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Abstract: The Internet is an inseparable part of our contemporary lives. This means that protection
against threats and attacks is crucial for major companies and for individual users. There is a demand
for the ongoing development of methods for ensuring security in cyberspace. A crucial cybersecurity
solution is intrusion detection systems, which detect attacks in network environments and responds
appropriately. This article presents a new multivariable heuristic intrusion detection algorithm based
on different types of flags and values of entropy. The data is shared by organisations to help increase
the effectiveness of intrusion detection. The authors also propose default values for parameters of a
heuristic algorithm and values regarding detection thresholds. This solution has been implemented
in a well-known, open-source system and verified with a series of tests. Additionally, the authors
investigated how updating the variables affects the intrusion detection process. The results confirmed
the effectiveness of the proposed approach and heuristic algorithm.

Keywords: cybersecurity; intrusion detection; network attack; heuristic algorithm, flags; entropy

1. Introduction

The ongoing evolution of science and technology continues to bring new challenges.
With the Internet becoming one of the most important inventions of the last century and
an integral part of today’s world, new threats are emerging [1]. People are increasingly
using the Internet for tasks that would have traditionally been done in person. Convenient
online payments have convinced many to go online, even for the simplest activities. Re-
mote working is now a common element of corporate network infrastructure. However,
conducting our everyday lives online means that less-careful users are at risk of cyberat-
tack [2]. Harmful software, viruses, and many other means of hacking are constantly being
developed [3,4]. Vulnerabilities could mean losses for individual users, but they could also
extend to millions or even billions of dollars [5,6]. This drives the development of effective
security tools. Companies and individual users use a range of security tools to protect
themselves against network attacks [7]. These tools should detect unexpected activities in
the network and allow users to take appropriate action. The growing number of new and
unknown attacks means that new methods of attack detection are required.

Awareness of the importance of cybersecurity encourages organisations to engage
in joint defence activities, particularly those operating in the same sector, such as energy,
healthcare, etc. By working together, they are able to collect and process data regarding
sector-specific attacks and malicious software [8,9]. Multisector and multidomain collabora-
tion is also frequently required. This is consistent with the development of cybersecurity in
the EU, where the Horizon 2020 projects brings together partners to establish the European
Cybersecurity Competence Network [10]. The ECHO project [11] is a good example of
such a broad collaboration.

The federated approach to cybersecurity helps detect new network attacks and protect
companies’ assets more efficiently. Data collected and processed by federated entities can
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be used by all members to improve the effectiveness of intrusion detection. In this paper,
the authors introduce a new multivariable heuristic intrusion detection algorithm based on
shared data. Such a joint approach to attack and malware detection allows the federated
companies to share knowledge and make the best decisions regarding suspicious traffic.

The remainder of the paper proceeds as follows: Related work is reviewed in Section 2.
Section 3 provides an introduction to detecting intrusions in cyberspace. A novel multi-
variable heuristic intrusion detection algorithm is presented in Section 4. The section also
proposes a format of shared data and types of flags. The experimental results are presented
and discussed in Section 5. Finally, Section 6 concludes the paper.

2. Related Work

Two main types of intrusion detection algorithms can be distinguished: an approach
based on the predefined attack’s signature [12] and methods analysing behaviours to detect
anomalies [13,14]. The second group contains heuristic algorithms reviewed by Kenny
et al. in [15]. The list includes most types of algorithms proposed in the research on
heuristic intrusion detection. Ali and Malebary [16] introduced a solution based on particle
swarm optimisation (PSO)—an intelligent phishing website detection in the form of feature
weighting. For five out of six common machine learning algorithms, the proposed method
achieved better detection accuracy than other feature selection and weighting methods
mentioned in the paper. Jacob [17] proposed a tabu search algorithm—automatic signature
generation for detected cross-site scripting (XSS) attacks. Although the true positive ratio
of the solution is acceptable, the detection algorithm is focused on finding XSS specific
keywords instead of looking for injection patterns. Yerong et al. [18] combined two heuristic
methods in their research—the support vector machine (SVM) used for intrusion detection
was optimised using a genetic algorithm. The optimisation indeed improved detection
accuracy and decreased the number of false positives compared to the values obtained by
a radial basis function neural network and unoptimised SVM. Jothi et al. [19] provided
yet another type of heuristic solution—an artificial neural network (ANN). The authors
implemented an accurate machine learning model for the detection of structured query
language (SQL) injection attacks, which could be implemented, for example, to prevent
attacks during login sessions.

Most of the papers on heuristic intrusion detection have focused on machine learn-
ing [20–29]. The authors of this paper consider a different approach to intrusion detection:
packet scoring. The topic has been studied by Subburathinam and Saravanan [30], who
proposed calculating the score of the packet depending on different variables, e.g., port
number or protocol. At the same time, the conditional legitimate probability was being
checked—if either score or probability was an anomaly, the packet was dropped. Murtuza
and Asawa [31] introduced the fitness score used for distributed denial of service (DDoS)
detection in software-defined networks (SDN). The fitness value for each packet was either
incremented or decremented depending on, for example, previous successful connections
or protocol. Then, the packet was categorised depending on its score and processed further.
Prasath and Perumal [32] also presented a heuristic algorithm for intrusion detection in
SDN networks. However, this method is focused on finding anomalies using extracted
features of flows, e.g., duration, protocol type, service. It is worth mentioning that the large
number of features can decrease the performance of intrusion detection significantly [33,34].
In [35], Mukhopadhyay et al. proposed a lightweight heuristic intrusion detection and
prevention system; its decision making engine is based on frame data and source/desti-
nation addresses. The decision engine can also take into account selected external data,
such as the reputation of a given URL. The solution presented in this paper extends such
an approach into different flags regarding suspicious/malicious IP addresses. The idea
to include fuzzy entropy as a feature to support intrusion detection based on machine
learning methods was introduced by Varma et al. [36]. The feature extraction method based
on the regularised correntropy criterion was also proposed by Xing and Ren [37]. However,
this paper assumes the direct impact of entropy to the score of a given packet.
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Aside from packet scoring, the authors of this paper also focus on a federated approach
to intrusion detection. The proposed solution operates on a shared file with malicious
addresses, assigned flags, and entropy values, which could be updated by federated entities
in the case of new attacks and sent out to all members of the federation to ensure security.

3. Intrusion Detection

The evolution of malware and emerging new attacks are driving the development
of attack detection methods [38]. These methods should provide effective protection to
users/companies and their data against intruders [39]. The detection methods can focus
on analysing the behaviour of network traffic and detecting anomalies that are known or
that could be a new type of attack on network infrastructure. The assumptions of such a
solution are highly restrictive, since it should return low numbers of false positives and
false negatives. If such defects are high, the system administrator may become complacent
and fail to respond to a real attack [40]. Suitable detection methods should also be efficient
enough to process network traffic and inform the administrator of any potential threats as
soon as possible.

3.1. Intrusion Detection Systems

An intrusion detection system (IDS) is a solution that is used to monitor network
traffic and able to detect attacks [41]. This solution is mainly used in two ways: as a
network-based IDS located behind a firewall to analyse incoming traffic, or as a host-based
IDS to analyse traffic targeted to specific host.

It is worth mentioning that IDS conducts a significantly more advanced analysis than
a typical firewall, which is a filtering point between a local and external network. The
major task of a firewall is to allow or deny network traffic using static analysis. Therefore,
a firewall’s configuration rules focus mainly on source/destination IP addresses or ports,
which may prevent the firewall from detecting malicious traffic [42]. Firewalls frequently
do not conduct analysis as advanced as IDS; however, a combination of these two solutions
provides more efficient protection to network infrastructure [43].

The placement of an IDS is critical and varies depending on what the user needs to
protect. It is crucial that the balance between network performance and the range of IDS
operation is maintained. The most obvious placement of an IDS is behind the firewall,
allowing for monitoring of the entire network; however, this could create a bottleneck that
may decrease the overall throughput of the network. On the other hand, if the IDS is placed
deeper inside the network, the performance levels will be maintained, while a part of the
network will be left vulnerable [44,45].

There are two main types of IDS: software solutions (e.g., Snort [46] or Suricata [47])
and hardware solutions (e.g., devices developed by Cisco Systems [48] or Palo Alto Net-
works [49]). Selecting the most appropriate solution depends on infrastructure, budget,
and other specific requirements of cybersecurity staff. Optimal IDS deployment and con-
figuration make it possible for the network to stay hidden from attackers while remaining
transparent to network users. However, it is a key element of network security, providing
a response to any attack.

3.2. Detection Methods

The key purpose of IDS is to detect unwanted traffic in the network that could be
a potential attack [50]. There are two main types of detection techniques [51]: misuse
detection and anomaly detection.

Misuse detection is based on the attack’s signature. This type of detection uses
a predefined attack signature and compares it with an analysed packet or groups of
packets [52]. If the signature or part of it matches the malicious signature, the event is
reported. Misuse detection is effective and produces low levels of false negatives and false
positives. However, this solution cannot detect new types of attack, which are unlikely
to match any known signatures. Therefore, if the attack differs from the signature even
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slightly, it is not detected. This makes it essential for the producer/vendor of the IDS to
update the signatures database frequently.

Anomaly detection, also known as behaviour-based detection, assumes that behaviour
that determines the attacker’s likely activity is different from the behaviour of a permitted
network user [53]. IDS supporting anomaly-based detection is highly effective at finding
zero-day attacks; however, it generates high volumes of false positives. We can distinguish
two types of behaviour-based attack identification: heuristic analysis and anomaly analysis.
The first type is based on potential behaviours, which can occur with different kind of
attacks, such as port scanning or unauthorised access to confidential resources. The second
type relies on anomaly recognition by detecting unusual activities. For instance, if a user
logs into the local database outside of their usual hours and tries to access confidential data,
it may be seen as an anomaly. The heuristic approach can also be based on data shared by
the federated organisations.

4. Multivariable Heuristic Approach

A joint approach to attack detection is more effective than an individual approach,
encouraging companies working in a given sector to create federations. This approach
means each member of the federation has access to a broad knowledge of threats in
cyberspace. However, shared data regarding malicious or suspicious entities can be
fragmented and covers a range of aspects of the threat. Such inconsistent data should be
organised into groups.

4.1. Flags

Groups known as flags describe the nature of a given threat. This information can
be shared across the federation and is used by a heuristic detection algorithm. The choice
of flags was inspired by the common vulnerability scoring system (CVSS) and authors’
practical knowledge—including joint work in the H2020 ECHO project [11]. Parameters
and their values can be configured depending on the local security policy. Flags and their
default values are described below. These values were chosen for the purpose of the test to
present functionality of the algorithm.

• dangerous—This flag identifies the severity of the threat associated with an IP address
(Table 1). The value of this flag is subjective and depends on the environment/federa-
tion. In some cases, the attack may not be especially harmful. For example, a phishing
attack on medical wristband infrastructure is not especially dangerous; on the other
hand, the same type of attack on corporate infrastructure can be critical. The value of
this flag and the decision of which flag to assign to the given IP address can be based
on an analysis of other flags.

Table 1. Description of dangerous flags.

Flag Type Flag Description Default Value

dangerous H (High) High threat −6

dangerous M (Medium) Medium threat −5

dangerous L (Low) Low threat −2

• attack—This flag specifies the type of attack in which the IP address was recently
involved. The value of this flag may differ from its environment because the effective-
ness of an attack also depends on the network’s purpose and users. Table 2 shows
descriptions and default values for attack flags.
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Table 2. Description of attack flags.

Flag Type Flag Description Default Value

attack D DDoS −5

attack P Phishing −5

attack M Malware −5

attack R Ransomware −5

attack S DoS −5

attack X XSS −5

• range—This flag describes the impact of an attack by an IP address on other network
components such as the server, switch, or router. In this case, a given attack may
affect only a single attacked network component or spread over a part or all of the
infrastructure. Table 3 shows description and default values for range flags.

Table 3. Description of range flags.

Flag Type Flag Description Default Value

range S (Single) Attack targeting the
attacked station only −1

range P (Partial) Attack on stations affecting
adjacent components −2

range C (Complete) Attack on stations affecting
the entire network −3

• access—Some attacks (e.g., phishing, malware) require user action within the network,
while others (e.g., DDoS, DoS) do not require user response. This type of flag describes
the need for user response within the network. Table 4 shows two possible flags:
none and user. The first describes a situation when the attack does not require a
user response. The second flag describes a situation when the attack requires a user
response (e.g., opening an attachment in an email).

Table 4. Description of access flags.

Flag Type Flag Description Default Value

access N (None) Attack does not require user
response inside the network −2

access U (User) Attack requires user response
inside the network −1

• availability—Some attacks, such as ransomware, cause a partial or complete loss
of access to the unit and data on it. This type of flag describes the impact on the
availability of the attacked component. Table 5 shows three levels of impact on the
functionality of a given component in the network.
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Table 5. Description of availability flags.

Flag Type Flag Description Default Value

availability N (None) Attack does not affect the
functionality of the station −1

availability P (Partial)
Attack causes the loss of

several functionalities and
a decrease in performance

−2

availability C (Complete) Attack causes a complete
loss of control of the unit −4

4.2. Entropy

Entropy is a concept derived from information theory. Entropy, introduced by Claude
Shannon, is the average amount of information carried by a single message [54]. By
defining the probability of an event, it can be determined whether the event is recurring
or rare. With regard to a computer network, the entropy of a phenomenon can determine
whether it is a desired activity in a given network or an anomaly [55,56].

Assume that X is a discrete random variable, with a probability distribution p(x1),
p(x2), . . . , p(xi),. Each probability p(xi) meets the condition (1).

0 ≤ p(xi) ≤ 1,
n

∑
i=1

p(xi) = 1 (1)

For the assumed condition, the entropy takes the Formula (2).

Hs(X) =
n

∑
i=1

p(xi)log
1

p(xi)
= −

n

∑
i=1

p(xi)logp(xi) (2)

4.3. Shared Data

The format of data shared in the federation should be simple and scalable. As we
are operating on a relatively small number of addresses, comma-separated values (CSV)
format was used. This type of file is concise, readable, and can be formatted and edited
easily with many applications, such as LibreOffice Calc, Microsoft Excel, and Notepad.
While the CSV format is convenient for operation on small amounts of data, the file type
could be changed to more compact and scalable format, e.g., JavaScript Object Notation
(JSON) or Extensible Markup Language (XML).

Each record must contain the IP address of the suspicious/malicious entity, defined
flags, and entropy value. These sections in one record can be separated by commas. The
general structure of a single record is as follows:

IP_address, dangerous, attack, range, access, availability, counter, entropy

An example list with records in the correct format is presented below. This kind of list
(CSV file) can contain thousands of records with suspicious/malicious addresses.

52.114.75.115,H,M,P,U,N,0,0.0
54.239.192.118,M,R,C,N,P,1200,4.777507
52.113.199.181,M,R,S,U,C,7679,2.103476
192.168.0.192,L,R,P,N,N,0,0.0
35.244.181.201,M,M,C,U,P,461,6.082576

The first section defines a malicious IP address. Such an address can be provided by
another company that had been attacked and, following forensic analysis, is confirmed
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that it took part in the attack. The second section determines the severity of the threat
associated with a given IP address (e.g., the flag set to High may mean the website where
the ransomware was downloaded, while the flag set to Low may mean that the IP address
that was involved in a DDoS attack is a bot). The third section describes the types of
attacks in which this IP address was involved. The fourth section determines the range of
the attack on local network infrastructure. The range flag determines how many stations
could be attacked. The fifth section contains access flags, which mark the requirement for
user action within the network. The sixth flag describes the impact on the availability of
the attacked network component. Finally, the structure includes a counter of the address
appearing in the network shown alongside the entropy value of this address in the local
network. The default values of counter and entropy are equal to zero.

4.4. Detection Algorithm

The proposed multivariable heuristic algorithm should take into account the flags and
entropy value. However, the entropy depends on the number of received packets from a
given IP address; therefore, the final value should be calculated for each captured packet.
Additionally, this value should depend on the value of each flag in the correct proportion.
Thus, the following formula for calculating the packet value is used:

PVf = PVi + (α ∗ dangerous) + (β ∗ attack) + (γ ∗ range) + (δ ∗ access)+

(ε ∗ availability) + (η ∗ entropy),
(3)

where PVf is the final packet value and PVi is the initial packet value.
Parameters α, β, γ, δ, ε, and η should be chosen regarding the security policy. The

authors suggest that the influence of the entropy value should be limited. Therefore, the η
value has been set to 0.5 for calculations during the verification tests. Further, for dangerous
and attack flags, it is a subjective assessment of how to evaluate the attack. Therefore, the
ratio of 65% of the dangerous flag value and 35% of the attack flag value was adopted for
calculations. The default parameters are shown in Table 6.

Table 6. Default values of parameters.

Parameter Default Value

α 0.65

β 0.35

γ 1

δ 1

ε 1

η 0.5

The final elements of the detection algorithm are related to the selected detection
threshold. The heuristic algorithm should generate an alert if this threshold is exceeded.
Therefore, three different detection parameters should be defined.

• packet_value—Initial value of the received packet immediately after the packet is
captured. This value is the same for each analysed packet.

• sensitivity—Lower limit of the packet value. When this limit is exceeded (following
analysis), the packet is reported to the console.

• entropy—Upper limit of the packet entropy value above which the packet is reported
to the console.

Each of these parameters should have default values related to the deployed security
policy in the protected network. Table 7 presents the proposed default values, which were
selected during the experiments described in the next section.
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Table 7. Default values regarding detection threshold.

Parameter Default Value

packet_value 23

sensitivity 15

entropy 5

5. Verification

The proposed multivariable heuristic detection algorithm must be verified in real-life
scenarios. Therefore, this solution was tested in a network environment to detect malicious
traffic. Additionally, the authors verified how updates of variables affect the efficiency and
accuracy of the detection algorithm.

5.1. Methodology and Test Environment

The verification was performed in a Snort environment—an open source IDS network
capable of logging and analysing incoming traffic in real-time. Snort is a powerful tool used
to detect and prevent intrusions in networks [57]. It has been in use for over 20 years and is
one of the most popular open source IDS tools [58]. However, this tool is a signature-based
detection system. This means that new heuristic functionalities had to be implemented to
verify the proposed multivariable heuristic detection algorithm.

The first step of detecting anomalies in Snort is collecting (sniffing) network traffic
and identifying the structure of each packet. This requires a packet capture and filtering
engine for acquiring data such as [59] packet capture time, length of the packet, size of the
captured packet, and a pointer to the contents of the packet. After capturing the packet,
Snort begins decoding: the acquired packet enters the packet decoder depending on the link
layer from which it is read. Next, preprocessors expand Snort’s functionality by making it
possible to easily configure the packet processing modules [60]. The preprocessors are an
element of Snort, which is key when it comes to developing a new functionality inside the
environmental engine. The authors developed and deployed two new preprocessors: one
allowing Snort to collect and update variables regarding malicious IP addresses, and the
other to update flags and entropy values in a dynamic manner.

Detection rules are an important element of Snort. A single rule consists of a header
and options. The header contains the rule’s action, protocol type (currently supporting
TCP, UDP, ICMP, and IP), destination IP addresses and netmasks, direction operator (used
to indicate the direction of the traffic the rule applies to), and source and destination port
information. Options contain alert messages and information that determine whether the
rule action should be taken depending on the inspected packet [46]. Snort’s detection ability
was expanded during the verification process based on rules focused on SQL Injection
(SQLi). This type of attack exploits application security vulnerabilities to inject SQL queries
into a database.

As mentioned, the new heuristic preprocessors in Snort add new functionality to this
environment. The configuration file should contain a path to a CSV file with malicious
IP addresses. Each address should have flags and an entropy value assigned to it. Each
flag has a value that will be added to the packet rating. The flag values must be negative,
so their absolute value will be subtracted instead. The evaluation of packets starts at a
predefined packet_value variable. Depending on the flags and entropy assigned to the
address, the packet rating is updated (hence, the negative values assigned to the flags).
At the end, packet_value is compared to the sensitivity variable, which is a deciding
factor in displaying alerts.

5.2. Validation of the Algorithm

This section presents the functional verification of the multivariable heuristic algo-
rithm. To show how the algorithm operates in different environments, the selection of flags
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for IP addresses was random. Listing 1 presents the shared file containing information on
malicious IP addresses and flags.

Listing 1. The content of a shared file (before test).

Version June 5, 2021 submitted to Entropy 9 of 15

1 9 2 . 1 6 8 . 0 . 1 ,H,D, P ,N,N, 0 , 0 . 0321

3 5 . 2 2 2 . 8 5 . 5 , L ,M, C,U, P , 0 , 0 . 0322

5 4 . 3 8 . 1 2 8 . 1 8 ,M, R , C,N, P , 0 , 0 . 0323

9 1 . 2 3 0 . 2 2 2 . 2 5 ,H,M, P ,U,N, 0 , 0 . 0324

9 3 . 1 8 4 . 2 2 0 . 2 9 ,M,M, S ,N, C, 0 , 0 . 0325

5 2 . 1 1 3 . 2 0 5 . 3 6 ,H, S , P ,U,N, 0 , 0 . 0326

5 2 . 1 1 4 . 9 2 . 4 0 ,M,D, C,N, P , 0 , 0 . 0327

5 . 1 3 5 . 1 3 0 . 4 3 , L , R , C,N, P , 0 , 0 . 0328

1 9 2 . 1 6 8 . 0 . 5 9 ,H,M, S ,U, C, 0 , 0 . 0329

1 9 2 . 1 6 8 . 0 . 8 0 , L , X , P ,U,N, 0 , 0 . 0330

1 9 2 . 1 6 8 . 0 . 8 7 ,H, R , P ,N,N, 0 , 0 . 0331

1 9 2 . 1 6 8 . 0 . 1 0 1 , L ,D, C,U, P , 0 , 0 . 0332

1 9 2 . 1 6 8 . 0 . 1 0 3 ,H,M, S ,U, C, 0 , 0 . 0333

1 9 2 . 1 6 8 . 0 . 1 1 5 , L , P , S ,N, C, 0 , 0 . 0334

5 2 . 1 1 4 . 7 5 . 1 1 5 ,H,M, P ,U,N, 0 , 0 . 0335

5 4 . 2 3 9 . 1 9 2 . 1 1 8 ,M, R , C,N, P , 0 , 0 . 0336

3 5 . 2 3 1 . 2 3 3 . 1 2 5 ,H, S , S ,N, C, 0 , 0 . 0337

1 9 2 . 1 6 8 . 0 . 1 4 3 ,H, R , C,N, P , 0 , 0 . 0338

5 2 . 1 1 3 . 1 9 9 . 1 8 1 ,M, R , S ,U, C, 0 , 0 . 0339

1 9 2 . 1 6 8 . 0 . 1 9 2 , L , R , P ,N,N, 0 , 0 . 0340

3 5 . 2 4 4 . 1 8 1 . 2 0 1 ,M,M, C,U, P , 0 , 0 . 0341

3 4 . 1 0 7 . 1 9 5 . 2 2 6 ,H, S , C,N, P , 0 , 0 . 0342

4 0 . 7 7 . 2 2 6 . 2 5 0 ,M, X , C,N, P , 0 , 0 . 0343

During detection, logs related to individual packets can be seen inon the console344

and are saved to a log file. The packets are processed to update the shared data for345

further usage by the federated entities. Figure 1 shows example logs that appear during346

the detection process. Each log contains selected flags (type of attack related to the given347

IP address and dangerous flag associated with the given IP address), package value after348

calculations based on Equation (3) and current entropy value for the specific malicious349

IP address.350

The duration of this verification test was 89 minutes. During this time the verifi-351

cation test 33,503 packets captured from a local network were analysed (there was no352

additional network traffic generated because of test’s purpose – functional verification of353

the proposed solution) (throughput: 376 packets per minute). The test was performed354

on a personal computer. Figure 2 shows a brief summary. Most of the traffic ran on355

IPv4. Listing 2 presents the shared file updated immediately after the test. The file356

contains updated data related to malicious IP addresses, showing significant changes in357

comparison to the status before the analysis.358

Listing 2: The content of a shared file (after the test).

1 9 2 . 1 6 8 . 0 . 1 ,H,D, P ,N,N, 1 9 4 8 , 4 . 0 8 1 1 3 2359

3 5 . 2 2 2 . 8 5 . 5 , L ,M, C,U, P , 0 , 0 . 0 0 0 0 0 0360

5 4 . 3 8 . 1 2 8 . 1 8 ,M, R , C,N, P , 2 8 4 , 3 . 7 4 5 0 7 1361

9 1 . 2 3 0 . 2 2 2 . 2 5 ,H,M, P ,U,N, 0 , 0 . 0 0 0 0 0 0362

9 3 . 1 8 4 . 2 2 0 . 2 9 ,M,M, S ,N, C, 0 , 0 . 0 0 0 0 0 0363

5 2 . 1 1 3 . 2 0 5 . 3 6 ,H, S , P ,U,N, 0 , 0 . 0 0 0 0 0 0364

5 2 . 1 1 4 . 9 2 . 4 0 ,M,D, C,N, P , 0 , 0 . 0 0 0 0 0 0365

5 . 1 3 5 . 1 3 0 . 4 3 , L , R , C,N, P , 3 5 , 6 . 6 5 7 8 0 3366

1 9 2 . 1 6 8 . 0 . 5 9 ,H,M, S ,U, C, 0 , 0 . 0 0 0 0 0 0367

1 9 2 . 1 6 8 . 0 . 8 0 , L , X , P ,U,N, 1 8 5 , 7 . 4 4 9 6 5 1368

1 9 2 . 1 6 8 . 0 . 8 7 ,H, R , P ,N,N, 0 , 0 . 0 0 0 0 0 0369

1 9 2 . 1 6 8 . 0 . 1 0 1 , L ,D, C,U, P , 1 2 0 0 , 4 . 7 7 7 5 0 7370

1 9 2 . 1 6 8 . 0 . 1 0 3 ,H,M, S ,U, C, 7 6 7 9 , 2 . 1 0 3 4 7 6371

1 9 2 . 1 6 8 . 0 . 1 1 5 , L , P , S ,N, C, 0 , 0 . 0 0 0 0 0 0372

During detection, logs related to individual packets can be seen in the console and are
saved to a log file. The packets are processed to update the shared data for further usage
by the federated entities. Figure 1 shows example logs that appear during the detection
process. Each log contains selected flags (type of attack related to the given IP address
and dangerous flag associated with the given IP address), package value after calculations
based on Equation (3), and current entropy value for the specific malicious IP address.

Figure 1. Logs received during the analysis.

During the verification test, 33,503 packets captured from a local network were
analysed (there was no additional network traffic generated because of test’s purpose:
functional verification of the proposed solution). The test was performed on a personal
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computer. Figure 2 shows a brief summary. Most of the traffic ran on IPv4. Listing 2
presents the shared file updated immediately after the test. The file contains updated data
related to malicious IP addresses, showing significant changes compared with the status
before the analysis.

Figure 2. Number and percentage distribution of packets during the analysis.

Listing 2. The content of a shared file (after the test).
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1 9 2 . 1 6 8 . 0 . 1 ,H,D, P ,N,N, 0 , 0 . 0321

3 5 . 2 2 2 . 8 5 . 5 , L ,M, C,U, P , 0 , 0 . 0322

5 4 . 3 8 . 1 2 8 . 1 8 ,M, R , C,N, P , 0 , 0 . 0323

9 1 . 2 3 0 . 2 2 2 . 2 5 ,H,M, P ,U,N, 0 , 0 . 0324

9 3 . 1 8 4 . 2 2 0 . 2 9 ,M,M, S ,N, C, 0 , 0 . 0325

5 2 . 1 1 3 . 2 0 5 . 3 6 ,H, S , P ,U,N, 0 , 0 . 0326

5 2 . 1 1 4 . 9 2 . 4 0 ,M,D, C,N, P , 0 , 0 . 0327

5 . 1 3 5 . 1 3 0 . 4 3 , L , R , C,N, P , 0 , 0 . 0328

1 9 2 . 1 6 8 . 0 . 5 9 ,H,M, S ,U, C, 0 , 0 . 0329

1 9 2 . 1 6 8 . 0 . 8 0 , L , X , P ,U,N, 0 , 0 . 0330

1 9 2 . 1 6 8 . 0 . 8 7 ,H, R , P ,N,N, 0 , 0 . 0331

1 9 2 . 1 6 8 . 0 . 1 0 1 , L ,D, C,U, P , 0 , 0 . 0332

1 9 2 . 1 6 8 . 0 . 1 0 3 ,H,M, S ,U, C, 0 , 0 . 0333

1 9 2 . 1 6 8 . 0 . 1 1 5 , L , P , S ,N, C, 0 , 0 . 0334

5 2 . 1 1 4 . 7 5 . 1 1 5 ,H,M, P ,U,N, 0 , 0 . 0335

5 4 . 2 3 9 . 1 9 2 . 1 1 8 ,M, R , C,N, P , 0 , 0 . 0336

3 5 . 2 3 1 . 2 3 3 . 1 2 5 ,H, S , S ,N, C, 0 , 0 . 0337

1 9 2 . 1 6 8 . 0 . 1 4 3 ,H, R , C,N, P , 0 , 0 . 0338

5 2 . 1 1 3 . 1 9 9 . 1 8 1 ,M, R , S ,U, C, 0 , 0 . 0339

1 9 2 . 1 6 8 . 0 . 1 9 2 , L , R , P ,N,N, 0 , 0 . 0340

3 5 . 2 4 4 . 1 8 1 . 2 0 1 ,M,M, C,U, P , 0 , 0 . 0341

3 4 . 1 0 7 . 1 9 5 . 2 2 6 ,H, S , C,N, P , 0 , 0 . 0342

4 0 . 7 7 . 2 2 6 . 2 5 0 ,M, X , C,N, P , 0 , 0 . 0343

During detection, logs related to individual packets can be seen inon the console344

and are saved to a log file. The packets are processed to update the shared data for345
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the detection process. Each log contains selected flags (type of attack related to the given347
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calculations based on Equation (3) and current entropy value for the specific malicious349

IP address.350
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cation test 33,503 packets captured from a local network were analysed (there was no352
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the proposed solution) (throughput: 376 packets per minute). The test was performed354
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IPv4. Listing 2 presents the shared file updated immediately after the test. The file356

contains updated data related to malicious IP addresses, showing significant changes in357

comparison to the status before the analysis.358

Listing 2: The content of a shared file (after the test).

1 9 2 . 1 6 8 . 0 . 1 ,H,D, P ,N,N, 1 9 4 8 , 4 . 0 8 1 1 3 2359

3 5 . 2 2 2 . 8 5 . 5 , L ,M, C,U, P , 0 , 0 . 0 0 0 0 0 0360

5 4 . 3 8 . 1 2 8 . 1 8 ,M, R , C,N, P , 2 8 4 , 3 . 7 4 5 0 7 1361

9 1 . 2 3 0 . 2 2 2 . 2 5 ,H,M, P ,U,N, 0 , 0 . 0 0 0 0 0 0362

9 3 . 1 8 4 . 2 2 0 . 2 9 ,M,M, S ,N, C, 0 , 0 . 0 0 0 0 0 0363

5 2 . 1 1 3 . 2 0 5 . 3 6 ,H, S , P ,U,N, 0 , 0 . 0 0 0 0 0 0364

5 2 . 1 1 4 . 9 2 . 4 0 ,M,D, C,N, P , 0 , 0 . 0 0 0 0 0 0365

5 . 1 3 5 . 1 3 0 . 4 3 , L , R , C,N, P , 3 5 , 6 . 6 5 7 8 0 3366

1 9 2 . 1 6 8 . 0 . 5 9 ,H,M, S ,U, C, 0 , 0 . 0 0 0 0 0 0367

1 9 2 . 1 6 8 . 0 . 8 0 , L , X , P ,U,N, 1 8 5 , 7 . 4 4 9 6 5 1368

1 9 2 . 1 6 8 . 0 . 8 7 ,H, R , P ,N,N, 0 , 0 . 0 0 0 0 0 0369

1 9 2 . 1 6 8 . 0 . 1 0 1 , L ,D, C,U, P , 1 2 0 0 , 4 . 7 7 7 5 0 7370

1 9 2 . 1 6 8 . 0 . 1 0 3 ,H,M, S ,U, C, 7 6 7 9 , 2 . 1 0 3 4 7 6371

1 9 2 . 1 6 8 . 0 . 1 1 5 , L , P , S ,N, C, 0 , 0 . 0 0 0 0 0 0372
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5 2 . 1 1 4 . 7 5 . 1 1 5 ,H,M, P ,U,N, 0 , 0 . 0 0 0 0 0 0373

5 4 . 2 3 9 . 1 9 2 . 1 1 8 ,M, R , C,N, P , 0 , 0 . 0 0 0 0 0 0374

3 5 . 2 3 1 . 2 3 3 . 1 2 5 ,H, S , S ,N, C, 0 , 0 . 0 0 0 0 0 0375

1 9 2 . 1 6 8 . 0 . 1 4 3 ,H, R , C,N, P , 4 6 1 , 6 . 0 8 2 5 7 6376

5 2 . 1 1 3 . 1 9 9 . 1 8 1 ,M, R , S ,U, C, 0 , 0 . 0 0 0 0 0 0377

1 9 2 . 1 6 8 . 0 . 1 9 2 , L , R , P ,N,N, 0 , 0 . 0 0 0 0 0 0378

3 5 . 2 4 4 . 1 8 1 . 2 0 1 ,M,M, C,U, P , 1 9 , 9 . 1 9 8 1 2 2379

3 4 . 1 0 7 . 1 9 5 . 2 2 6 ,H, S , C,N, P , 1 1 0 1 , 1 . 9 8 9 4 7 9380

4 0 . 7 7 . 2 2 6 . 2 5 0 ,M, X , C,N, P , 1 5 2 , 7 . 7 0 1 4 8 9381

Figure 1. Logs received during the analysis.
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3) and the default values of parameters (Table 6). Additionally, Figure 3 shows the log386

related to a packet from 192.168.0.103 which contains the packet value assigned by the387

detection algorithm.388
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PVF = 23 + (0.65 ∗ (−6)) + (0.35 ∗ (−5))− 1 − 1 − 4 − (0.5 ∗ (2.103476))

= 10.298262
(4)

The functional verification of the heuristic detection algorithm demonstrates that,389

based on the external shared data (flags and entropy), the packet value can be determined390

in quantitative way, as both values – calculated and computed – are equal. The decision391

is made when this value is compared with the threshold. This approach detects malicious392

traffic.393

5.3. Updating of variables394

This test verifies how the duration of the detection process affects effectiveness.395

In this scenario the authors used network traffic containing SQL Injection attacks (the396

environment SQLi-LABS [62,63] was used to validate these attacks) and wrote the Iter-397

ate_Snort script. As the name suggests, the script contains an iterational algorithm which398

works alternately with attack detection by Snort, based on its output, and prepares a399

file of malicious addresses. The main goals of this algorithm is to detect attacks (in400

this scenario SQL Injections), collect information about specific IP addresses that have401

performed an attack, and update variables (e.g. flags) in the shared file.402

The created script requires two arguments: iterate which sets the number of403

iterations and timer which sets the duration of a single scanning iteration by Snort.404

Snort operates with the appropriate set of rules for SQLi detection, and an option which405

allows the program to log the alerts into a specified folder. Then, another script is run to406
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In order to verify the algorithm operation, the packet value for the most frequent
IP address (which is 192.168.0.103) has been calculated manually and then compared
to the value computed by the algorithm. The calculations were based on Equation (3)
and the default values of parameters (Table 6). Additionally, Figure 3 shows the log
related to a packet from 192.168.0.103, which contains the packet value assigned by the
detection algorithm.

192.168.0.103,H,M,S,U,C,7679,2.103476

PVF = 23 + (0.65 ∗ (−6)) + (0.35 ∗ (−5))− 1 − 1 − 4 − (0.5 ∗ (2.103476))

= 10.298262
(4)

Figure 3. Entropy for the address 192.168.0.103.

The functional verification of the heuristic detection algorithm demonstrates that,
based on the external shared data (flags and entropy), the packet value can be deter-
mined in quantitative way, as both values—calculated and computed—are equal. The
decision is made when this value is compared with the threshold. This approach detects
malicious traffic.

5.3. Updating of Variables

This test verifies how the duration of the detection process affects effectiveness. In
this scenario, the authors used network traffic containing SQL Injection attacks (the envi-
ronment SQLi-LABS [61,62] was used to validate these attacks) and wrote the Iterate_Snort
script. As the name suggests, the script contains an iterational algorithm that works alter-
nately with attack detection by Snort, based on its output, and prepares a file of malicious
addresses. The main goals of this algorithm is to detect attacks (in this scenario, SQL
Injections), collect information about specific IP addresses that have performed an attack,
and update variables (e.g., flags) in the shared file.

The created script requires two arguments: iterate, which sets the number of iter-
ations, and timer, which sets the duration of a single scanning iteration by Snort. Snort
operates with the appropriate set of rules for SQLi detection and an option that allows
the program to log the alerts into a specified folder. Then, another script is run to create
updated CSV files based on the collected alerts. Both processes are repeated until the
number of completed iterations is equal to iterate.

The authors performed numerous tests to show differences between different configu-
rations of Iterate_Snort arguments; each test had a different number of iterations, but the
total operation time was the same. We assumed that in a single full test, exactly 180 attacks
should be executed (the script operated for approximately 15 min while performing 180
attacks). Therefore, we chose the duration of packet collection in each scenario because
every restart of Snort takes some time; we took into account pauses between iterations and
the time when commands are executed. The results are shown in Table 8 and Figure 4.

Table 8. Effectiveness for multi-iteration scenarios.

Number of
Iterations

Maximum
Attacks

Detected

Minimum
Attacks

Detected

Average
Attacks

Detected
Effectiveness Standard

Deviation

1 180 178 179.2 99.6% 0.6

2 179 177 177.8 98.8% 0.6

5 179 176 177.2 98.4% 0.7

10 177 174 176.0 97.8% 0.9
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Figure 4. Effectiveness of intrusion detection for multi-iteration scenarios.

The comparative analysis shows that the detection algorithm is repeatable in terms
of effectiveness when it comes to the same configuration. It is also worth mentioning that
there is no significant drop in effectiveness between different scenarios. The difference
between sample and ten-iteration tests’ effectiveness is lower than 2 percentage points. This
means the shared data can be regularly updated and the algorithm would remain effective.

While the average number of attacks detected in a sample test (one iteration) is
the highest, Snort does not always detect all of the attacks (the minimum number of
attacks detected is always lower than 180). The two-iteration tests missed two attacks on
average. The standard deviation of the results is less than 1 and there were no significant
irregularities in the results (the difference between the maximum and minimum values
of attacks detected is equal to 2). This suggests that increasing the number of iterations
will lower effectiveness. The average number of attacks detected in the five-iteration test is
indeed lower, although the standard deviation values mean the difference is inconclusive.
The maximum number of attacks detected by the five-iteration test is 179 attacks. This
means that under specific conditions (such as a short delay between starting the scripts or
Snort initialisation time lower than usual), the algorithm can perform very well, even with
a higher number of iterations. The average number of attacks detected by ten-iteration
tests is lower than the result of the two-iteration tests. While the number of lost packets
is higher than in previous tests, the algorithm still performs very well: its effectiveness is
nearly 98% despite running ten iterations.

Two main conclusions can be drawn from this analysis.

• In most cases, the algorithm cases perform better with a lower number of iterations. Its
effectiveness is higher in one-iteration scenarios than in two-, five-, and ten-iteration
scenarios. The two-iteration test’s effectiveness is also higher than that of the ten-
iteration tests.

• The standard deviation of the tests is lower than 1 in each scenario. This means
that the algorithm regularly detects attacks, and anomalies such as the minimum
number of attacks detected by the ten-iteration test (174 attacks) are rare throughout
its operation.

6. Conclusions

Security in cyberspace is a major challenge of modern IT systems [63,64], driving the
development of new ways of detecting and protecting against threats and attacks. This
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paper proposes a multivariable heuristic algorithm as a new method of intrusion detection.
This solution is based on different types of flags and values of entropy set for each suspi-
cious address. Such information about suspicious addresses can be shared between entities
in a federated environment. This makes the algorithm flexible and adaptable to different
sectors and networks, as the flags are changed within a single CSV file. Depending on
the input data, the algorithm calculates the packet value and decides—depending on the
sensitivity of the network (set by a variable defined in the shared file)—whether the packet
should be reported. Additionally, the authors propose an approach to parametrise the de-
tection algorithm. The authors propose default values of the packet_value, sensitivity,
and entropy variables in case these values are not set by the user manually, since they are
crucial for the operation of the algorithm.

The effectiveness of the proposed solution was verified through a series of tests with
different configurations. Snort—a popular open source IDS tool—was used during the
experiments. The authors implement new functionalities in this environment to verify
the introduced multivariable heuristic detection algorithm. The testing part consisted of
two scenarios: functionality verification and comparative analysis of the algorithm. The
total time was the same in each case, but the number of algorithm iterations increased.
In each test, the values of the flags and entropy were random to show that the algorithm
is effective in different network scenarios. The first scenario validated the algorithm
operation: the decision based on the value of the packet counted using the proposed
formula was made correctly. The second scenario was performed to check how the changes
of detection duration affect the effectiveness. The authors drew two main conclusions: the
algorithm performs better with a lower number of iterations, and it is rather repetitive in
the same configuration.

With Internet use increasing rapidly every day, solutions such as the multivariable
heuristic intrusion detection algorithm are highly desirable on the market. The new
algorithm proposed in this paper was tested and its effectiveness demonstrated, although
it is still open for future development. Some environments may need additional sector-
specific groups of flags that describe the character of a given threat. Another potential
extension that could increase network security is collecting additional information about
traffic using network devices, e.g., by monitoring the number of inbound packets on
firewalls. These statistics could help prevent DoS and DDoS attacks more effectively.
Future work will explore these directions of development of the multivariable-based
approach to intrusion detection. The research will also focus on finding the optimal default
parameters of the heuristic algorithm for different sectors. Such personalised parameters
will increase the effectiveness of threat detection in a given network. It is important that the
development of detection methods continues, given the fact that new threats and attacks
are constantly appearing in cyberspace.
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