 5th
bits are selected as a unit. Three determined units are compared with each other to gener-
ate the US value according to Equation (2) for a given Cellk:

1 2 3 1, (, 7, 1,5) (,7, 1,5) (,7, 1,5)
US()

 0, ,
k k k

k

if bitget Pixel bitget Pixel bitget Pixel
Cell

else

− = − = −
=




 (2)

where the US function is used to determine whether a cell is smooth or not, and
(,7, 1,5)k

iPixelbitget − means to fetch the 7th to 5th bits of k
iPixel to form a 3-bits binary

unit. As described in Figure 4, 1
kUnit = (, 7, 1,5) −k

ibitget Pixel = ‘001’, 2
kUnit = ‘001’, 3

kUnit
= ‘001’, and the conclusion can be drawn that 1

kUnit = 2
kUnit = 3

kUnit . According to the
definition of US in Equation (1), the function result of US()kCell is ‘1’ in this case. On this
occasion, 2

kUnit and 3
kUnit can be cleared and used to embed a secret message without

any worry about not being able to recover, because 1
kUnit has saved their values. A

BMPus is used to indicate if the corresponding unit is smooth or not is generated, as
demonstrated in Figure 5, where ‘1’ represents US() = 1kCell .

Figure 4. The cell structure of Cellk.

Figure 5. A bitmap of unit smoothness (BMPus) example.

Such kCell is called a USC, which means the kth UnitSmooth Cell in an image by
using raster scan sequence to generate the serial number k. USCs can be used to hide the
secret message. By contrast, ‘0’ in the BMPus represents US() = 0kCell , and this cell is un-
embeddable. For an image with a size of 512 × 512, the bitmap will have 86,870 bits, which
is calculated as 511 511/ 3×    since the first column and first row are reference pixels.

Figure 4. The cell structure of Cellk.

Entropy 2021, 23, 790 7 of 24

[1, (1) (1) / 3]k M N∈ − × −   . The conversion between the cell number and the coordinate (i,
j) of a pixel in Io is formulated as Equation (1):

(2) 510 (1)
3

,i jk − × + + 
  

= (1)

where i ∈ [2, 512], j ∈ [2, 511] and ⋅   rounds down a real number to the nearest integer that is
smaller than it.

Then we define a utility function called the US function to measure the smoothness
of each cell based on the cell structure depicted in Figure 4. For each pixel, its 7th to 5th
bits are selected as a unit. Three determined units are compared with each other to gener-
ate the US value according to Equation (2) for a given Cellk:

1 2 3 1, (, 7, 1,5) (,7, 1,5) (,7, 1,5)
US()

 0, ,
k k k

k

if bitget Pixel bitget Pixel bitget Pixel
Cell

else

− = − = −
=




 (2)

where the US function is used to determine whether a cell is smooth or not, and
(,7, 1,5)k

iPixelbitget − means to fetch the 7th to 5th bits of k
iPixel to form a 3-bits binary

unit. As described in Figure 4, 1
kUnit = (, 7, 1,5) −k

ibitget Pixel = ‘001’, 2
kUnit = ‘001’, 3

kUnit
= ‘001’, and the conclusion can be drawn that 1

kUnit = 2
kUnit = 3

kUnit . According to the
definition of US in Equation (1), the function result of US()kCell is ‘1’ in this case. On this
occasion, 2

kUnit and 3
kUnit can be cleared and used to embed a secret message without

any worry about not being able to recover, because 1
kUnit has saved their values. A

BMPus is used to indicate if the corresponding unit is smooth or not is generated, as
demonstrated in Figure 5, where ‘1’ represents US() = 1kCell .

Figure 4. The cell structure of Cellk.

Figure 5. A bitmap of unit smoothness (BMPus) example.

Such kCell is called a USC, which means the kth UnitSmooth Cell in an image by
using raster scan sequence to generate the serial number k. USCs can be used to hide the
secret message. By contrast, ‘0’ in the BMPus represents US() = 0kCell , and this cell is un-
embeddable. For an image with a size of 512 × 512, the bitmap will have 86,870 bits, which
is calculated as 511 511/ 3×    since the first column and first row are reference pixels.

Figure 5. A bitmap of unit smoothness (BMPus) example.

Such Cellk is called a USC, which means the kth UnitSmooth Cell in an image by
using raster scan sequence to generate the serial number k. USCs can be used to hide the
secret message. By contrast, ‘0’ in the BMPus represents US(Cellk) = 0, and this cell is
un-embeddable. For an image with a size of 512 × 512, the bitmap will have 86,870 bits,
which is calculated as 511× b511/3c since the first column and first row are reference
pixels. The content of the BMPus will be embedded orderly into the vacated LSBs of the
encrypted image for the receiver can extract the secret information according to this map
when needed.

3.2. Self-Embedding Method Based on the (7, 4) Hamming Code

Hamming Codes [38] were introduced in 1950 by Richard W. Hamming as a way of
automatically correcting errors. Generally, the basic idea of Hamming Codes is the concept
of parity check [39]. In 2008, one of our authors applied a (7, 4) Hamming Code to design
a data hiding method [41]. Inspired by Chang et al.’s concept in [41], here we use a (7, 4)
Hamming Code to self-embed the LSBs of each pixel in a Cellk into the specific non-LSB
bits as shown in Figure 6, and then the LSB of three pixels in a Cellk is created as the second
room for concealing secret data.

Entropy 2021, 23, 790 8 of 23

Entropy 2021, 23, 790 8 of 24

The content of the BMPus will be embedded orderly into the vacated LSBs of the en-
crypted image for the receiver can extract the secret information according to this map
when needed.

3.2. Self-Embedding Method Based on the (7, 4) Hamming Code
Hamming Codes [38] were introduced in 1950 by Richard W. Hamming as a way of

automatically correcting errors. Generally, the basic idea of Hamming Codes is the con-
cept of parity check [39]. In 2008, one of our authors applied a (7, 4) Hamming Code to
design a data hiding method [41]. Inspired by Chang et al.’s concept in [41], here we use
a (7, 4) Hamming Code to self-embed the LSBs of each pixel in a Cellk into the specific non-
LSB bits as shown in Figure 6, and then the LSB of three pixels in a Cellk is created as the
second room for concealing secret data.

Figure 6. Self-embed LSBmsgk into CWk to obtain kCW ′ .

Step 1. Concatenate all LSBs of three pixels in Cellk to form a 3-bits binary code
LSBmsgk and its decimal value is ranged of [0, 7].

Step 2. Combine the 4th to 2nd bits of 3
kPixel , the 3rd to 2nd bits of 2

kPixel and the 3rd

to 2nd bits of 1
kPixel to form a 7-bits codeword called CWk. Then, let X = CWk and obtain

Y according to Equation (3):

 (3)

where H is called a parity check matrix.
Step 3. Obtain error position (EPk) after encoding LSBmsgk into CWk by Equation (4).

Finally, the bit value located at EPk is flipped in CWk to generate a stego codeword ′kCW :

.T
kEP Y LSBmsg= ⊕ (4)

3.3. The Proposed Flipping-MSB Method
To make sure the original 7-bits codeword CWk can be completely restored at the

receiver side, in our proposed scheme, the error position EPk must be recorded in advance.
Here, we designed a flipping-MSB method to record EPk. The core concept of the flipping-
MSB method is based on the MSB of three pixels in a Cellk. To be specific 1

kMSB , 2
kMSB

0 0 0 1 1 1 1
0 1 1 0 0 1 1 ,
1 0 1 0 1

(
0

)
1

T TH X XXY f
 
 = = × 

 

= ×


Figure 6. Self-embed LSBmsgk into CWk to obtain CW ′k.

Step 1. Concatenate all LSBs of three pixels in Cellk to form a 3-bits binary code LSBmsgk
and its decimal value is ranged of [0, 7].

Step 2. Combine the 4th to 2nd bits of Pixel3
k , the 3rd to 2nd bits of Pixel2

k and the 3rd
to 2nd bits of Pixel1

k to form a 7-bits codeword called CWk. Then, let X = CWk and obtain Y
according to Equation (3):

Y = f (X) = H × XT =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

× XT , (3)

where H is called a parity check matrix.
Step 3. Obtain error position (EPk) after encoding LSBmsgk into CWk by Equation (4).

Finally, the bit value located at EPk is flipped in CWk to generate a stego codeword CW ′k:

EP = YT ⊕ LSBmsgk. (4)

3.3. The Proposed Flipping-MSB Method

To make sure the original 7-bits codeword CWk can be completely restored at the
receiver side, in our proposed scheme, the error position EPk must be recorded in advance.
Here, we designed a flipping-MSB method to record EPk. The core concept of the flipping-
MSB method is based on the MSB of three pixels in a Cellk. To be specific MSB1

k , MSB2
k

and MSB3
k are used to indicate the MSB of three pixels in Cellk, respectively, as denoted

in Figure 7.

Entropy 2021, 23, 790 9 of 24

and 3
kMSB are used to indicate the MSB of three pixels in Cellk, respectively, as denoted

in Figure 7.

Figure 7. Three MSBs of Cellk.

With using three MSB values 1
kMSB , 2

kMSB and 3
kMSB , there are eight combina-

tions to indicate the error position EPk ranged in [0, 7] shown in Table 1. After the pixels
in all the MSBs of cells have been flipped according to their EPk, the flipped image is pro-
duced and named as If.

Table 1. Flipping combination of i
kMSB (1:flipped; 0: unflipped, [1, 3]i∈) used to identify EPk.

EPk 1
kMSB 2

kMSB 3
kMSB

0 0 0 0
1 1 0 0
2 0 1 0
3 1 1 0
4 0 0 1
5 1 0 1
6 0 1 1
7 1 1 1

3.4. MED Prediction and Our Defined Compressed Auxiliary Information (CAInfo)
In the previous subsections, we mentioned the MSB of three pixels in a Cellk may be

flipped to record EPk. To make sure the correct MSB of three pixels in a Cellk can be ob-
tained later, here Weinberger et al.’s median-edge detector (MED) [41] is adopted. For an
original image I sized M × N pixels, pixels located in the first row and first column are
served as the reference pixels, according to Equation (5). For a current pixel I (i, j), its
predicted value is then derived based on its three adjacent pixels, which are located at the
top left, top, and left of the sample, as shown in Figure 8.

The predicted value generated by MED is used to indicate whether the received
MSBs have been flipped, based on our assumption: Do-med should be smaller than Do-fmed in
general, where Do-med is the absolute value of the difference value between the predicted
pixel value and the original pixel value, and Do-fmed is the absolute value of the difference
between the predicted pixel value and the original pixel value carrying the flipped MSB.
To prove our assumption, the comparisons are listed in Table 2.

Figure 8. Example of reference pixels, the current pixel, and its three neighboring pixels.

Figure 7. Three MSBs of Cellk.

With using three MSB values MSB1
k , MSB2

k and MSB3
k , there are eight combinations

to indicate the error position EPk ranged in [0, 7] shown in Table 1. After the pixels in all
the MSBs of cells have been flipped according to their EPk, the flipped image is produced
and named as If.

Entropy 2021, 23, 790 9 of 23

Table 1. Flipping combination of MSBi
k (1:flipped; 0: unflipped, i ∈ [1, 3]) used to identify EPk.

EPk MSB1
k MSB2

k MSB3
k

0 0 0 0
1 1 0 0
2 0 1 0
3 1 1 0
4 0 0 1
5 1 0 1
6 0 1 1
7 1 1 1

3.4. MED Prediction and Our Defined Compressed Auxiliary Information (CAInfo)

In the previous subsections, we mentioned the MSB of three pixels in a Cellk may
be flipped to record EPk. To make sure the correct MSB of three pixels in a Cellk can be
obtained later, here Weinberger et al.’s median-edge detector (MED) [41] is adopted. For
an original image I sized M × N pixels, pixels located in the first row and first column
are served as the reference pixels, according to Equation (5). For a current pixel I (i, j), its
predicted value is then derived based on its three adjacent pixels, which are located at the
top left, top, and left of the sample, as shown in Figure 8.

Entropy 2021, 23, 790 9 of 24

and 3
kMSB are used to indicate the MSB of three pixels in Cellk, respectively, as denoted

in Figure 7.

Figure 7. Three MSBs of Cellk.

With using three MSB values 1
kMSB , 2

kMSB and 3
kMSB , there are eight combina-

tions to indicate the error position EPk ranged in [0, 7] shown in Table 1. After the pixels
in all the MSBs of cells have been flipped according to their EPk, the flipped image is pro-
duced and named as If.

Table 1. Flipping combination of i
kMSB (1:flipped; 0: unflipped, [1, 3]i∈) used to identify EPk.

EPk 1
kMSB 2

kMSB 3
kMSB

0 0 0 0
1 1 0 0
2 0 1 0
3 1 1 0
4 0 0 1
5 1 0 1
6 0 1 1
7 1 1 1

3.4. MED Prediction and Our Defined Compressed Auxiliary Information (CAInfo)
In the previous subsections, we mentioned the MSB of three pixels in a Cellk may be

flipped to record EPk. To make sure the correct MSB of three pixels in a Cellk can be ob-
tained later, here Weinberger et al.’s median-edge detector (MED) [41] is adopted. For an
original image I sized M × N pixels, pixels located in the first row and first column are
served as the reference pixels, according to Equation (5). For a current pixel I (i, j), its
predicted value is then derived based on its three adjacent pixels, which are located at the
top left, top, and left of the sample, as shown in Figure 8.

The predicted value generated by MED is used to indicate whether the received
MSBs have been flipped, based on our assumption: Do-med should be smaller than Do-fmed in
general, where Do-med is the absolute value of the difference value between the predicted
pixel value and the original pixel value, and Do-fmed is the absolute value of the difference
between the predicted pixel value and the original pixel value carrying the flipped MSB.
To prove our assumption, the comparisons are listed in Table 2.

Figure 8. Example of reference pixels, the current pixel, and its three neighboring pixels. Figure 8. Example of reference pixels, the current pixel, and its three neighboring pixels.

The predicted value generated by MED is used to indicate whether the received MSBs
have been flipped, based on our assumption: Do-med should be smaller than Do-fmed in
general, where Do-med is the absolute value of the difference value between the predicted
pixel value and the original pixel value, and Do-fmed is the absolute value of the difference
between the predicted pixel value and the original pixel value carrying the flipped MSB.
To prove our assumption, the comparisons are listed in Table 2.

I(i, j)MED =


min(I(i− 1, j− 1), I(i− 1, j)), i f I(i, j− 1) ≥ max(I(i− 1, j− 1), I(i− 1, j));
max(I(i− 1, j− 1), I(i− 1, j)) , i f I(i, j− 1) ≤ min(I(i− 1, j− 1), I(i− 1, j)) ;
I(i− 1, j− 1) + I(i− 1, j)− I(i, j− 1), otherwise.

(5)

Table 2. The comparison result between Do-med and Do-fmed for four example 512×512 size
grayscale images.

Images Do-med > Do-fmed Do-med = Do-fmed Do-med < Do-fmed

Lena 111 6 261,004
Baboon 3630 289 257,202

Airplane 65 3 261,053
Barbara 1333 163 259,625

Entropy 2021, 23, 790 10 of 23

From Table 2, we can see only 111 pixels for ‘Lena’, whose Do-fmed is less than Do-med.
Even in the worst case such as ‘Baboon’, there are only 3630 pixels where Do-fmed is less than
Do-med. In other words, as long as the coordinates of all exceptional pixels and their MSB
values are recorded, the abnormal situation can be detected in advance, thus ensuring the
complete recovery of the original image. The coordinates of all exceptional pixels and their
MSB values, named as EXCmsb, concatenated with BMPus will be compressed with the
Lossless JBIG2 algorithm [42] to further shrink its size, and the compressed result is called
compressed auxiliary information (CAInfo) with length of l, which will be embedded into
the LSBs of the first l pixels of the encrypted image later.

Based on the four designed functions and methods described in previous sections,
our proposed HUD-RDHEI scheme can easily achieve its two objectives: high capacity and
error-free at the recovery phase. Following existing RDHEI schemes, three participant roles,
namely content-owner, data-hider, and receiver, are included in our proposed scheme.

The primary hiding strategy adopted in our proposed scheme is shown in Figure 9.
Initially, an original image is divided into non-overlapping cells, and each cell contains
three neighboring pixels. For an image with size of M × N, with leaving the first row
and the first column intact, there will be (M− 1)× b(N − 1)/3c cells. For a cell Cellk, two
parts of embedding rooms are then generated to carry a secret message and CAInfo, which
guarantees the original image can be restored without error. The first part of vacated room
is marked in purple and the second one is marked in blue in Figure 9.

Entropy 2021, 23, 790 10 of 24

=
min((1, 1), (1,)), (, 1) max((1, 1), (1,));

(,) max((1, 1), (1,)) , (, 1) min((1, 1), (1,)) ;
(1, 1) (1,) (, 1), .

− − − − ≥ − − −
 − − − − ≤ − − −
 − − + − − −

MED

I i j I i j if I i j I i j I i j
I i j I i j I i j if I i j I i j I i j

I i j I i j I i j otherwise
(5)

From Table 2, we can see only 111 pixels for ‘Lena’, whose Do-fmed is less than Do-med.
Even in the worst case such as ‘Baboon’, there are only 3630 pixels where Do-fmed is less than
Do-med. In other words, as long as the coordinates of all exceptional pixels and their MSB
values are recorded, the abnormal situation can be detected in advance, thus ensuring the
complete recovery of the original image. The coordinates of all exceptional pixels and their
MSB values, named as EXCmsb, concatenated with BMPus will be compressed with the
Lossless JBIG2 algorithm [42] to further shrink its size, and the compressed result is called
compressed auxiliary information (CAInfo) with length of l, which will be embedded into
the LSBs of the first l pixels of the encrypted image later.

Table 2. The comparison result between Do-med and Do-fmed for four example 512×512 size grayscale
images.

Images Do-med > Do-fmed Do-med = Do-fmed Do-med < Do-fmed
Lena 111 6 261,004

Baboon 3630 289 257,202
Airplane 65 3 261,053
Barbara 1333 163 259,625

Based on the four designed functions and methods described in previous sections,
our proposed HUD-RDHEI scheme can easily achieve its two objectives: high capacity and
error-free at the recovery phase. Following existing RDHEI schemes, three participant roles,
namely content-owner, data-hider, and receiver, are included in our proposed scheme.

The primary hiding strategy adopted in our proposed scheme is shown in Figure 9.
Initially, an original image is divided into non-overlapping cells, and each cell contains
three neighboring pixels. For an image with size of M × N, with leaving the first row and
the first column intact, there will be (1) (1) / 3− × −  M N cells. For a cell Cellk, two parts
of embedding rooms are then generated to carry a secret message and CAInfo, which
guarantees the original image can be restored without error. The first part of vacated room
is marked in purple and the second one is marked in blue in Figure 9.

Figure 9. Hiding strategy for a cell.

Here every cell has three units 1
kUnit , 2

kUnit , and 3
kUnit , and a unit consists of the

5–7th bits of a pixel, as shown in Figure 9. The first part of vacated room is 6-bits, which
are derived from the latter two units 2

kUnit and 3
kUnit in a cell when three units in the

Figure 9. Hiding strategy for a cell.

Here every cell has three units Unit1
k , Unit2

k , and Unit3
k , and a unit consists of the

5–7th bits of a pixel, as shown in Figure 9. The first part of vacated room is 6-bits, which
are derived from the latter two units Unit2

k and Unit3
k in a cell when three units in the cell

have the same values. That is US(Cellk) = 1 and colored in purple Figure 9. The second
part of vacated room is 3-bits, which is the collection of the LSBs of three pixels in Cellk.
It will be used to hide CAInfo and a part of secret message. To save the original value of
the threes LSBs in Cellk, which are called LSBmsgk, the self-embedding method based on
the (7, 4) Hamming Code described in Section 3.2 are applied. During the procedure, the
combination of the 4th–2nd bits of the first pixel and the 3rd–2nd bits of the second and
third pixels are combined and named as CW then used to carry LSBmsgk.

With our designed two vacated room strategies, a large amount space for secret data
and the required auxiliary information are successfully created, generation of marked
encrypted image, completely restoring the original image and extracting secret informa-
tion can be achieved as well when needed. The detailed operations in three phases are
demonstrated in the following subsections.

3.5. Encrypted Image Generation

Given an original grayscale image Io of width M and height N, on the content owner
side, there are 7 Steps to generate the corresponding encrypted image carrying the auxiliary
information CAInfo:

Entropy 2021, 23, 790 11 of 23

Step 1: Except pixels located in the first line and first column, group three neighboring
pixels in the original image Io into Cells. Compute the US function and generate a BMPus
according to Section 3.1.

Step 2: Concatenate all the LSBs of the three pixels in Cellk to form a 3-bits binary string
LSBmsgk, then encode LSBmsgk into CWk acquired from the non-LSB bits to obtain CW ′k
according to the self-embedding method based on the (7, 4) Hamming Code discussed in
Section 3.2. Thus, the self-embedding image Is and error position EPk are obtained.

Step 3: Flip MSBi
k on the basis of our proposed flipping-MSB method presented in

Table 1 to record EPk. Thus, the flipped image If is generated.
Step 4: Produce the MED prediction value of all pixels except the first column and the

first row (the first column and the first row will be used as reference pixel values and kept
unchanged). The two groups of difference values are generated, namely, Ds-med, which is the
difference of pixel value and MED prediction, and Dsf-med that is the difference of pixel value
with a flipped MSB and MED prediction. Find out all the pixels that Ds−med ≥ Ds f−med. If
they are found, the coordinates and MSB values of the pixels will be recorded, which are
named EXCmsb as mentioned in Section 3.4.

Step 5: Use the encryption key Ke to perform a bitwise encryption on the flipped
image If to generate the encrypted image Ie. The encryption algorithm is rendered as
Equations (6)–(8):

I f (i, j, u) =
⌊

I f (i, j)/2u−1
⌋

mod 2, (6)

I f (i, j) =
8

∑
u=1

(I f (i, j, u)× 2u−1), (7)

Ie(i, j, u) = I f (i, j, u) ⊕ r(i, j, u), (8)

where u ∈ [1, 8], i, j ∈ [0, 255] and r(i, j, u) is a binary bit value ‘1’ or ‘0’ produced in
sequence according to a bit stream {0, 1}, which is determined by the encryption key. And
I f (i, j, u) is a bit of the pixel I f (i, j) of the flipped image If, where I f (i, j, 1) is the LSB of
I f (i, j), and I f (i, j, 8) is the MSB.

Step 6: Generate the CAInfo with the Lossless JBIG2 algorithm [33] to further shrink its
size of CAInfo = BMPus || EXCmsb, where ‘||’ means the concatenation of the two parts
of bit stream and EXCmsb.

Step 7: Embed CAInfo into the first l LSBs of the encrypted image Ie to form I′e, which
will be sent to the data hider.

Example-1: For image ‘Lena’, when k = 48,367, i = 286 and j = 260 according to Equation
(1). There are three pixels in the Cellk as Pixel1

k = Io(i, j) = 154, Pixel2
k = Io(i, j + 1) = 159,

Pixel3
k = Io(i, j + 2) = 155. The encryption procedure of the three pixel values in Cellk are

demonstrated in Figure 10.

Entropy 2021, 23, 790 12 of 24

Step 7: Embed CAInfo into the first l LSBs of the encrypted image Ie to form eI ′ ,
which will be sent to the data hider.

Example-1: For image ‘Lena’, when k = 48,367, i = 286 and j = 260 according to Equation
(1). There are three pixels in the Cellk as 1 (,) 154,== ok i jPixel I

2 (, 1) 159,= + =okPixel I i j 3 (, 2) 155.= + =okPixel i jI The encryption procedure of the

three pixel values in Cellk are demonstrated in Figure 10.

Figure 10. Example-1 of the processing procedure and encryption of Cellk.

In this case, the 7th, 6th, and 5th bit of Io(i, j), Io(i, j + 1) and Io(i, j + 2) constitutes 1
kUnit

2
kUnit , and 3

kUnit , respectively. Because the three units are equal, the corresponding

US(Cellk) = ‘1’. This means the last two units 2
kUnit and 3

kUnit of Cellk can be applied to
hide secret data. The LSBs of the three pixels is ‘0’, ‘1’, and ‘1’; therefore, LSBmsgk = ‘011’.
CW = ‘1011101’ is formed by those bits at the specified location, which are the 4th, 3rd,
and 2nd bit of 1

kPixel , 3rd and 2nd bit of 2
kPixel , and 3rd, 2nd bit of 3

kPixel . After

conducting data hiding based on the (7, 4) Hamming Code,
kEP

P = b7, which means the

2nd bit of the 3
kPixel value should be flipped. After the flipping operation, CW is en-

coded into CW ′ = ‘1011100’. Thus, Is(i, j) = Io(i, j) = 154, 159, (, 1) (, 1)+ = + =s oi j i jI I Is(i,
j + 2) = 153. Note that only the last bit of the three pixels in Cellk is changed. Due to EPk =
7, according to Equation (3), flipping i

kMSB ([1, 3]∈i) of the three pixels in Is is selected
according to flipping rules listed in Table 1. Thus, the flipped pixel values If(i, j) = 26, If(i, j
+ 1) = 31, If(i, j + 2) = 25 are obtained. Imed(i, j) = 156, Imed(i, j + 1) = 154, Imed(i, j) = 159. Thus,

 154 156 26 156− < − , which is the comparison result of the two difference values be-

tween the MED prediction value Imed(i, j) and the values before and after flipping the MSB
of Is(i, j). Obviously, it corresponds to the general case, so their coordinates and MSB val-
ues will not be recorded as mentioned in Section 3.4. The other two pixels in Cellk are also
the general case. Finally, after the XOR operation, the three encrypted pixels in Cellk are
derived as Ie(i, j) = 79, Ie(i, j + 1) = 147 and Ie(i, j + 2) = 62, as shown in Figure 10.

Example-2: For image ‘Lena‘, when k = 65,984, i = 390, j = 71 according to Equation (1),
1 () 221, = =okPixel I i j , 2 (, 1) =153= +okPixel i jI , 3 .(2) 81, = =+okPixel I i j The en-

cryption processing procedure of the pixel values in the Cellk is demonstrated in Figure
11.

Figure 11. Example-2 of the processing procedure and encryption of Cellk.

Figure 10. Example-1 of the processing procedure and encryption of Cellk.

In this case, the 7th, 6th, and 5th bit of Io(i, j), Io(i, j + 1) and Io(i, j + 2) constitutes
Unit1

kUnit2
k , and Unit3

k , respectively. Because the three units are equal, the corresponding
US(Cellk) = ‘1’. This means the last two units Unit2

k and Unit3
k of Cellk can be applied to

hide secret data. The LSBs of the three pixels is ‘0’, ‘1’, and ‘1’; therefore, LSBmsgk = ‘011’.
CW = ‘1011101’ is formed by those bits at the specified location, which are the 4th, 3rd, and
2nd bit of Pixel1

k , 3rd and 2nd bit of Pixel2
k , and 3rd, 2nd bit of Pixel3

k . After conducting data
hiding based on the (7, 4) Hamming Code, PEPk = b7, which means the 2nd bit of the Pixel3

k

Entropy 2021, 23, 790 12 of 23

value should be flipped. After the flipping operation, CW is encoded into CW ′ = ‘1011100’.
Thus, Is(i, j) = Io(i, j) = 154, Is(i, j + 1) = Io(i, j + 1) = 159, Is(i, j + 2) = 153. Note that only
the last bit of the three pixels in Cellk is changed. Due to EPk = 7, according to Equation (3),
flipping MSBi

k(i ∈ [1, 3]) of the three pixels in Is is selected according to flipping rules
listed in Table 1. Thus, the flipped pixel values If(i, j) = 26, If(i, j + 1) = 31, If(i, j + 2) = 25 are
obtained. Imed(i, j) = 156, Imed(i, j + 1) = 154, Imed(i, j) = 159. Thus, |154− 156| < |26− 156|,
which is the comparison result of the two difference values between the MED prediction
value Imed(i, j) and the values before and after flipping the MSB of Is(i, j). Obviously, it
corresponds to the general case, so their coordinates and MSB values will not be recorded
as mentioned in Section 3.4. The other two pixels in Cellk are also the general case. Finally,
after the XOR operation, the three encrypted pixels in Cellk are derived as Ie(i, j) = 79,
Ie(i, j + 1) = 147 and Ie(i, j + 2) = 62, as shown in Figure 10.

Example-2: For image ‘Lena‘, when k = 65,984, i = 390, j = 71 according to Equation (1),
Pixel1

k = Io(i, j) = 221, Pixel2
k = Io(i, j + 1)= 153, Pixel3

k = Io(i, j + 2) = 81. The encryp-
tion processing procedure of the pixel values in the Cellk is demonstrated in Figure 11.

Entropy 2021, 23, 790 12 of 24

Step 7: Embed CAInfo into the first l LSBs of the encrypted image Ie to form eI ′ ,
which will be sent to the data hider.

Example-1: For image ‘Lena’, when k = 48,367, i = 286 and j = 260 according to Equation
(1). There are three pixels in the Cellk as 1 (,) 154,== ok i jPixel I

2 (, 1) 159,= + =okPixel I i j 3 (, 2) 155.= + =okPixel i jI The encryption procedure of the

three pixel values in Cellk are demonstrated in Figure 10.

Figure 10. Example-1 of the processing procedure and encryption of Cellk.

In this case, the 7th, 6th, and 5th bit of Io(i, j), Io(i, j + 1) and Io(i, j + 2) constitutes 1
kUnit

2
kUnit , and 3

kUnit , respectively. Because the three units are equal, the corresponding

US(Cellk) = ‘1’. This means the last two units 2
kUnit and 3

kUnit of Cellk can be applied to
hide secret data. The LSBs of the three pixels is ‘0’, ‘1’, and ‘1’; therefore, LSBmsgk = ‘011’.
CW = ‘1011101’ is formed by those bits at the specified location, which are the 4th, 3rd,
and 2nd bit of 1

kPixel , 3rd and 2nd bit of 2
kPixel , and 3rd, 2nd bit of 3

kPixel . After

conducting data hiding based on the (7, 4) Hamming Code,
kEP

P = b7, which means the

2nd bit of the 3
kPixel value should be flipped. After the flipping operation, CW is en-

coded into CW ′ = ‘1011100’. Thus, Is(i, j) = Io(i, j) = 154, 159, (, 1) (, 1)+ = + =s oi j i jI I Is(i,
j + 2) = 153. Note that only the last bit of the three pixels in Cellk is changed. Due to EPk =
7, according to Equation (3), flipping i

kMSB ([1, 3]∈i) of the three pixels in Is is selected
according to flipping rules listed in Table 1. Thus, the flipped pixel values If(i, j) = 26, If(i, j
+ 1) = 31, If(i, j + 2) = 25 are obtained. Imed(i, j) = 156, Imed(i, j + 1) = 154, Imed(i, j) = 159. Thus,

 154 156 26 156− < − , which is the comparison result of the two difference values be-

tween the MED prediction value Imed(i, j) and the values before and after flipping the MSB
of Is(i, j). Obviously, it corresponds to the general case, so their coordinates and MSB val-
ues will not be recorded as mentioned in Section 3.4. The other two pixels in Cellk are also
the general case. Finally, after the XOR operation, the three encrypted pixels in Cellk are
derived as Ie(i, j) = 79, Ie(i, j + 1) = 147 and Ie(i, j + 2) = 62, as shown in Figure 10.

Example-2: For image ‘Lena‘, when k = 65,984, i = 390, j = 71 according to Equation (1),
1 () 221, = =okPixel I i j , 2 (, 1) =153= +okPixel i jI , 3 .(2) 81, = =+okPixel I i j The en-

cryption processing procedure of the pixel values in the Cellk is demonstrated in Figure
11.

Figure 11. Example-2 of the processing procedure and encryption of Cellk. Figure 11. Example-2 of the processing procedure and encryption of Cellk.

It is noted that US (Cellk) = 0 in this case because their Unit1
k = ‘101’, Unit2

k = ‘001’, and
Unit3

k = ‘010’ are not equal. Thus, the last two units Unit2
k and Unit3

k of Cellk cannot be used
to hide any secret data. Here, LSBmsgk = ‘111’. After the hiding process based on the (7, 4)
Hamming Code, the CW is changed into CW ′ = ’1101000’ by flipping the bit on b4 because
EPk = 4. Thus Is(i, j) = Io(i, j) = 221, Is(i, j + 1) = Io(i, j + 1) = 153, Is(i, j + 2) = 81. Flip
MSBi

k of Is(i, j + 2) in Cellk due to EPk = 4 according to flipping rules listed in Table 1.
Among them, Is(i, j + 2) = Is(390, 73) = 81, Imed (390, 73) = 153, the value with the flipped
MSB of Is(i, j + 2) is 209, which shows |81− 153| > |209− 153|, thus the coordinate and
the MSB value of Is(390, 73) will be formed as a 17-bits binary string for saving to CAInfo.
After the flipping operation, the flipped image If (i, j) is obtained. Finally, we conduct
a bitwise XOR on every bit of the three pixels to get the three encrypted pixel values as
Ie(i, j) = 106,Ie(i, j + 1) = 117, and Ie(i, j + 2) = 92.

3.6. Data Embedding in the Encrypted Image

On the data hider side, the LSBs of all the pixels of the encrypted image Ie can be
applied to embed a secret message. In addition, it is particularly noteworthy that more
secret data will be hidden in the last two Units of USCs. Taking the grayscale image ‘Lena’
with size of 512 × 512 as an example, the number of USCs is 69.6 percent of the total
number of cells. Then, to avoid the potential information theft risk, the data hiding key
Kh is used to scramble the secret message S, which randomizes the order of bits in binary
numbers. Furthermore, the scrambled secret message S′ is carried out, bits of which will
be substitution bits to replace the LSBs and next the last two Units of USCs to obtain the
marked encrypted image Ime.

Example-3: For grayscale image ‘Lena’, when k is 48,367, i = 286, j = 260. (Here
I′e(i, j) = Ie(i, j) because the CAInfo of ‘Lena’only needs l = 888 bits to hide and will
not influence the pixels when k > 296 (=888/3)). After the encryption operation with
Ke, Celle′

k = (79, 147, 62). Based on the BMPus value uncompressed from CAInfo, the hiding
scrambled secret message procedure is listed as follows in Figure 12.

Entropy 2021, 23, 790 13 of 23

Entropy 2021, 23, 790 13 of 24

It is noted that US (Cellk) = 0 in this case because their 1
kUnit = ‘101’, 2

kUnit = ‘001’,

and 3
kUnit = ‘010’ are not equal. Thus, the last two units 2

kUnit and 3
kUnit of Cellk cannot

be used to hide any secret data. Here, LSBmsgk = ‘111’. After the hiding process based on
the (7, 4) Hamming Code, the CW is changed into CW′ = ’1101000’ by flipping the bit on
b4 because EPk = 4. Thus , 221(,) (,)= =s oI i j I i j (, 1) (, 1)=+ +s oII i j i j = 153,

 81(, 2) =+sI i j . Flip i
kMSB of (, 2)+sI i j in Cellk due to EPk = 4 according to flip-

ping rules listed in Table 1. Among them, Is(i, j + 2) = Is(390, 73) = 81, Imed (390, 73) = 153, the
value with the flipped MSB of Is(i, j + 2) is 209, which shows 81 153 209 153>− − , thus
the coordinate and the MSB value of Is(390, 73) will be formed as a 17-bits binary string
for saving to CAInfo. After the flipping operation, the flipped image If (i, j) is obtained.
Finally, we conduct a bitwise XOR on every bit of the three pixels to get the three en-
crypted pixel values as (,) 106, =eI i j (, 1) 117, + =e i jI and (, 2) 92+ =eI i j .

3.6. Data Embedding in the Encrypted Image
On the data hider side, the LSBs of all the pixels of the encrypted image Ie can be

applied to embed a secret message. In addition, it is particularly noteworthy that more
secret data will be hidden in the last two Units of USCs. Taking the grayscale image ‘Lena’
with size of 512 × 512 as an example, the number of USCs is 69.6 percent of the total num-
ber of cells. Then, to avoid the potential information theft risk, the data hiding key Kh is
used to scramble the secret message S, which randomizes the order of bits in binary num-
bers. Furthermore, the scrambled secret message ′S is carried out, bits of which will be
substitution bits to replace the LSBs and next the last two Units of USCs to obtain the
marked encrypted image Ime.

Example-3: For grayscale image ‘Lena’, when k is 48,367, i = 286, j = 260. (Here (,)eI i j′
= (,)e i jI because the CAInfo of ‘Lena’only needs l = 888 bits to hide and will not influ-

ence the pixels when k > 296 (=888/3)). After the encryption operation with Ke, ′e
kCell =

(79, 147, 62). Based on the BMPus value uncompressed from CAInfo, the hiding scrambled
secret message procedure is listed as follows in Figure 12.

Figure 12. Example of embedding of secret message.

As one can see, the US(Cellk) value will first be judged to determine whether the last
two units of ′e

kCell are embeddable. Due to US(Cellk) = 1 in this example, we can embed

9 bits in the three pixels of ′e
kCell in Ie here. Thus, the embedding ratio (ER) of this cell is

9/3 = 3 bpp. This procedure will be processed for all pixels in the embeddable area of the
image. By contrast, if US(Cellk) = 0 as shown in Figure 13, the last two units of ′e

kCell are
un-embeddable. In this case, only three bits can be carried in a Cell.

Figure 12. Example of embedding of secret message.

As one can see, the US(Cellk) value will first be judged to determine whether the last
two units of Celle′

k are embeddable. Due to US(Cellk) = 1 in this example, we can embed
9 bits in the three pixels of Celle′

k in Ie here. Thus, the embedding ratio (ER) of this cell is
9/3 = 3 bpp. This procedure will be processed for all pixels in the embeddable area of the
image. By contrast, if US(Cellk) = 0 as shown in Figure 13, the last two units of Celle′

k are
un-embeddable. In this case, only three bits can be carried in a Cell.

Entropy 2021, 23, 790 14 of 24

Figure 13. Example of embedding of secret message.

3.7. Data Extraction and Image Recovery
In this section, the details of data extracting and image recovering process of the pro-

posed HUD-RDHEI scheme will be introduced.

3.7.1. Data Extraction with Only a Data Hiding Key
If the receiver holds only the data hiding key, they can take out the first l LSB bits

that represents the content of CAInfo by raster scan order pixels of marked encrypted
image. Based on the derived CAInfo, the extracted BMPus can be used to identify which
cells are embeddable. For the embeddable cells, six secret bits can be extracted from the
last two units. As for the extracted l + 1 bits, they are treated as the second part of the secret
message. Combine the first secret data set and the second secret data set to be the final
encrypted secret message. With the data hiding key, the encrypted secret message can be
decrypted, and the final restored secret message is obtained. Note that the extracted de-
crypted secret data is lossless, and the extraction process is executed without any infor-
mation about the content of the original image.

3.7.2. Image Decryption with Only the Data Encryption Key
On this occasion, the receiver has the encryption key Ke only; s/he can obtain the di-

rectly decrypted image optimally close to the original image with PSNR of +∞:
Step 1. Take the first l bits, bit by bit, out from the LSB bits of the marked encrypted

image Ime to form CAInfo.
Step 2. Generate the random {0, 1} bit stream using Ke, then execute the bitwise XOR

operation with the received image bit by bit.
Step 3. Recover the latter two 3-bits units of USCs using the value of the first 3-bits

unit in a cell of Ime. Now the Flipped image If is obtained.
Step 4. Flip back the pixel value, pixel by pixel, according to which condition it meets.

If the corresponding coordinate is not recorded in EXCmsb, it means the case is normal.
Compare the two difference values, one difference value is between the MED prediction
value and the MSB unflipped pixel value, the other difference value is between the MED
prediction value and the MSB flipped pixel value. If the former is less than the latter, it is
a normal case and no flipping operation is required; otherwise, MSB must be flipped back.
If the pixel’s coordinate is found in EXCmsb, it is determined as an abnormal case, and
the following bit is its original MSB.

Step 5. Compare the MSB extracted from EXCmsb and the MSB extracted from the
flipped image with each other. If they are the same, it means no flipping has been con-
ducted during the data hiding phase; otherwise, it means that flipping has been con-
ducted. Extract the flip information of MSBs in a cell to get the value of EPk according to
Table 1. The bit value on position EPk is where CW is different from CW ′ . Flip back that
bit then the original CW value is obtained.

Step 6. Substitute the X value with CW ′ and execute the computation of Equation
(3), then the original LSBmsgk value can be available. Take the values of the three bits of
LSBmsgk back to the LSBs of the three pixels in the cell, the original pixel values are carried
out finally.

Figure 13. Example of embedding of secret message.

3.7. Data Extraction and Image Recovery

In this section, the details of data extracting and image recovering process of the
proposed HUD-RDHEI scheme will be introduced.

3.7.1. Data Extraction with Only a Data Hiding Key

If the receiver holds only the data hiding key, they can take out the first l LSB bits
that represents the content of CAInfo by raster scan order pixels of marked encrypted
image. Based on the derived CAInfo, the extracted BMPus can be used to identify which
cells are embeddable. For the embeddable cells, six secret bits can be extracted from
the last two units. As for the extracted l + 1 bits, they are treated as the second part of
the secret message. Combine the first secret data set and the second secret data set to
be the final encrypted secret message. With the data hiding key, the encrypted secret
message can be decrypted, and the final restored secret message is obtained. Note that the
extracted decrypted secret data is lossless, and the extraction process is executed without
any information about the content of the original image.

3.7.2. Image Decryption with Only the Data Encryption Key

On this occasion, the receiver has the encryption key Ke only; s/he can obtain the
directly decrypted image optimally close to the original image with PSNR of +∞:

Step 1. Take the first l bits, bit by bit, out from the LSB bits of the marked encrypted
image Ime to form CAInfo.

Step 2. Generate the random {0, 1} bit stream using Ke, then execute the bitwise XOR
operation with the received image bit by bit.

Step 3. Recover the latter two 3-bits units of USCs using the value of the first 3-bits
unit in a cell of Ime. Now the Flipped image If is obtained.

Step 4. Flip back the pixel value, pixel by pixel, according to which condition it meets.
If the corresponding coordinate is not recorded in EXCmsb, it means the case is normal.
Compare the two difference values, one difference value is between the MED prediction
value and the MSB unflipped pixel value, the other difference value is between the MED

Entropy 2021, 23, 790 14 of 23

prediction value and the MSB flipped pixel value. If the former is less than the latter, it is
a normal case and no flipping operation is required; otherwise, MSB must be flipped back.
If the pixel’s coordinate is found in EXCmsb, it is determined as an abnormal case, and the
following bit is its original MSB.

Step 5. Compare the MSB extracted from EXCmsb and the MSB extracted from the
flipped image with each other. If they are the same, it means no flipping has been conducted
during the data hiding phase; otherwise, it means that flipping has been conducted. Extract
the flip information of MSBs in a cell to get the value of EPk according to Table 1. The
bit value on position EPk is where CW is different from CW ′. Flip back that bit then the
original CW value is obtained.

Step 6. Substitute the X value with CW ′ and execute the computation of Equation (3),
then the original LSBmsgk value can be available. Take the values of the three bits of
LSBmsgk back to the LSBs of the three pixels in the cell, the original pixel values are carried
out finally.

Hereinto, Imed(i, j) can be derived pixel by pixel during the decryption process from
the first pixel located in the first row and first column. This is because pixels located at the
first row and the first column remain unchanged and serve as reference pixels. Therefore,
prediction values for the rest of the pixels can be correctly calculated with the assistance of
these reference pixels.

Example-4: Here, follow the encrypted and hidden result demonstrated in Figure 12,
and the corresponding decryption procedure with encryption key Ke is demonstrated
in Figure 14.

Entropy 2021, 23, 790 15 of 24

Hereinto, Imed(i, j) can be derived pixel by pixel during the decryption process from
the first pixel located in the first row and first column. This is because pixels located at the
first row and the first column remain unchanged and serve as reference pixels. Therefore,
prediction values for the rest of the pixels can be correctly calculated with the assistance
of these reference pixels.

Example-4: Here, follow the encrypted and hidden result demonstrated in Figure 12,
and the corresponding decryption procedure with encryption key Ke is demonstrated in
Figure 14.

Figure 14. Example of image decryption procedure with Ke.

After decrypting all the pixels of Ime with Ke, the values of three decrypted pixels of
me
kCell = [27, 127, 120] will be found. Note that, during the decryption procedure, the bit

strings that are executed on pixels with bitwise XOR are as same as the encryption proce-
dure due to the same key Ke. The binary value of 27 is ‘00011011’, thus according to method
described in Figure 4, 1 = '001'kUnit can be obtained. US(Cellk) value ‘1’ can also be ob-
tained from the first l LSB bits of eI′ that symbolize the CAInfo of an image Io. Here, the
obtained value ‘1’ means the last two units are determined as USC, and they are embed-
ded with a secret message and changed to recover their original bits, and 2

kUnit and
3 kUnit shall be modified as ‘001’ to get f

kCell = [27, 31, 24]. Since the coordinates of
these three pixels have not been recorded in EXCmsb, all of them are judged as the normal
case. However, for the normal case, the difference between the MED prediction value and
the MSB unflipped pixel value should be less than the difference between the MED pre-
diction value and the MSB flipped pixel value. Unfortunately, it is not held in three pixels.
It indicates that the MSBs were flipped in the hiding stage. Therefore, for recovery, the
MSBs of three pixels must be flipped back to get [155, 159, 152]. Because three pixels have
been flipped, it is concluded that EPk = 7 and the 2nd bit of 3

kPixel was modified during
the data embedding procedure according to the rules listed in Table 1. Finally, the original

o
kCell [154, 159, 155] can be obtained with the derived LSBmsgk = ’011’ from calculation of

Equation (3) and flipping the 2nd bit of 3
kPixel .

Example-5: Follow the encrypted and hidden result demonstrated in Figure 13, its
decryption procedure is shown in Figure 15. The flipping cases of If(i, j) and If(i, j + 1) are
the same, they are determined as normal case because their pixel coordinates have not
been recorded in EXCmsb. But being different from the former two pixels, the coordinate
and MSB value of If(i, j + 2) can be found in EXCmsb, and thus the recorded MSB ‘0’ is
used to substitute the MSB of If(i, j + 2) = 208 and form Is(i, j + 2) = 80. Then, EPk = 4 can be
obtained according to the flipping rules listed in Table 1. In the meantime, on the basis of
Figure 6, ′CW = ‘1101000’ of kCell is obtained. Based on the (7, 4) Hamming Code, by
calculating Equation (4), the original LSBmsgk = ‘111’ is carried out. Finally, the original
cell [221, 153, 81] is solved.

Figure 14. Example of image decryption procedure with Ke.

After decrypting all the pixels of Ime with Ke, the values of three decrypted pixels
of Cellme

k = [27, 127, 120] will be found. Note that, during the decryption procedure, the
bit strings that are executed on pixels with bitwise XOR are as same as the encryption
procedure due to the same key Ke. The binary value of 27 is ‘00011011’, thus according to
method described in Figure 4, Unit1

k=
′001′ can be obtained. US(Cellk) value ‘1’ can also be

obtained from the first l LSB bits of I′e that symbolize the CAInfo of an image Io. Here, the
obtained value ‘1’ means the last two units are determined as USC, and they are embedded
with a secret message and changed to recover their original bits, and Unit2

k and Unit3
k shall

be modified as ‘001’ to get Cell f
k = [27, 31, 24]. Since the coordinates of these three pixels

have not been recorded in EXCmsb, all of them are judged as the normal case. However, for
the normal case, the difference between the MED prediction value and the MSB unflipped
pixel value should be less than the difference between the MED prediction value and the
MSB flipped pixel value. Unfortunately, it is not held in three pixels. It indicates that the
MSBs were flipped in the hiding stage. Therefore, for recovery, the MSBs of three pixels
must be flipped back to get [155, 159, 152]. Because three pixels have been flipped, it
is concluded that EPk = 7 and the 2nd bit of was modified during the data embedding
procedure according to the rules listed in Table 1. Finally, the original Cello

k [154, 159, 155]
can be obtained with the derived LSBmsgk = ’011’ from calculation of Equation (3) and
flipping the 2nd bit of Pixel3

k .
Example-5: Follow the encrypted and hidden result demonstrated in Figure 13, its

decryption procedure is shown in Figure 15. The flipping cases of If(i, j) and If(i, j + 1) are

Entropy 2021, 23, 790 15 of 23

the same, they are determined as normal case because their pixel coordinates have not
been recorded in EXCmsb. But being different from the former two pixels, the coordinate
and MSB value of If(i, j + 2) can be found in EXCmsb, and thus the recorded MSB ‘0’ is
used to substitute the MSB of If(i, j + 2) = 208 and form Is(i, j + 2) = 80. Then, EPk = 4 can
be obtained according to the flipping rules listed in Table 1. In the meantime, on the basis
of Figure 6, CW ′ = ‘1101000’ of Cellk is obtained. Based on the (7, 4) Hamming Code, by
calculating Equation (4), the original LSBmsgk = ‘111’ is carried out. Finally, the original cell
[221, 153, 81] is solved.

Entropy 2021, 23, 790 16 of 24

Figure 15. Example of image decryption procedure with Ke.

3.7.3. Data Extraction and Image Decryption with Both Data Hiding and Encryption Key
With Ke and Kh, the receiver can not only recover the image but also extract the secret

message.
Step 1. Generate the random {0, 1} bit stream using Ke, then execute the bitwise XOR

(EXCLUSIVE-OR) operation with the received marked encrypted image bit by bit. Thus,
the receiver decrypts the marked encrypted image and gets eI ′ .

Step 2. Take the first l bits, bit by bit, out from the LSB bits of the marked encrypted
image eI ′ to form CAInfo. From the l + 1 position, take and save the LSB of eI′ to form
the second part of the content of the scrambled secret message.

Step 3. Save the bits of the last two 3-bits units of USCs of Ime as they are the first part
of the content of the scrambled secret message. Now all the scrambled cover message
strings have been carried out. Then, by using Kh, it is easy to recover the scrambled secret
message and extract it completely with no errors.

Step 4. Recover the last two 3-bits units of USCs using the value of the first 3-bits unit
in a cell. Now the flipped image If is obtained.

Step 5. Flip back pixel values, pixel by pixel, according to two principles: 1) whether
its coordinate has been recorded in EXCmsb and its corresponding MSB, 2) the compari-
son result of two difference values, one is the difference between the MED prediction val-
ues and the pixel value with original MSB，the other is the difference between the MED
prediction value and the pixel value with flipped MSB.

Step 6. Extract the flipping information of MSBs in a cell to get the value of EPk. From
EPk, the position where it is modified can be known, so that CW can be obtained. By
substituting X value with CW ′ and calculated with Equation (2), the LSB value of the
original image can be obtained. Hereto, the original image is completely recovered.

4. Experimental Results and Analysis
In our proposed HUD-RDHEI scheme, two kinds of vacated rooms can be created.

The primary is derived from the LSBs of three continuous pixels. The reserved space will
be filled by partial scrambled secrets by data hider with LSB substitution, which is differ-
ent from [43–45]. As for the original LSBs of three continuous pixels, they will be embed-
ded into non-LSB planes with (7, 4) Hamming Code for complete recovery later. Then,
aiming to improve the hiding capacity, a novel UnitSmooth judging function called US
was proposed to generate BMPus, which locates smooth units for carrying extra 6 bits of
a secret message in a unit, thus a large hiding capacity can be realized.

To further prove our performance on image quality and hiding capacity, sufficient
the experimental results and comparisons of the proposed HUD-RDHEI scheme with sev-
eral existing related works are demonstrated in this section. Some of the test images—
Lena, Baboon, Airplane, Cameraman, Peppers, and Zelda—are downloaded from the Im-
age Database SIPI [46]. They are shown in Figure 16. More experimental data is generated
from two database images, BOSSBase [47] and BOWS-2 [48]. In the experiments, 20,000
grayscale images, with the size of 512 × 512, are used to evaluate the performance of the
proposed HUD-RDHEI scheme. Here, the embedding rate (ER) is the measurement indi-
cator to compare the proposed HUD-RDHEI scheme and some state-of-the-art algorithms.
Peak signal-to-noise ratio (PSNR), correlation coefficient, number of pixels change rate

Figure 15. Example of image decryption procedure with Ke.

3.7.3. Data Extraction and Image Decryption with Both Data Hiding and Encryption Key

With Ke and Kh, the receiver can not only recover the image but also extract the
secret message.

Step 1. Generate the random {0, 1} bit stream using Ke, then execute the bitwise XOR
(EXCLUSIVE-OR) operation with the received marked encrypted image bit by bit. Thus,
the receiver decrypts the marked encrypted image and gets I′e.

Step 2. Take the first l bits, bit by bit, out from the LSB bits of the marked encrypted
image I′e to form CAInfo. From the l + 1 position, take and save the LSB of I′e to form the
second part of the content of the scrambled secret message.

Step 3. Save the bits of the last two 3-bits units of USCs of Ime as they are the first
part of the content of the scrambled secret message. Now all the scrambled cover message
strings have been carried out. Then, by using Kh, it is easy to recover the scrambled secret
message and extract it completely with no errors.

Step 4. Recover the last two 3-bits units of USCs using the value of the first 3-bits unit
in a cell. Now the flipped image If is obtained.

Step 5. Flip back pixel values, pixel by pixel, according to two principles: (1) whether
its coordinate has been recorded in EXCmsb and its corresponding MSB, (2) the comparison
result of two difference values, one is the difference between the MED prediction values and
the pixel value with original MSB, the other is the difference between the MED prediction
value and the pixel value with flipped MSB.

Step 6. Extract the flipping information of MSBs in a cell to get the value of EPk. From
EPk, the position where it is modified can be known, so that CW can be obtained. By
substituting X value with CW ′ and calculated with Equation (2), the LSB value of the
original image can be obtained. Hereto, the original image is completely recovered.

4. Experimental Results and Analysis

In our proposed HUD-RDHEI scheme, two kinds of vacated rooms can be created.
The primary is derived from the LSBs of three continuous pixels. The reserved space
will be filled by partial scrambled secrets by data hider with LSB substitution, which is
different from [43–45]. As for the original LSBs of three continuous pixels, they will be
embedded into non-LSB planes with (7, 4) Hamming Code for complete recovery later.
Then, aiming to improve the hiding capacity, a novel UnitSmooth judging function called
US was proposed to generate BMPus, which locates smooth units for carrying extra 6 bits
of a secret message in a unit, thus a large hiding capacity can be realized.

To further prove our performance on image quality and hiding capacity, sufficient the
experimental results and comparisons of the proposed HUD-RDHEI scheme with several
existing related works are demonstrated in this section. Some of the test images—Lena,

Entropy 2021, 23, 790 16 of 23

Baboon, Airplane, Cameraman, Peppers, and Zelda—are downloaded from the Image
Database SIPI [46]. They are shown in Figure 16. More experimental data is generated from
two database images, BOSSBase [47] and BOWS-2 [48]. In the experiments, 20,000 grayscale
images, with the size of 512 × 512, are used to evaluate the performance of the proposed
HUD-RDHEI scheme. Here, the embedding rate (ER) is the measurement indicator to
compare the proposed HUD-RDHEI scheme and some state-of-the-art algorithms. Peak
signal-to-noise ratio (PSNR), correlation coefficient, number of pixels change rate (NPCR),
and unified average changing intensity (UACI) are used to evaluate the reversibility of
the proposed HUD-RDHEI scheme. Feature comparison of closely related methods are
available and time complexity analysis is given.

Entropy 2021, 23, 790 17 of 24

(NPCR), and unified average changing intensity (UACI) are used to evaluate the reversi-
bility of the proposed HUD-RDHEI scheme. Feature comparison of closely related meth-
ods are available and time complexity analysis is given.

(a) (b) (c)

(d) (e) (f)

Figure 16. Test images (a) Lena, (b) Baboon, (c) Airplane, (d) Cameraman, (e) Peppers, (f) Zelda.

Section 4.1 demonstrates the performance of the proposed HUD-RDHEI scheme. Sec-
tion 4.2 presents the security analysis of the proposed HUD-RDHEI scheme. Finally, Sec-
tion 4.3 displays the comparison results of the proposed HUD-RDHEI scheme and four
existing schemes described in the Introduction, namely Puteaux et al.’s EPE-HCRDH [34],
Puyang et al.’s Two-MSB-RDHEI [35], Yi et al.’s PBTl-RDHEI [36] and Chen et al.’s [37].

4.1. Performance Analysis of the Proposed HUD-RDHEI Scheme
As we mentioned in Section 3, the total embedding capacity of an image mainly de-

pends on the quantity of UnitSmooth pixels and LSB, which minus CAInfo can obtain the
pure payload. For a smooth image, the pixels satisfying the UnitSmooth condition account
for a large proportion of all pixels in the whole image, which means a large amount of embed-
ding capacity can be achieved. Conversely, for a complex image, such pixels are in a smaller
proportion of all the pixels in the whole image, thus having less embedding capacity.

Table 3 shows the proportions of UnitSmooth pixels for the six test images, and the
number of bits of CAInfo they require. The number of embeddable bits of a cell with
UnitSmooth feature is 6, which are the 7th to 5th of the last two pixels of the cell. For an
image, total embedding bits are the number of LSBs plus the number of USCs multiplied
by 6. That can be calculated with Equation (9). Here NumOfLSB indicates the amount of
LSBs except pixels located in the first row and first column; while NumOfUSC is the
amount of units, of which the US value equals ‘1’ according to the calculation of Equation
(1). Because the component of a cell is three pixels, the number of cells is 86,870:

payload = NumOfLSB 1+NumOfUSC 6× × (9)

EXCmsb) BMPus)SizeOf(auxiliary information) SizeOf(19 SizeOf(1= × + × (10)

The 1st column in Table 3 is the name of each test image. Value of the 2nd column
tells the number of pixels whose coordinates and MSB values need to be hidden into the
LSBs. For smooth images, this value is small. For example, ‘zelda’ and ‘camera’ have 0 and
43 pixels and are determined as abnormal cases, respectively. For complex images, for
example, ‘Baboon’ has 4032 pixels determined as an abnormal case. It takes 12 bits to save
a binary stream of ‘4032’ so that the receiver knows where the starting point of the second
data set is. Moreover, two 4-bits are required; the first four bits indicate how many bits

Figure 16. Test images (a) Lena, (b) Baboon, (c) Airplane, (d) Cameraman, (e) Peppers, (f) Zelda.

Section 4.1 demonstrates the performance of the proposed HUD-RDHEI scheme.
Section 4.2 presents the security analysis of the proposed HUD-RDHEI scheme. Finally,
Section 4.3 displays the comparison results of the proposed HUD-RDHEI scheme and four
existing schemes described in the Introduction, namely Puteaux et al.’s EPE-HCRDH [34],
Puyang et al.’s Two-MSB-RDHEI [35], Yi et al.’s PBTl-RDHEI [36] and Chen et al.’s [37].

4.1. Performance Analysis of the Proposed HUD-RDHEI Scheme

As we mentioned in Section 3, the total embedding capacity of an image mainly
depends on the quantity of UnitSmooth pixels and LSB, which minus CAInfo can obtain
the pure payload. For a smooth image, the pixels satisfying the UnitSmooth condition
account for a large proportion of all pixels in the whole image, which means a large
amount of embedding capacity can be achieved. Conversely, for a complex image, such
pixels are in a smaller proportion of all the pixels in the whole image, thus having less
embedding capacity.

Table 3 shows the proportions of UnitSmooth pixels for the six test images, and the
number of bits of CAInfo they require. The number of embeddable bits of a cell with
UnitSmooth feature is 6, which are the 7th to 5th of the last two pixels of the cell. For an
image, total embedding bits are the number of LSBs plus the number of USCs multiplied by
6. That can be calculated with Equation (9). Here NumOfLSB indicates the amount of LSBs
except pixels located in the first row and first column; while NumOfUSC is the amount of
units, of which the US value equals ‘1’ according to the calculation of Equation (1). Because
the component of a cell is three pixels, the number of cells is 86,870:

payload = NumOfLSB× 1 + NumOfUSC× 6 (9)

SizeOf(auxiliary information) = SizeOf(EXCmsb)× 19 + SizeOf(BMPus)× 1 (10)

Entropy 2021, 23, 790 17 of 23

Table 3. The auxiliary information and embedding rate of six test images.

Images NumOf-
Abnormal

SizeOf-
EXCmsb

(bits)

NumOf-
USC

Payload
(bits)

SizeOf-
CAInfo

(bits)

Pure
Payload

(bits)

ER
(bpp)

Lena 118 14 60,832 625,091 888 624,203 2.389
Baboon 4032 20 39,560 497,459 1514 495,945 1.902

Airplane 76 14 67,178 663,167 881 662,286 2.538
Cameraman 43 13 70,884 685,403 876 684,527 2.619
Peppers 141 16 58,886 613,415 891 612,524 2.345
Zelda 0 5 63,291 639,845 869 638,976 2.475

The 1st column in Table 3 is the name of each test image. Value of the 2nd column
tells the number of pixels whose coordinates and MSB values need to be hidden into
the LSBs. For smooth images, this value is small. For example, ‘zelda’ and ‘camera’ have
0 and 43 pixels and are determined as abnormal cases, respectively. For complex images,
for example, ‘Baboon’ has 4032 pixels determined as an abnormal case. It takes 12 bits
to save a binary stream of ‘4032’ so that the receiver knows where the starting point of
the second data set is. Moreover, two 4-bits are required; the first four bits indicate how
many bits will be used to present the number of abnormal pixels, and the second four bits
are used to record the binary stream of 12. Finally, the value of the 3rd column indicates
size information of EXCmsb as 20 (=4 + 4 + 12). The 4th column of Table 3 indicates the
number of USCs of an image, where every 6 bits of the secret message can be embedded
into. The size of auxiliary information is calculated with Equation (10), and the content
is compressed with the JBIG2 algorithm in [42] later to form CAInfo. After that, the pure
payload comes from the value of the 5th minus the 6th column; that is to say, payload
minus the size of CAInfo. The embedding rate (ER), shown in the 7th column, is the result
of the pure payload divided by 512 × 512 = 262,144, which is the total number of pixels of
a grayscale image. Equation (10) indicates the size of auxiliary information in bits, which
includes the coordinates and MSB values of those pixels in abnormal situations and the bits
of BMPus. The former means the column and row information of those abnormal pixels
discussed in Section 4.1. The reason for multiplying by 17 is because the size of test image
is 512 × 512 and 1 bit for recording MSB. The size of BMPus, named as SizeOfBMPus, is
86,870 bits (=511× b512/3c), which is the greatest number of cells defined in Section 3.1.

Figure 17 shows the experimental results of applying the proposed HUD-RDHEI
scheme to the ‘Lena’ image. Due to the reversibility of the scheme, the original image
can be restored completely and correctly, to be specific, directly decrypted image with
PSNR +∞ and SSIM (structural similarity) = 1, recovered image RSNR = +∞ and SSIM = 1,
which can be seen from Figure 17e,f. And the encrypted image and marked encrypted
image, as shown in Figures 17b and 17c, respectively, are random out-of-order images that
the intruder cannot get effective information.

To support this conclusion, the 3D distribution of pixels in these images is also listed
in the following Figure 18. Figure 18 shows the pixel distribution of the original ‘Lena’
image, the encrypted ‘Lena’ image, and the marked encrypted ‘Lena’ image, respectively.
From the result, we can see the pixel distribution of the encrypted image and the marked
encrypted image is uniformly distributed. To a large extent, this can ensure that attackers
cannot master the distribution and correlation between adjacent pixels. On the other hand,
the confidentiality of image content in the cloud can be guaranteed, and the security of
encrypted image secret information can be guaranteed. Therefore, this algorithm can
achieve the goal of information hiding technology in the ciphertext domain, that is, it
can not only protect digital images and prevent confidential information leakage, but
also it can hide information, fully combining the advantages of image encryption and
information hiding.

Entropy 2021, 23, 790 18 of 23

Entropy 2021, 23, 790 18 of 24

will be used to present the number of abnormal pixels, and the second four bits are used
to record the binary stream of 12. Finally, the value of the 3rd column indicates size infor-
mation of EXCmsb as 20 (=4 + 4 + 12). The 4th column of Table 3 indicates the number of
USCs of an image, where every 6 bits of the secret message can be embedded into. The
size of auxiliary information is calculated with Equation (10), and the content is com-
pressed with the JBIG2 algorithm in [42] later to form CAInfo. After that, the pure payload
comes from the value of the 5th minus the 6th column; that is to say, payload minus the
size of CAInfo. The embedding rate (ER), shown in the 7th column, is the result of the
pure payload divided by 512 × 512 = 262,144, which is the total number of pixels of a gray-
scale image. Equation (10) indicates the size of auxiliary information in bits, which in-
cludes the coordinates and MSB values of those pixels in abnormal situations and the bits
of BMPus. The former means the column and row information of those abnormal pixels
discussed in Section 4.1. The reason for multiplying by 17 is because the size of test image
is 512 × 512 and 1 bit for recording MSB. The size of BMPus, named as SizeOfBMPus, is
86,870 bits (= 511 512/ 3×  ), which is the greatest number of cells defined in Section 3.1.

Table 3. The auxiliary information and embedding rate of six test images.

Images NumOf-
Abnormal

SizeOf-
EXCmsb

(bits)

NumOf-
USC

Payload
(bits)

SizeOf-
CAInfo

(bits)

Pure
Payload

(bits)

ER
(bpp)

Lena 118 14 60,832 625,091 888 624,203 2.389
Baboon 4032 20 39,560 497,459 1514 495,945 1.902

Airplane 76 14 67,178 663,167 881 662,286 2.538
Cameraman 43 13 70,884 685,403 876 684,527 2.619

Peppers 141 16 58,886 613,415 891 612,524 2.345
Zelda 0 5 63,291 639,845 869 638,976 2.475

Figure 17 shows the experimental results of applying the proposed HUD-RDHEI
scheme to the ‘Lena’ image. Due to the reversibility of the scheme, the original image can
be restored completely and correctly, to be specific, directly decrypted image with PSNR
+∞ and SSIM (structural similarity) = 1, recovered image RSNR = +∞ and SSIM = 1, which
can be seen from Figure 17(e) and Figure 17(f). And the encrypted image and marked
encrypted image, as shown in Figure 17(b) and Figure 17(c), respectively, are random out-
of-order images that the intruder cannot get effective information.

(a) (b) (c)

(d) (e) (f)

Figure 17. Results demonstration of the proposed HUD-RDHEII scheme (a) Original image; (b)
Encrypted image; (c) Marked encrypted image with pure ER 2.389 bpp; (d) Directly decrypted
image with PSNR +∞ and SSIM = 1; (e) Recovered image RSNR = +∞ and SSIM = 1; (f) The differ-
ence between (a) and (e).

Figure 17. Results demonstration of the proposed HUD-RDHEII scheme (a) Original image;
(b) Encrypted image; (c) Marked encrypted image with pure ER 2.389 bpp; (d) Directly decrypted
image with PSNR +∞ and SSIM = 1; (e) Recovered image RSNR = +∞ and SSIM = 1; (f) The difference
between (a) and (e).

Entropy 2021, 23, 790 19 of 24

To support this conclusion, the 3D distribution of pixels in these images is also listed
in the following Figure 18. Figure 18 shows the pixel distribution of the original ‘Lena’
image, the encrypted ‘Lena’ image, and the marked encrypted ‘Lena’ image, respectively.
From the result, we can see the pixel distribution of the encrypted image and the marked
encrypted image is uniformly distributed. To a large extent, this can ensure that attackers
cannot master the distribution and correlation between adjacent pixels. On the other hand,
the confidentiality of image content in the cloud can be guaranteed, and the security of
encrypted image secret information can be guaranteed. Therefore, this algorithm can
achieve the goal of information hiding technology in the ciphertext domain, that is, it can
not only protect digital images and prevent confidential information leakage, but also it
can hide information, fully combining the advantages of image encryption and infor-
mation hiding.

(a) (b) (c)

Figure 18. The 3D distribution of pixel values of ‘Lena’ image. (a) The original image; (b) the en-
crypted image, and (c) the marked encrypted image.

4.2. Security Analysis of the Proposed HUD-RDHEI Scheme
Table 4 shows PSNR value of each encrypted image and the correlation coefficient

with its corresponding original image. It can be seen that after the encrypting process,
each encrypted image has a PSNR of less than 10. So, it is difficult to realize the detection
of the content of the original image Io from encrypted image Ie. The correlation coefficient
is a statistical that calculates the strength of the relationship between the relative move-
ments of two variables, which is calculated as [49]. We use the correlation coefficient in
Equation (11) to reflect the effect of the proposed HUD-RDHEI scheme:

1 1 1

2 2
2 2

1 1 1 1

()
.

(()) (())

N N N

i i i ii i i

N N N N

i i i ii i i i

N x y x y

N x x N y y
ρ = = =

= = = =

× − ×
=

− × −

  

   
 (11)

Table 4. PSNR of the encrypted images, marked encrypted images and correlation coefficients
with the corresponding original images.

Images PSNR (Marked
Encrypted Image)

Correlation
Coefficient

PSNR
(Encrypted Image)

Correlation
Coefficient

Lena 9.2292 −0.0009 9.2317 −0.0008
Baboon 9.5265 −0.0001 9.5289 −0.0005

Airplane 8.0330 0.0025 8.0260 0.0040
Camera 8.4077 −0.0003 8.4130 0.0002
Peppers 8.8831 −0.0007 8.8798 −0.0008
Zelda 8.8809 −0.0020 8.8773 −0.0021

Here x and y are gray values of two pixels with the same coordinates selected from Io
and Ie, and N is the total number of pairs of pixels of the image. The value ranges between
−1.0 and 1.0. Once the calculation result value is greater than 1.0 or less than −1.0, conclu-
sion can be got that an error exists in the correlation measurement. We can see that the
correlation coefficients between the encrypted image and the original image are extremely

Figure 18. The 3D distribution of pixel values of ‘Lena’ image. (a) The original image; (b) the
encrypted image, and (c) the marked encrypted image.

4.2. Security Analysis of the Proposed HUD-RDHEI Scheme

Table 4 shows PSNR value of each encrypted image and the correlation coefficient
with its corresponding original image. It can be seen that after the encrypting process, each
encrypted image has a PSNR of less than 10. So, it is difficult to realize the detection of
the content of the original image Io from encrypted image Ie. The correlation coefficient
is a statistical that calculates the strength of the relationship between the relative move-
ments of two variables, which is calculated as [49]. We use the correlation coefficient in
Equation (11) to reflect the effect of the proposed HUD-RDHEI scheme:

ρ =
N∑N

i=1 (xi × yi)−∑N
i=1 xi ×∑N

i=1 yi√
(N∑N

i=1 xi
2 − (∑N

i=1 xi)
2
)× (N∑N

i=1 yi
2 − (∑N

i=1 yi)
2
)

. (11)

Here x and y are gray values of two pixels with the same coordinates selected from
Io and Ie, and N is the total number of pairs of pixels of the image. The value ranges
between −1.0 and 1.0. Once the calculation result value is greater than 1.0 or less than
−1.0, conclusion can be got that an error exists in the correlation measurement. We can
see that the correlation coefficients between the encrypted image and the original image
are extremely close to zero, and so are the correlation coefficients between the marked
encrypted image and the original images. It can be concluded that without the encryption
key, it is impossible to obtain any valuable information from the encrypted image, nor from
the marked encrypted image. For each 512 × 512 test grayscale image, as each bit of the
image is encrypted at the bitwise level with a bit value generated by a random number,

Entropy 2021, 23, 790 19 of 23

the encryption key space of the proposed HUD-RDHEI scheme is 2512 × 512 × 8, which is
large enough to guarantee computing security. The encryption process of this scheme can
protect and secure the privacy of the original image.

Table 4. PSNR of the encrypted images, marked encrypted images and correlation coefficients with
the corresponding original images.

Images PSNR (Marked
Encrypted Image)

Correlation
Coefficient

PSNR
(Encrypted Image)

Correlation
Coefficient

Lena 9.2292 −0.0009 9.2317 −0.0008
Baboon 9.5265 −0.0001 9.5289 −0.0005

Airplane 8.0330 0.0025 8.0260 0.0040
Camera 8.4077 −0.0003 8.4130 0.0002
Peppers 8.8831 −0.0007 8.8798 −0.0008
Zelda 8.8809 −0.0020 8.8773 −0.0021

4.3. Comparisons with Closely Related State-of-the-Art Methods

In this subsection, first, the maximum and average ER of each method are compared
in Tables 5 and 6, then average embedding rates of 500 marked encrypted images from
BOSSBase and BOWS-2 are shown in Figure 19. Next, feature comparison of the proposed
HUD-RDHEI method with other state-of-the-art methods is provided in Table 7.

Table 5 shows the maximum ER comparisons of different images using the proposed
HUD-RDHEI scheme and some state-of-the-art methods. Table 6 shows the average ER
comparisons of different images based on 20,000 images from BOSSBase and BOWS-2
using the proposed HUD-RDHEI scheme and some state-of-the-art methods. The results
show that the ER of our proposed algorithm is greatly improved than closely related
state-of-the-art methods. In order to intuitively and visually see the difference of the
ER distribution between the proposed HUD-RDHEI scheme and other algorithms, we
randomly chose 500 images from two image datasets and generate the ER value of each
image with five algorithms using a scatter diagram, as shown in Figure 19. It can be
seen that the ER value of the scheme proposed by this algorithm is uniformly distributed,
which is generally higher than other algorithms, and most of the values are very close to
3, regardless of if they are smooth or complex images. Although the algorithm from Yi
et al.’s PBTl-RDHEI [36], and Chen et al. [37] have a higher ER on some pixels, this is with
a very low percentage. Especially when we use the images in these two databases, each
database has 10,000 images, to demonstrate the superiority of our algorithm over the other
four algorithms on ER, as shown in Table 6. In summary, this scheme is obviously better
than the four latest algorithms in terms of ER.

As depicted in Table 7, ref. [34] has two methods, corresponding to different features.
The CPE method has some errors in the process of image restoration and decryption, while
the EPE method does not. The proposed method is the same as the methods [35–37] in
terms of separability, extraction, recovery and decryption with no errors.

Table 5. Maximum ER (embedding rate) comparisons of different images using the proposed HUD-
RDHEI scheme and some state-of-the-art algorithms.

Images Puteaux et al.’s
[34]

Puyang et al.’s
[35]

Yi et al.’s
[36]

Chen et al.’s
[37] Proposed

Lena 0.977 1.155 2.014 1.944 2.389
Baboon 0.983 1.285 2.457 2.338 2.538

Airplane 0.839 0.377 0.462 0.535 1.902
Cameraman 0.990 1.531 2.442 2.648 2.619

Peppers 0.976 1.214 2.147 1.871 2.345
Zelda 0.996 1.321 2.474 2.110 2.475

Entropy 2021, 23, 790 20 of 23

Table 6. Comparison of the average ER(bpp) of two datasets between the proposed HUD-RDHEI
scheme and five state-of-the-art methods based on 20,000 images from BOSSBase and BOWS-2.

Database Puteaux et al.’s
[34]

Puyang et al.’s
[35]

Yi et al.’s
[36]

Chen et al.’s
[37] Proposed

BOSSBase 0.996 1.447 1.957 2.434 2.556
BOWS-2 0.968 1.346 1.881 2.262 2.530

Entropy 2021, 23, 790 22 of 25

Table 5 shows the maximum ER comparisons of different images using the proposed
HUD-RDHEI scheme and some state-of-the-art methods. Table 6 shows the average ER
comparisons of different images based on 20,000 images from BOSSBase and BOWS-2
using the proposed HUD-RDHEI scheme and some state-of-the-art methods. The results
show that the ER of our proposed algorithm is greatly improved than closely related state-
of-the-art methods. In order to intuitively and visually see the difference of the ER
distribution between the proposed HUD-RDHEI scheme and other algorithms, we
randomly chose 500 images from two image datasets and generate the ER value of each
image with five algorithms using a scatter diagram, as shown in Figure 19. It can be seen
that the ER value of the scheme proposed by this algorithm is uniformly distributed,
which is generally higher than other algorithms, and most of the values are very close to
3, regardless of if they are smooth or complex images. Although the algorithm from Yi et
al.’s PBTl-RDHEI [36], and Chen et al. [37] have a higher ER on some pixels, this is with a
very low percentage. Especially when we use the images in these two databases, each
database has 10,000 images, to demonstrate the superiority of our algorithm over the other
four algorithms on ER, as shown in Table 6. In summary, this scheme is obviously better
than the four latest algorithms in terms of ER.

Figure 19. Average embedding rates of 500 marked encrypted images (a) images from BOSSBase;
(b) images from BOWS-2.

According to the previous analysis combined with the features analysis, the proposed
scheme will continue the features of separability, error-free recovery, error-free extraction
and error-free decryption, and have a higher hiding capacity in both the maximum and
average cases.

Entropy 2021, 23, 790 21 of 23

Table 7. Feature comparison of closely related methods.

Methods
Features

Separable Error in Data Extraction Error in Image Recovery Error in Image Decryption

Puteaux et al.’s CPE [34] Yes No Yes Yes

Puteaux et al.’s EPE [34] Yes No No No

Puyang et al.’s [35] Yes No No No

Yi et al.’s [36] Yes No No No

Chen et al.’s [37] Yes No No No

Proposed Yes No No No

4.4. Time Complexity Analysis

Time complexity, also called the computation complexity, is often used to estimate
the efficiency of an algorithm. It can measure the running time of an algorithm. In HUD-
RDHEI, most of the time was spent on four parts. First, scanning image pixel values to
hide LSB into non-LSB bits with (7, 4) Hamming code, recording modified position EPk,
and flipping MSB of a pixel when needed. Second, encrypting original image with the
simplest XOR stream encryption operation. Third, scrambling secret message and fourth,
decrypting encrypted image and sequentially reading auxiliary information during data
extracting and recovery phase. It is noted, this execution time of the latter three parts is
proportional to the size of the cover image and the size of the auxiliary information. For
content owner, data hider and receiver, they will take participant in specific process of the
image encryption, data embedding, data extraction and image recovery process as needed.
For an image with size of M × N, secret information with size of S, and auxiliary with
size of A, the execution time of these four processes are O(M × N), O(M × N + S + A),
O(M × N + S + A), O(M × N + A), respectively.

Next, we experimentally show time costing of the proposed HUD-RDHEI scheme. The
measure of the time complexity is carried out over the MatLab implementation by using
the built-in time function in a workstation equipped with an Intel i7-5500U @ 2.40 GHz
CPU and 8 GB RAM. Take ‘Lena’ for example, under the condition of its maximum hiding
capacity of 2.389 bpp, on the content owner side, it needs 4.490 s to preprocess the image to
vacate room and encrypts the image to prepare for subsequent manipulation on the image.
On the data hider side, 0.323 s and 0.495 s are needed to scramble secrets and embed secrets,
respectively; on the receiver side, 0.646 s and 3.043 s are need to data extraction and image
recovery, respectively.

5. Conclusions and Future Work

In this paper we have proposed a new high-capacity reversible data hiding scheme
based on the encrypted domain. Our proposed scheme applies the (7, 4) Hamming Code
to self-embed the LSB plane into the other planes of the image first, then adopts a novel US
function to find more room to hide secret messages, and thus to improve the hiding capacity
greatly. Through the use of the data hiding key, the embedded data can be fully extracted.
Through the use of the encryption key, the original image can be recovered exactly from
the decrypted image. Experimental results confirm that the average embedding rate of our
proposed HUD-RDHEI scheme can be up to 2.556 bpp and 2.530 bpp under BOSSBase and
BOWS-2, respectively, while guaranteeing the security of the hidden data. Certainly, areas
of potential improvements might exist over our proposed scheme. For example, the 4th bit
of the last two pixels of each unit does not participate in the activity of hiding secrets in
our scheme. Thus, future research should work on concealing secret data using such space
without damaging image quality. Furthermore, to extend the application of our proposed
scheme to on-line tele-diagnosis, effectively reducing the execution time is another issue in
need of addressing in the future.

Entropy 2021, 23, 790 22 of 23

Author Contributions: Conceptualization, C.-C.L.; methodology, C.-C.L., C.-C.L. and L.L.; soft-
ware, L.L.; validation, C.-C.L. and L.L.; formal analysis, L.L.; investigation, C.-C.L. and C.-C.C.;
writing—original draft preparation, L.L.; writing—review and editing, C.-C.L.; visualization, C.-C.L.;
supervision, C.-C.L. and C.-C.C.; funding acquisition, L.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This paper is funded by the Educational Research Projects for Young and Middle-aged
Teachers in Fujian Province, China (Grant No. B19271), the Soft Science Foundation of Fujian Province,
China (Grant No. B19085), and the Natural Science Foundation of Fujian Province, China (Grant
No. 2018J01537).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alanizy, N.; Alanizy, A.; Baghoza, N.; AlGhamdi, M.; Gutub, A. 3-layer PC text security via combining compression, AES

cryptography 2LSB image steganography. J. Res. Eng. Appl. Sci. 2018, 3, 118–124. [CrossRef]
2. Samkari, H.; Gutub, A. Protecting Medical Records against Cybercrimes within Hajj Period by 3-Layer Security. Recent Trends Inf.

Technol. Its Appl. 2019, 2. [CrossRef]
3. Alkhudaydi, M.; Gutub, A. Securing Data via Cryptography and Arabic Text Steganography. SN Comput. Sci. 2021,

2, 46. [CrossRef]
4. Alsaidi, A.; Al-lehaibi, K.; Alzahrani, H.; AlGhamdi, M.; Gutub, A. Compression Multi-Level Crypto Stego Security of Texts

Utilizing Colored Email Forwarding. J. Comput. Sci. Comput. Math. 2018, 8, 33–42. [CrossRef]
5. Alanazi, N.; Khan, E.; Gutub, A. Involving Spaces of Unicode Standard Within Irreversible Arabic Text Steganography for

Practical Implementations. Arab. J. Sci. Eng. 2021. [CrossRef]
6. Wong, P.W.; Memon, N. Secret and Public Key Image Watermarking Schemes for Image Authentication and Ownership

Verification. IEEE Trans. Image Process. 2001, 10, 1593–1601. [CrossRef]
7. Li, W.; Lin, C.-C.; Pan, J.-S. Novel Image Authentication Scheme with Fine Image Quality for BTC-Based Compressed Images.

Multimed. Tools Appl. 2016, 75, 4771–4793. [CrossRef]
8. Lin, C.-C.; Huang, Y.; Tai, W.-L. A Novel Hybrid Image Authentication Scheme Based on Absolute Moment Block Truncation

Coding. Multimed. Tools Appl. 2017, 76, 463–488. [CrossRef]
9. Qin, C.; Ji, P.; Zhang, X.; Dong, J.; Wang, J. Fragile Image Watermarking with Pixel-Wise Recovery Based on Overlapping

Embedding Strategy. Signal Process. 2017, 138, 280–293. [CrossRef]
10. Lin, C.-C.; Chang, C.-C.; Chen, Y.-H. A Novel SVD-Based Watermarking Scheme for Protecting Rightful Ownership of Digital

Images. J. Inf. Hiding Multimed. Signal Process. 2014, 5, 124–143.
11. Wang, C.-C.; Chang, Y.-F.; Chang, C.-C.; Jan, J.-K.; Lin, C.-C. A High Capacity Data Hiding Scheme for Binary Images Based on

Block Patterns. J. Syst. Softw. 2014, 93, 152–162. [CrossRef]
12. Chen, K.; Chang, C.-C. Real-Time Error-Free Reversible Data Hiding in Encrypted Images Using (7, 4) Hamming Code and Most

Significant Bit Prediction. Symmetry 2019, 11, 51. [CrossRef]
13. Shi, Y.-Q.; Li, X.; Zhang, X.; Wu, H.-T.; Ma, B. Reversible Data Hiding: Advances in the Past Two Decades. IEEE Access 2016,

4, 3210–3237. [CrossRef]
14. Honsinger, C.W.; Jones, P.W.; Rabbani, M.; Stoffel, J.C. Lossless Recovery of an Original Image Containing Embedded Data.

U.S. Patent 6,278,791, 21 August 2001.
15. Menezes, A.J.; Van Oorschot, P.C.; Vanstone, S.A. Handbook of Applied Cryptography; CRC Press: Boca Raton, FL, USA, 2018;

ISBN 0-429-88132-0.
16. Puech, W.; Chaumont, M.; Strauss, O. A Reversible Data Hiding Method for Encrypted Images. In Proceedings of the Se-

curity, Forensics, Steganography, And Watermarking of Multimedia Contents X, San Jose, CA, USA, 28–30 January 2008;
Volume 6819, p. 68191E.

17. Zhang, X. Reversible Data Hiding in Encrypted Image. IEEE Signal Process. Lett. 2011, 18, 255–258. [CrossRef]
18. Zhang, X. Separable Reversible Data Hiding in Encrypted Image. IEEE Trans. Inf. Forensics Secur. 2011, 7, 826–832. [CrossRef]
19. Ma, K.; Zhang, W.; Zhao, X.; Yu, N.; Li, F. Reversible Data Hiding in Encrypted Images by Reserving Room before Encryption.

IEEE Trans. Inf. Forensics Secur. 2013, 8, 553–562. [CrossRef]
20. Mathew, T.; Wilscy, M. Reversible Data Hiding in Encrypted Images by Active Block Exchange and Room Reservation. In

Proceedings of the 2014 International Conference on Contemporary Computing and Informatics (IC3I), Mysore, India, 27–29
November 2014; pp. 839–844.

21. Zhang, X.; Long, J.; Wang, Z.; Cheng, H. Lossless and Reversible Data Hiding in Encrypted Images with Public-Key Cryptography.
IEEE Trans. Circuits Syst. Video Technol. 2015, 26, 1622–1631. [CrossRef]

22. Barton, J.M. Method and Apparatus for Embedding Authentication Information within Digital Data. U.S. Patent 5,646,997,
8 July 1997.

23. Hassan, F.S.; Gutub, A. Efficient Image Reversible Data Hiding Technique Based on Interpolation Optimization.
Arab. J. Sci. Eng. 2021. [CrossRef]

http://doi.org/10.46565/jreas.2018.v03i04.001
http://doi.org/10.5281/ZENODO.3543455
http://doi.org/10.1007/s42979-020-00438-y
http://doi.org/10.20967/jcscm.2018.03.002
http://doi.org/10.1007/s13369-021-05605-8
http://doi.org/10.1109/83.951543
http://doi.org/10.1007/s11042-015-2502-z
http://doi.org/10.1007/s11042-015-3059-6
http://doi.org/10.1016/j.sigpro.2017.03.033
http://doi.org/10.1016/j.jss.2014.02.023
http://doi.org/10.3390/sym11010051
http://doi.org/10.1109/ACCESS.2016.2573308
http://doi.org/10.1109/LSP.2011.2114651
http://doi.org/10.1109/TIFS.2011.2176120
http://doi.org/10.1109/TIFS.2013.2248725
http://doi.org/10.1109/TCSVT.2015.2433194
http://doi.org/10.1007/s13369-021-05529-3

Entropy 2021, 23, 790 23 of 23

24. Hassan, F.S.; Gutub, A. Novel Embedding Secrecy within Images Utilizing an Improved Interpolation-Based Reversible Data
Hiding Scheme. J. King Saud Univ. Comput. Inf. Sci. 2020. [CrossRef]

25. Hassan, F.S.; Gutub, A. Efficient Reversible Data Hiding Multimedia Technique Based on Smart Image Interpolation. Multimed.
Tools Appl. 2020, 79, 30087–30109. [CrossRef]

26. Tian, J. Reversible Data Embedding Using a Difference Expansion. IEEE Trans. Circuits Syst. Video Technol. 2003,
13, 890–896. [CrossRef]

27. Qiu, Y.; Qian, Z.; Yu, L. Adaptive Reversible Data Hiding by Extending the Generalized Integer Transformation. IEEE Signal
Process. Lett. 2015, 23, 130–134.

28. Ni, Z.; Shi, Y.-Q.; Ansari, N.; Su, W. Reversible Data Hiding. IEEE Trans. Circuits Syst. Video Technol. 2006, 16, 354–362.
29. Nguyen, T.-S.; Chang, C.-C.; Huynh, N.-T. A Novel Reversible Data Hiding Scheme Based on Difference-Histogram Modification

and Optimal EMD Algorithm. J. Vis. Commun. Image Represent. 2015, 33, 389–397. [CrossRef]
30. Li, X.; Li, J.; Li, B.; Yang, B. High-Fidelity Reversible Data Hiding Scheme Based on Pixel-Value-Ordering and Prediction-Error

Expansion. Signal Process. 2013, 93, 198–205. [CrossRef]
31. Qu, X.; Kim, H.J. Pixel-Based Pixel Value Ordering Predictor for High-Fidelity Reversible Data Hiding. Signal Process. 2015,

111, 249–260. [CrossRef]
32. Hong, W.; Chen, T.-S.; Shiu, C.-W. Reversible Data Hiding for High Quality Images Using Modification of Prediction Errors.

J. Syst. Softw. 2009, 82, 1833–1842. [CrossRef]
33. Carpentieri, B.; Castiglione, A.; De Santis, A.; Palmieri, F.; Pizzolante, R. One-Pass Lossless Data Hiding and Compression of

Remote Sensing Data. Future Gener. Comput. Syst. 2019, 90, 222–239. [CrossRef]
34. Puteaux, P.; Puech, W. An Efficient MSB Prediction-Based Method for High-Capacity Reversible Data Hiding in Encrypted

Images. IEEE Trans. Inf. Forensics Secur. 2018, 13, 1670–1681. [CrossRef]
35. Puyang, Y.; Yin, Z.; Qian, Z. Reversible Data Hiding in Encrypted Images with Two-MSB Prediction. In Proceedings of the 2018

IEEE International Workshop on Information Forensics and Security (WIFS), Hong Kong, China, 11–13 December 2018; pp. 1–7.
36. Yi, S.; Zhou, Y. Separable and Reversible Data Hiding in Encrypted Images Using Parametric Binary Tree Labeling. IEEE Trans.

Multimed. 2018, 21, 51–64. [CrossRef]
37. Chen, K.; Chang, C.-C. High-Capacity Reversible Data Hiding in Encrypted Images Based on Extended Run-Length Coding and

Block-Based MSB Plane Rearrangement. J. Vis. Commun. Image Represent. 2019, 58, 334–344. [CrossRef]
38. Hamming, R.W. Error Detecting and Error Correcting Codes. Bell Syst. Tech. J. 1950, 29, 147–160. [CrossRef]
39. Crandall, R. Some Notes on Steganography. Posted Steganography Mail. List 1998, 1–6.
40. Chang, C.-C.; Kieu, T.D.; Chou, Y.-C. A High Payload Steganographic Scheme Based on (7, 4) Hamming Code for Digital Images.

In Proceedings of the 2008 International Symposium on Electronic Commerce and Security, Guangzhou, China, 3–5 August 2008;
pp. 16–21.

41. Weinberger, M.J.; Seroussi, G.; Sapiro, G. The LOCO-I Lossless Image Compression Algorithm: Principles and Standardization
into JPEG-LS. IEEE Trans. Image Process. 2000, 9, 1309–1324. [CrossRef] [PubMed]

42. Howard, P.G.; Kossentini, F.; Martins, B.; Forchhammer, S.; Rucklidge, W.J. The Emerging JBIG2 Standard. IEEE Trans. Circuits
Syst. Video Technol. 1998, 8, 838–848. [CrossRef]

43. Almutairi, S.; Gutub, A.; Al-Ghamdi, M. Image Steganography to Facilitate Online Students Account System. Rev. Bus. Technol.
Res. 2019, 16, 43–49. [CrossRef]

44. Gutub, A.; Al-Juaid, N. Multi-Bits Stego-System for Hiding Text in Multimedia Images Based on User Security Priority. J. Comput.
Hardw. Eng. 2018, 1, 1–9.

45. Gutub, A.; Al-Shaarani, F. Efficient Implementation of Multi-Image Secret Hiding Based on LSB and DWT Steganography
Comparisons. Arab. J. Sci. Eng. 2020, 45, 2631–2644. [CrossRef]

46. SIPI Image Database. Available online: http://sipi.usc.edu/database/ (accessed on 30 May 2021).
47. Bas, P.; Filler, T.; Pevný, T. ”Break Our Steganographic System”: The Ins and Outs of Organizing BOSS. In Proceedings of the

International Workshop on Information Hiding, Prague, Czech Republic, 18–20 May 2011; pp. 59–70.
48. BOWS-2 Web Page. Available online: http://bows2.ec-lille.fr/ (accessed on 30 May 2021).
49. Ahmad, M.; Ahmad, T. A Framework to Protect Patient Digital Medical Imagery for Secure Telediagnosis. Procedia Eng. 2012,

38, 1055–1066. [CrossRef]

http://doi.org/10.1016/j.jksuci.2020.07.008
http://doi.org/10.1007/s11042-020-09513-1
http://doi.org/10.1109/TCSVT.2003.815962
http://doi.org/10.1016/j.jvcir.2015.10.008
http://doi.org/10.1016/j.sigpro.2012.07.025
http://doi.org/10.1016/j.sigpro.2015.01.002
http://doi.org/10.1016/j.jss.2009.05.051
http://doi.org/10.1016/j.future.2018.07.051
http://doi.org/10.1109/TIFS.2018.2799381
http://doi.org/10.1109/TMM.2018.2844679
http://doi.org/10.1016/j.jvcir.2018.12.023
http://doi.org/10.1002/j.1538-7305.1950.tb00463.x
http://doi.org/10.1109/83.855427
http://www.ncbi.nlm.nih.gov/pubmed/18262969
http://doi.org/10.1109/76.735380
http://doi.org/10.13140/RG.2.2.32048.30727
http://doi.org/10.1007/s13369-020-04413-w
http://sipi.usc.edu/database/
http://bows2.ec-lille.fr/
http://doi.org/10.1016/j.proeng.2012.06.133

	Introduction
	Preliminaries
	Backgound Information and Related Works
	Some Closely Related Methods and the Advantages of the Proposed HUD-RDHEI Scheme

	The Proposed HUD-RDHEI Scheme
	US Function and BMPus
	Self-Embedding Method Based on the (7, 4) Hamming Code
	The Proposed Flipping-MSB Method
	MED Prediction and Our Defined Compressed Auxiliary Information (CAInfo)
	Encrypted Image Generation
	Data Embedding in the Encrypted Image
	Data Extraction and Image Recovery
	Data Extraction with Only a Data Hiding Key
	Image Decryption with Only the Data Encryption Key
	Data Extraction and Image Decryption with Both Data Hiding and Encryption Key

	Experimental Results and Analysis
	Performance Analysis of the Proposed HUD-RDHEI Scheme
	Security Analysis of the Proposed HUD-RDHEI Scheme
	Comparisons with Closely Related State-of-the-Art Methods
	Time Complexity Analysis

	Conclusions and Future Work
	References

