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Abstract: We present computer simulation and theoretical results for a system of N Quantum Hard
Spheres (QHS) particles of diameter σ and mass m at temperature T, confined between parallel
hard walls separated by a distance Hσ, within the range 1 ≤ H ≤ ∞. Semiclassical Monte Carlo
computer simulations were performed adapted to a confined space, considering effects in terms of
the density of particles ρ∗ = N/V, where V is the accessible volume, the inverse length H−1 and the
de Broglie’s thermal wavelength λB = h/

√
2πmkT, where k and h are the Boltzmann’s and Planck’s

constants, respectively. For the case of extreme and maximum confinement, 0.5 < H−1 < 1 and
H−1 = 1, respectively, analytical results can be given based on an extension for quantum systems of
the Helmholtz free energies for the corresponding classical systems.

Keywords: hard spheres; perturbation theory; quantum fluids; quantum Monte Carlo

1. Introduction

The behavior of confined fluids have received considerable interest in recent years
due to the research on microfluidic applications. Phase transitions that occur in pores are
different to the ones observed in bulk systems, as has been determined in several studies of
water in nanochanels [1]. Hydrogen in nanopores exhibits important quantum effects even
at room temperatures [2]. The study of confined models is of great interest due to their
multiple applications. Previous studies have found that the behaviour of a classical system
of Lennard–Jones (LJ) particles confined between parallel walls separated by a distance
Hσ, where σ is the size parameter of the LJ pair potential u(r) where u(σ) = 0, presents a
reduction in their critical point, with a clear asymptotic tendency to a two-dimensional LJ
fluid when the separation between walls is reduced to maximum confinement [3]. In the
case of the liquid–solid transition, the thermodynamic melting temperature of LJ system
confined between parallel walls is higher than for the bulk case (H−1 = 0) [4]. Schmidt
and Löwen [5] studied the phase diagram of a hard-spheres (HS) system confined between
parallel hard walls, and found a very rich formation of novel phases.

The case of quantum systems confined in slit pores has been studied previously for
the HS model by Liu et al. [6]. In previous work [7] we have addressed the behavior
of quantum fluids under confinement, considering quantum LJ particles (QLJ) confined
between parallel hard walls, and introducing quantum corrections at the level of the
Wigner–Kirkwood theory [8,9], with interesting findings in the way that the reduction of
dimensionality from bulk (3D) to extreme confinement (2D) gives rise to the coupling of
criticality with the pore size and de Broglie’s thermal wavelength λB = h/

√
2πmkT, where

k and h are the Boltzmann’s and Planck’s constants, respectively, and m is the mass of a
particle. From the fundamental solution of the Schrödinger equation, the behaviour of
confined D-dimensional hard spheres has been determined for low-density systems [10]
based on the assumption that diluted interacting quantum gases can be described as an
ideal quantum gas interacting with small excluded spheres randomly distributed, i.e., a
kind of an effective Bernoulli model of an ideal gas. A closed related-approach has also
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been used for classical hard particles [11,12], providing a route to construct equations
of state for classical fluids [13]. Effects of confinement in quantum gases have also been
studied in detail previously [10,14,15], where contributions to the free energy are functions
of the size of confinement, the geometry and the connectivity or number of holes inside
the container. What is clear is that the thermodynamics of dense quantum fluids become
more elaborate with a complex dependency on the geometry and nature of the container,
the thermal wavelength λB, density, temperature and spin.

The standard way for dealing with the prediction of structural and thermodynamic
properties of fluids contained within pores is using density functional theory (DFT). In this
paper we follow a different approach, with the motivation of introducing thermodynamic
perturbation theory for confined fluids. We present Monte Carlo computer simulation
results in the Canonical (NVT) and Isothermal–Isobaric (NPT) ensembles of quantum hard
hard spheres (QHS) confined between hard planar walls separated by a distance Hσ, based
on a semiclassical approach developed by Yoon and Scheraga for bulk fluids [16] and that
we have adapted to confined systems. In the cases of maximum (H−1 = 1) and extreme
(0.5 < H−1 < 1) confinement we obtain analytical expressions for the Helmholtz free
energy based on the approach given by Franosch et al. [17].

2. Method

If we consider a system of N quantum hard-sphere particles whose potential energy
is UHS(rN), then the partition function neglecting exchange effects is given by

ZQHS =
1

N!

∫
W(rN)drN , (1)

where W(rN) is the Slater sum defined as [18]

W(rN) = ∑
n

e−βEn Ψ∗nΨn, (2)

where En is the energy for the system’s quantum states whose stationary wave function is
Ψn, according to the Schrödinger equation, Ĥ,

ĤΨn = EnΨn, (3)

where Ĥ is the Hamiltonian operator. In the classical limit,

W(rN) = Wc(rN) = λ−3N
B e−βUHS(rN) (4)

whereas in the semiclassical approximation λB < σ and the Slater sum of the system can
be expressed as [19,20]

W(rN) = Wc(rN)Wq(rN) (5)

where Wq(rN) gives the quantum correction to the classical value.
The Slater sum Wq(rN) can be be expressed as a Zwanzig expansion [21] in terms

of classical ensemble averages of the quantum Ursell functions Un, considering now the
quantum version of these functions, obtained through the solution of the Schrödinger
equation. In the two-particle cluster approximation,

Wq(rN) = 1 + ∑
i<j

U2(i, J) (6)

where
U2(i, J) = −e−ξ2

ij (7)

with

ξ2
ij = 2π

[
r∗ij − 1

λ∗B

]2

. (8)
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where λ∗B = λB/σ and r∗ij =| ri − rj | /σ is the reduced distance between particles i and j
with positions ri and rj, respectively. The two-particle Slater function is then given by

w(i, j) = 1 + U2(i, j) (9)

Using Equations (1), (4) and (5) we can derive a semiclassical partition function for the
QHS system, that follows the same mathematical structure as the Zwanzig perturbation
theory for classical fluids [22],

ZQHS =
1

N!λ3N
B

∫
e−βUHS(rN)Wq(rN)drN (10)

and introducing the classical HS partition function, ZHS = λ−3N
B

∫
e−βUHS(rN)drN/N!, then

ZQHS = ZHS

∫
e−βUHS(rN)Wq(rN)drN∫

e−βUHS(rN)drN

= ZHS < Wq(rN) >HS (11)

where < ... >HS denotes an ensemble average with respect to the classical HS system.
The corresponding Helmholtz free energy AQHS = −kT ln ZQHS is then obtained, using
Equations (9) and (11),

AQHS = −kT ln ZHS − kT ln

[
1+ < ∑

i<j
U2(i, j) >HS

]
= AHS − kT < ∑

i<j
U2(i, j) >HS (12)

Last expression can be interpreted as the perturbation expansion for a classical system
of particles interacting with the pair potential uHS(i, j)− kTU2(i, j), where uHS(i, j) is the
HS binary potential for particles i and j and −kTU2(i, j) < 1 is the perturbation potential.
Additionally,

< ∑
i<j

U2(i, j) >HS =
N(N − 1)

2
< U2(i, j) >HS

≈ N2

2V
< U2(r) >HS (13)

where r is the relative position between two particles. Consequently, Equation (12) can be
rewritten as

AQHS

NkT
=

AHS
NkT

+
βρ

2
< −kTU2(r) >HS (14)

that corresponds to the first-order perturbation expansion of the Helmholtz free energy for
a QHS system, in terms of its classical counterpart as reference system, with a mean-energy
term for the potential −kTU2(r). An alternative expression for AQHS was developed by
Nordholm and coworkers [23,24], where quantum effects were included in the partition
function of N independent HS particles, where packing behaviour was modelled as if one
particle is enclosed in a cage induced by the remaining N − 1 particles. This excluded a
volume mechanism can be described quantum mechanically using the standard particle-in-
a-box solution of wave mechanics.

In the MC simulation scheme given by Yoon and Scheraga [16], Equation (14) is
used rewritten in terms of the two-body Slater sum w(r), and the approximation U2(r) ≈
ln(1 + U2(r)) = ln w(r), i.e.,

AQHS

NkT
=

AHS
NkT

+
βρ

2
< −kT ln w(r) >HS (15)
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Introducing an effective Boltzmann factor,

w(i, j) = e−βΓij = 1− e−ξ2
ij , (16)

the semiclassical MC simulations are performed with the standard classical MC method,
using Γij as an equivalent energy and the Slater sum as the quantum-mechanical probability
instead of the Boltzmann one.

Quantum hard spheres follow Boltzmann statistics since exchange effects decay ex-
ponentially to zero in harsh repulsive systems at temperatures where de Broglie thermal
wavelengths are comparable to the size of particles, and then quantum diffraction effects
are not negligible. In the case of solid phases, previous studies have demonstrated that
thermodynamic and structural properties of quantum systems are basically unaltered
by modifying the type of statistics (Bose-Einstein, Fermi-Dirac or Boltzmann-Gibbs) [25].
Chandler and Wolynes [26] have demonstrated by a path-integral approach that exchange
effects can be described as associating ring molecules, using the exact isomorphism be-
tween quantum theory and classical statistical mechanics of polyatomic ring fluids. In a
first approximation, considering only dimer association at low temperatures and liquid
densities, the hard-core repulsion of a QHS system with λB < σ reduces the association
constant, with respect to its ideal-gas value, by a factor of the order of τ ≈ 2e−2πσ2/λ2

B . In
this work we are considering systems with λB ≤ 0.6σ, that correspond to τ ≤ 2× 10−8, i.e.,
the majority of the ring molecules will be non-associated since the population of dimers is
extremely low, an indication that in the semiclassical approach that we are following here
we can safely neglect exchange effects even at high densities.

3. Results

Computer simulations were obtained using the method described in the previous sec-
tion, applying the standard Metropolis algorithm [27] with a random sampling technique,
for QHS particles confined between parallel hard walls, and considering the particle–
wall interaction

u(r) =
{

∞ i f |z| < σ/2,
0 i f |z| ≥ σ/2,

(17)

where z is the distance between the fluid particles and the walls, and usual periodic bound-
ary conditions were applied in the x and y coordinates. Simulations were performed using
512 QHS particles, for densities ρ∗ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and thermal wavelengths
λ∗B = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. The total number of movements for equilibration and
averaging were 3× 108 and 1× 108, respectively, with an overall acceptance of 40% average.
Wall separations were taken from H = 1.0 up to 5.0 in steps of 0.2, and H = 6.0 up to 11, in
steps of 1.0.

3.1. Confined QHS Global Behaviour

When we consider the confinement effect due to parallel hard walls, the Helmholtz
free energy of the system can be expressed as

ACQHS

NkT
(ρ∗, λ∗B, H−1) =

ACHS
NkT

(ρ∗, H−1) +
ACQ

NkT
(ρ∗, λ∗B, H−1) (18)

where ACHS is the Helmholtz free energy of confined classical hard spheres and ACQ is the
contribution due to the quantum nature of the system. In the classical approximation, i.e.,
λ∗B = 0, ACQ = 0. On the other hand, for the bulk case, i.e., H−1 = 0, ACHS(ρ

∗, H−1 = 0) =
AHS(ρ

∗), and Equation (18) reduces to the Helmholtz free energy of the bulk system,

ACQHS

NkT
(ρ∗, λ∗B, H−1 = 0) =

AHS
NkT

(ρ∗) +
ACQ

NkT
(ρ∗, λ∗B, H−1 = 0) (19)
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where AHS(ρ
∗) can be obtained from the Carnahan–Starling equation of state [28],

ACQHS

NkT
(ρ∗, λ∗B, H−1 = 0) =

A3D
ideal

NkT
+

4ηe − 3η2
e

(1− ηe)2 (20)

where A3D
ideal is the ideal contribution and

ηe/η = 1 + p1λ∗B + p2λ∗2B , (21)

where p1 = 0.588868 and p2 = 0.524248 are parameters obtained by fitting to the NVT-
MC values.

For the general case when H−1 6= 0 we can determine ACQ from NVT-MC simulations,
as can be seen in Figure 1. We observe that, for all thermal wavelengths, two different
ranges are observed where ACQ behaves differently. When 0 ≤ H−1 < 0.4, the free energy
contribution due to quantum effects and confinement varies slowly with respect to the bulk
phase (H−1 = 0). When 0.4 < H−1 ≤ 1, ACQ has strong variations with H−1 for densities
ρ∗ > 0.4. It is convenient to discriminate a region for 0.5 < H−1 < 1, that will be characterised
as of extreme confinement that ends with the case of maximum confinement, H−1 = 1, when
the distance between walls is equal to a HS diameter. In this limit, the behaviour of the system
can be approximated by a hard disks system. Following the same approach used for bulk QHS,
the Helmholtz free energy for quantum hard disks (QHD) is obtained from the equation of
state derived by Henderson for classical hard disks [29] as a function of a 2D effective packing
fraction γe, in order to reproduce the NVT-MC simulated values,

ACQHS

NkT
(ρ∗, λ∗B, H−1 = 1) =

A3D
ideal

NkT
+

9γe

8(1− γe)
− 7

8
ln(1− γe) (22)

where
γe/γ = 1 + q1λ∗B + q2λ∗2B , (23)

and q1 = 0.35367 and q2 = 0.224205. For this equation we are considering that ρ2D =
N/As is a 2D density for N particles distributed along a surface with area As, and γ is the
actual 2D packing fraction of the system,γ = πρ2Dσ2/4. The theoretical prediction for the
compressibility factor for QHD systems, ZQHD = βP/ρ, is presented in Figure 2, compared
with NPT-MC simulation values, obtained from a standard NPT algorithm and also applying
the Test Area MC method [30]. From these results it is clear that the introduction of quantum
effects increases the values of the pressure with respect to the classical case, and the liquid–solid
transition occurs at lower densities when λB increases. Since it is well known that the quantum
correction to hard particles increases its effective size, we can expect this behaviour. However,
the nature of the transition as well the presence of a stable hexactic phase requires a more
detailed study.
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Figure 1. Helmholtz free energy A∗CQ = ACQ/NkT for the confined QHS system, obtained from theoretical results and
simulations, as a function of the inverse wall separation H−1, for thermal wavelengths λ∗B = 0.1 and 0.6.
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Figure 2. Compressibilty factor Z of quantum hard disks. Computer simulation results are given
as solid symbols (standard NPT MC) and open symbols (NPT Test-Area MC) for different thermal
wavelengths λ∗B, including the classical system (λ∗B = 0). Theoretical results according to the
classical [29] and quantum version of the Henderson equation of state are also reported.

The behaviour of the structure factor of QHS at maximum confinement is presented
in Figure 3. The transition from the liquid to the solid phases is given for the same density,
ρ∗ = 0.8, varying λ∗B. The system evolves from a liquid phase (λ∗B = 0) up to a solid phase
(λ∗B = 0.6) and in between a hexactic-like phase can be observed for λ∗B = 0.2. This feature
is consistent with the phase diagram for QHD given in Figure 1, since clearly for λ∗B ≈ 0.1
the liquid–solid transition boundary has shifted to densities equal to 0.8.

The clear discontinuity observed for ACQ that arises around H−1 = 0.4 at high
densities is consistent with the observation of a corresponding strong freezing transition
in the phase diagram for confined classical HS around H−1 = 0.5 [5]. By the same effect
observed in Figure 2 for hard disks, since the particles swell by increasing the thermal
wavelength λ∗B we can expect that the corresponding transitions will appear at higher
values of H than in the classical state.

3.2. Equation of State for Extreme Confinement

For the case of extreme confinement, we follow the same procedure used for QHS
and QHD, i.e., to consider an analytical expression for classical HS and then to map onto a
quantum expression by considering an effective density.

Franosch et al. [17] derived an expression for the Helmholtz free energy of classical HS
confined between two parallel hard walls, for the case 1 ≤ H ≤ 2, defining the confinement
parameter L = H − 1,

ACHS
NkT

(ρ∗, L) =
A3D

ideal
NkT

+
AHD
NkT

(ρ∗, L) +
∆A
NkT

(ρ∗, L) (24)
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where A3D
ideal is the 3D ideal term, AHD is the free energy for hard disks of diameter

σL =
(
σ2 − L2)1/2, and ∆A is the contribution arising from confinement, given by

∆A
NkT

= −πρ
∫

g(r)
[
e−βVe f f (r;L) − 1

]
rdr, (25)

where Ve f f (r; L) = −2kT ln
(

1−
√
(σ2 − r2)/L2

)
and g(r) are the radial pair distribu-

tion function of the hard-disk reference fluid of diameter σL. The integral involved in
Equation (25) can be performed using the approximation g(r) ≈ g(σL) [17], and then obtaining

∆A
NkT

=
5
3

γL2g(σL). (26)

Figure 3. Structure factor for QHS in maximum confinement H = 1 and density ρ∗ = 0.8. The values of the thermal
wavelength are λ∗B = 0.0 and λ∗B = 0.1 (top-left and top-right figures, respectively); λ∗B = 0.2 and λ∗B = 0.6 (bottom-left and
bottom-right figures, respectively).
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The classical expression can be used to describe the contribution to the free energy
of the CQHS system, where now the free energy is given in terms of the corresponding
quantum expressions,

ACQHS

NkT
(ρ∗, λ∗B, H−1) =

A3D
ideal

NkT
+

AQHD

NkT
(ρ∗, λ∗B, H−1) +

∆AQ

NkT
(ρ∗, λ∗B, H−1) (27)

and the free energy of the quantum hard disks of diameter σL is given by the Henderson
equation of state evaluated with an effective packing fraction that reproduces the NVT-MC
simulation results for the confined system,

γQ =
(

1 + q1λ∗B + q2λ∗2B

)
+ q3λ∗2B , (28)

where q3 = (q31 + q32γ)L + q33γ2L2, with q31 = −0.40144, q32 = 4.7426 and
q33 = −7.95290. Notice that in the limit L = 0 we recover the expression given by
Equations (22) and (23). In Figures 4 and 5 results are given for A∗CQHS as functions of
density, L and λB, as obtained from MC simulations and using the quantum version of the
free energy of the confined system, Equations (27) and (28).

4. Discussion

In this work we have presented theoretical and computer simulation results for
QHS particles confined between planar hard walls. Since the quantum nature of the
system given by the thermal wavelength λ∗B introduces a new parameter in the statistical
and thermodynamic properties of the confined system, its coupling with the confining
parameter H increases the complexity of the phase behaviour already observed for confined
classical hard spheres [5]. One of the main features observed in our study is the swelling
effect of the hard spheres that modifies the phase diagram of the confined classical system,
particularly relevant in the case of maximum confinement, where the liquid–solid transition
of QHD occurs at lower densities when compared with classical hard disks. We also
considered analytical expressions for the case of extreme confinement, 0.5 < H−1 ≤ 1,
based on expressions for the classical system. Similar to what has been already reported
for the bulk system [16,31,32], these classical expressions are valid if the packing fraction is
modified by considering the swelling effect of the quantum particles and the confinement
parameter H. In a future communication we will explore this thermodynamic approach in
order to obtain equations of state for a fluid confined in slit pores, based on perturbation
theory, following the methods already developed for bulk systems [31,32] .
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Figure 4. Helmholtz free energy A∗CQHS = ACQHS/NkT for the confined QHS system, obtained from theoretical results
and simulations, as a function of density, for thermal wavelengths λ∗B = 0.1, 0.3, 0.4 and 0.6.
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and simulations, as a function of L, for densities ρ∗ = 0.1 and ρ∗ = 0.6.
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