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Abstract: A cyber-physical supply network is composed of an undirected cyber supply network
and a directed physical supply network. Such interdependence among firms increases efficiency
but creates more vulnerabilities. The adverse effects of any failure can be amplified and propagated
throughout the network. This paper aimed at investigating the robustness of the cyber-physical
supply network against cascading failures. Considering that the cascading failure is triggered by
overloading in the cyber supply network and is provoked by underload in the physical supply
network, a realistic cascading model for cyber-physical supply networks is proposed. We conducted
a numerical simulation under cyber node and physical node failure with varying parameters. The
simulation results demonstrated that there are critical thresholds for both firm’s capacities, which can
determine whether capacity expansion is helpful; there is also a cascade window for network load
distribution, which can determine the cascading failures occurrence and scale. Our work may be
beneficial for developing cascade control and defense strategies in cyber-physical supply networks.

Keywords: robustness; cascading failure; cyber-physical supply networks; underload; overload

1. Introduction

The physical and digital worlds are becoming continuously more intertwined, bring-
ing about cyber-physical supply networks with emergent interactions [1]. The physical
supply network depends on the cyber supply network for its control, and the cyber supply
network depends on the physical network for flow information. While the management
of cyber-physical supply networks is a challenging problem [2], these interdependent
systems tend to be fragile against failures, hazards, and attacks [3]. Due to functional
interdependency, a failure of firms in one network results in a failure of dependent firms in
other networks, which may induce further damage to the first network and so on [4]. The
failures can trigger multiple parts of supply networks, influencing the performance and
viability of the components of the entire network [5].

The cyber-physical supply network can be modeled as an interdependent network
to indicate the complex interdependencies of its subsystems and components [5,6]. The
subsystems and components can be signified as nodes, and the dependencies can be
represented as links. For example, nodes can denote firms in the physical supply network,
and links can denote conveyance mechanisms [7]. With the context of CPS and complex
networks, failure can be defined as a form of deadlock, where all firms of the network are
halted while waiting for products, and the complex interdependencies between the firms
of the network make freeing the deadlock difficult [8,9]. A cascading failure process is one
in which the failure of one or more properties in a network (links/nodes) can trigger the
failure of other parts of the network [10].

Overloading failure will prevent the transmission of data package information and
lead to a decrease in the efficiency of the cyber supply network [11]. The overload phe-
nomenon implies that data flow exceeds the node’s capacity in the cyber supply network.
In this case, data will be transmitted by the node closest to the affected node with sufficient
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capacity [12]. If the adjacent load does not exceed the capacity, the cyber supply network
usually operates. If not, the adjacent nodes will overload, leading to further redistribution
of load and the accumulation of cascading failures.

Unlike overload failures, failures of firms in the physical supply network result from
underloading. When firms cannot fulfill the expected production requirement to overcome
the fixed production costs, they will fail to gain profit and possibly exit the market [13].
A firm’s failure can decrease the product demand from upstream firms, which may force
the upstream firms to stop production. Moreover, a firm’s failure can decrease material
supply for downstream firms, which may force downstream firms to shut down. For
example, during the COVID-19 pandemic, the inability of suppliers to provide a diverse
set of resources to complex networks of organizations led to large parts of the supply chain
becoming deadlocked [8]. Therefore, an underload cascading failure model is more suitable
for the physical supply network [14].

The robustness of the cyber-physical supply network is usually defined as the relative
size of the firms that survive the cascading failures [11]. Our goal was to construct a
cascading failure model that can quantify the robustness of the cyber-physical supply net-
work to provide a scientific basis for the development of network protection. Considering
that the cascading failure is triggered by overloading in the cyber supply network and
provoked by underloading in the physical supply network, this paper tried to answer the
following questions:

RQ1: How can we find a certain region of the parameter space where cascade failures
occur under cyber node failure?

RQ2: How can we find a certain region of the parameter space where cascade failures
occur under physical node failure?

This study makes two main contributions. First, unlike the traditional analysis on the
overload cascading failure model, this study explored overloading in the cyber supply net-
work and underloading in the physical supply network. Second, this study uncovered the
cascade window for cyber-physical supply networks. The parameter space can determine
the occurrence and scale of the cascading failure. The rest of this article is organized as
follows. Section 2 reviews the literature on cyber-physical supply networks in cascading
failures. Section 3 introduces the model for cyber-physical supply networks. Section 4
presents the cascading failure model in cyber-physical supply networks. Section 5 describes
numerical simulation. Finally, Section 6 draws the discussion and conclusion.

2. Literature Review

In this section, the relevant literature is discussed and classified. This review is
intended to offer an overview of recent studies surrounding failure, cascading failure, cyber
supply networks, physical supply networks, and robustness metrics. The review of the
related works is summarized in Table 1.

In a supply network, a firm’s operation is usually influenced by its upstream and
downstream firms, and the failure of any firm (node) could cause the whole network
to fail [14]. Such failure may delay the flow of goods, information, and funds in supply
networks and affect the normal operations of many other firms due to cascading failure [20].
The indirect effects of production failures due to propagation are substantially larger than
their direct effects [21]. Adding only single links may undermine normal supply network
operation and stimulate disturbances remotely from the location of the structural change,
and even cause global cascades of failures [22].

The phenomena of cascading failures often occur in complex networks, where the
node failures can trigger overloading and underloading. Overloading may cause further
failures of neighbor nodes and, finally, cascading failures of the global network. In [18], an
extended cascading failure process triggered by resource/load fluctuations was proposed,
considering the overload of the supply nodes and resource deficiency of the demand nodes.
The load is preferentially redistributed along those higher-capacity nodes attached to the
failed node [20]. Unlike overload failures, firms’ subsequent failures in supply networks
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result from underloading [14]. For the underload cascading failure model without a
recovery process, a discontinuous phase transition was found [13]. The size of cascades of
underload failures is related to the lower limit of node capacity [19].

Table 1. Summary of the literature review.

Failure Cascading Failure Supply Network Domain
Robustness Metrics Work

Node Failure Overload Underload Cyber Supply
Network

Physical Supply
Network

X X X X Comprehensive effectiveness index [15]

X X X X
Network efficiency and percentage

of unserved nodes [16]

X X X X Fraction of surviving nodes [17]
X X X Number of surviving nodes [18]
X X X Network efficiency [14]
X X X Network efficiency [19]
X X X Fraction of failed nodes [13]
X X X Dynamic network load entropy [20]
X X X X X Number of surviving nodes This work

A supply network is a distinct interdependent network composed of a cyber supply
network and a physical supply network [15]; additionally, [23] proposed that supply chain
models integrate physical and cyber networks. In supply chain systems, the communication
comprises the entity’s supplier, manufacturers, and distribution centers, which can acquire
the data of demand, stock, and production [2]. Intertwining the virtual supply chain with
the physical supply chain and their operations makes the additive manufacturing process
a cyber-physical system [24]. The author of [25] introduced the structure dynamics control
concept and a dynamic model to orchestrate operations in cyber-physical supply chains in
smart manufacturing. A cyber-physical e-commerce logistics system has been applied in
Hong Kong. In the physical world, industrial wearable technology transforms assets into
cloud assets. In the cyber world, synchronization mechanisms enhance the utilization ratio
of resources and spaces while decreasing waiting and wastage [26].

Several robustness metrics have been developed to compute the damage caused by
cascading failures. The author of [3] defined the giant mutually connected component as
the mutually connected cluster spanning the entire network. The author of [15] used a
comprehensive effectiveness index to represent the average robustness of an interdependent
supply network. The robustness is also quantified as the surviving fraction of nodes at
the end of cascading failures [17]. The concept of network efficiency can quantify the
consequence of cascading failures in the supply network [14].

The literature survey observed that most related works have not specifically inves-
tigated the robustness of cyber-physical supply networks in overload and underload
cascading failures. The existing model mainly considers the impact of overload on the
cascading process of supply networks but ignores the impact of underload. The fact that
supply networks consist of the cyber supply network and physical supply network is often
unconsidered. Moreover, the reality that the cascading failure is triggered by overload in
the cyber supply network and provoked by underload in the physical supply network
is usually ignored. This knowledge gap is addressed by the overload and underload
cascading failures model discussed in the following section.

3. The Theoretical Model of Cyber-Physical Supply Networks

This section is divided by subheadings and provides a precise description of the exper-
imental results, their interpretation, and the experimental conclusions that can be drawn.

As the interdependencies between the physical supply network and cyber supply
network give rise to multiple possible failure spreading channels, a firm’s failure can
rashly influence its associated predecessor and successor firms and initiate a cascade of
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firm failures that can imperil the supply networks’ operation. The load-capacity model
in interdependent supply networks is built to duplicate the catastrophic propagation
process. A comprehensive description of the proposed cyber-physical supply networks
is presented in this section, as shown in Figure 1. The symbols used in the model are
explained in Table 2.
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Figure 1. System model illustration for the cyber-physical supply networks, where network Gp is the
physical supply network, and network Gc is the cyber supply network. Interdependence across the
two networks is realized by the one-to-one support links shown by dash lines.

Table 2. Symbols used in this paper and their corresponding meanings.

Notation Meaning

Gp Physical supply network
Gc Cyber supply network
Vp Set of nodes in the physical supply network
Vc Set of nodes in the cyber supply network
vp

i A node i in the physical supply network
vc

i A node i in the cyber supply network
Ep Set of links in the physical supply network
ep

ij A directed connection from node vp
i to node vp

j in the physical supply network
ec

ij A connection from node vc
i to node vc

j in the cyber supply network
Ec Set of links in the cyber supply network
Epc

ik Set of dependency links connecting nodes between network Gp and network Gc

Wp A weighted adjacency matrix of physical supply network
wp

ij The weight of the link ep
ij

Wc A weighted adjacency matrix of the cyber supply network
wc

ij Weight of link ec
ij

α Tunable parameter used to adjust the initial load in the physical supply network
β Upper-bound capacity parameter of the node in the physical supply network
γ Lower-bound capacity parameter of the node in the physical supply network
θ Weight parameter of the link in the physical supply network
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Table 2. Cont.

Notation Meaning

kvp
i

Degree for node vp
i

kin
vp

i
In-degree of the node vp

i

kout
vp

i
Out-degree of the node vp

i

Lvp
i
(t) Load for node vp

i attime t
Lvc

i
(t) Load for node vc

i at time t
Cvp

i
Capacity for node vp

i
Cvc

i
Capacity for node vc

i
δ Tunable parameter used to adjust the initial load in the cyber supply network
ϕ Upper-bound capacity parameter of the node in the cyber supply network
τ Weight parameter of the link in the cyber supply network

3.1. Cyber Supply Network
3.1.1. The Nodes and Links of the Cyber Supply Network

The cyber supply network comprises various functional cyber devices that gen-
erate, store, transform, receive, and transmit signals or information [27]. In the cyber
supply network, all functional cyber devices are denoted as nodes, and the data trans-
mission mediums between devices are links. Therefore, the cyber supply network as a
weighted undirected network is Gc(Vc, Ec), where Vc = (vc

1, vc
2, ..., vc

N) is the node set

and Ec =
{
(vc

i , vc
j )
∣∣∣ec

ij = 0 or 1, i, j = 1, 2, 3, ..., n
}

is the set of connectivity links. Here,
ec

ij = 1 signifies a connection from node vc
i to node vc

j ; otherwise, ec
ij = 0. Further, Wp is

constructed to represent the flow constraints of the links, where Wc = [wc
ij] is an N × N

asymmetric matrix and N is the total number of nodes in the cyber supply network. The
weight can be defined as:

wc
ij = (kvc

i
∗ kvc

j
)τ , (1)

where τ is the weight parameter of the link in the cyber supply network.

3.1.2. Load and Capacity of the Cyber Supply Network

Each node vc
i generates the same number of packets per second and can also be

involved in a router in the meantime. The routing protocol makes each packet go through
the shortest path to make the cyber supply network efficient. In this way, we define the
initial load of cyber node vc

i to be

Lvc
i
= ( ∑

vc
k 6=vc

i 6=vc
j∈Gc

σvc
kvc

j
(vc

i )

σvc
kvc

j

)δ, (2)

where σvc
kvc

j
signifies the number of shortest paths from vc

k to vc
j , σvc

kvc
j
(vc

i ) is the number of
shortest paths from vc

k to vc
j that go through node vc

i , and δ is the tunable parameter used
to dominate the strength of the initial node load. We define the maximum amount of flow
that node vc

i can process as its capacity and assume the this is proportional to its initial
load,

Cvc
i
(max) = ϕLvc

i
(0), (3)

where ϕ(ϕ > 1) is the upper-bound parameter of the node and Lvc
i
(0) is the initial load of

node vc
i .

3.2. Physical Supply Network
3.2.1. Nodes and Links of the Physical Supply Network

The physical supply network consists of suppliers, manufacturers, retailers, and
logistics that generate, store, transform, and deliver the flow of physical products [28],
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all of which can be signified as nodes, and the contractual relationship between firms
can be signified as links [12,15]. Therefore, the physical supply network as a weighted
directed network is Gp(Vp, Ep), where Vp =

{
vp

1 , vp
2 , ..., vp

n

}
is the node set and Ep ={

(vp
i , vp

j )
∣∣∣ep

ij = 0 or 1, i, j = 1, 2, 3, ..., n
}

is the set of connectivity links. Here, ep
ij = 1 sig-

nifies a directed connection from node vp
i to node vp

j ; otherwise, ep
ij = 0. A weighted

adjacency matrix Wp is constructed to represent the weights of the links, where Wp = [wp
ij]

is an N × N asymmetric matrix and N is the total number of nodes in the physical supply
network. The links between the nodes with greater values of tend to have a long distance.

The transportations between firms are regarded as the weights of the links. The
empirical studies have proposed that the weight of the links between two nodes is related
to the node’s degree [14]. Therefore, the weight of a link wp

ij that connects vp
i to vp

j is
assumed to be:

wp
ij = (kvp

i
∗ kvp

j
)θ , (4)

where θ is the weight parameter of the link in the physical supply network, kvp
i

indicates

the degree for vp
i , and kvp

i
= kin

vp
i
+ kout

vp
i

. kin
vp

i
is the in-degree of node vp

i and kout
vp

i
is the

out-degree of node vp
i . The degree of node vp

i is represented as:

kvp
i
= ∑

j∈Vp
ep

ij (5)

3.2.2. Load and Capacity of the Physical Supply Network

The material flows can be treated as the loads in the physical supply network. Specifi-
cally, material flows describe the transport of material, components, or products [14,29].
Three methods are used to signify the node’s initial load, which include the node degree
centrality [30], node betweenness centrality [31], or the node-outdegree centrality [15]. As
the operation of firms in the physical supply network is related to both upstream firms and
downstream firms, the initial load Lvp

i
(0) for vp

i is defined as a function of the degree of vp
i :

Lvp
i
(0) = (kvp

i
)α, (6)

where α is the tunable parameter used to adjust the initial load.
The physical supply network often transfers some loads, where the most massive

load that a node can deal with is named the capacity. A node’s capacity is limited due to
confined cost. For example, the supply capacity and manufacturing capacity of a firm are
restricted by the firm’s scale. In other words, each node has a specific upper-bound capacity,
which is linearly correlated with its initial load. The upper node capacity Cvp

i
(max) is

Cvp
i
(max) = βLvp

i
(0), (7)

where β(β > 1) is the upper-bound parameter of the node.
Furthermore, the physical supply network works to provide products and services to

customers, and the goal of each firm is to obtain revenue. If a firm’s product demand or
raw material supply is below a certain level, the company will not operate normally and
eventually close down due to unprofitability. Therefore, the load to maintain the firm’s
regular operation must be higher than a specific limit. The lower-bound capacity Cvp

i
(min)

for vp
i is presented as follows:

Cvp
i
(min) = γLvp

i
(0), (8)

where γ(0 < γ < 1) is the lower-bound parameter of the node.
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3.3. Description of Interdependence Relations

In cyber-physical supply networks, the cyber supply network and physical supply
network mutually coordinate to attain dynamic closed-loop control. On the one hand, the
firms in the physical supply network, such as suppliers and manufacturers, should provide
flow information to devices in the cyber supply network for analysis. On the other hand,
cyber supply network devices need to provide commands to firms in the physical supply
network for control. Therefore, the two networks are assumed to display one-to-one interde-
pendence. This coupling relation ensures that each node in the physical supply network has
only one support node in the cyber supply network and vice versa [32]. Moreover, it should
be noted that the topological structures of the two subsystems are not necessarily identi-
cal [33]. Therefore, let Epc

ik be a set of dependency links connecting nodes between network

Gp and network Gc; then, M is defined as M =
{

Epc
ik ⊆ vp

i × vc
k; vp

i ∈ Vp, vc
k ∈ Vc

}
. The

dependency link (vp
i , vc

k) ∈ Epc
ik represents node vp

i depending on node vc
k, and vice versa.

4. Modeling Cascading Failures in Cyber-Physical Supply Networks
4.1. Cascading Failure Model

In the cyber-physical supply networks, random failures are high impact, low probabil-
ity events, whereas targeted failures are low impact, high probability events [34]. Targeted
failures can be reduced by controlling associated risks such as forecast inaccuracy, quality,
and production system breakdown. However, random failures are very hard to control
because they are triggered by uncontrollable factors [35]. Therefore, this study concentrated
on the random failures caused by nature, the political system, and available capacity. If a
node vp

i in the physical supply network fails, it will influence its neighboring nodes and
the dependent nodes in the cyber supply network, which may cause further failure to the
physical supply network. The dependency links between the interdependent network play
the role of connection and do not receive the redistributed load of the failed node, so the
redistribution of load flows only on the intralayer network.

4.1.1. Underload Cascading Failure in the Physical Supply Network

When a firm fails, it can neither receive supplies from upstream neighbors nor ship
products to its downstream customers [13]. As shown in Figure 2, when the failure occurs
on a node vp

i , its upstream and downstream nodes with contractual relationships are
impacted. The reduced loads of the upstream and downstream nodes nearby vp

i are
calculated as 

∆Lp
is
− = Lp

i (0)
wis

∑g∈Γin
i

wgi+∑g′∈Γout
i

wig′

∆Lp
ih
− = Lp

i (0)
wih

∑g∈Γin
i

wgi+∑g′∈Γout
i

wig′

∆Lp
ei
− = Lp

i (0)
wei

∑g∈Γin
i

wgi+∑g′∈Γout
i

wig′

∆Lp
f i
− = Lp

i (0)
w f i

∑g∈Γin
i

wgi+∑g′∈Γout
i

wig′

∆Lp
mi
− = Lp

i (0)
wmi

∑g∈Γin
i

wgi+∑g′∈Γout
i

wig′

(9)

where ∆Lp
is
−, ∆Lp

ih
−, ∆Lp

ei
−, ∆Lp

f i
−, and ∆Lp

mi
− are the reduced load for upstream and

downstream nodes near vp
i , respectively. Γin

i (Γout
i ) is the set of upstream (downstream)

neighbor nodes directly connecting to vp
i .

If the load of node vp
i is less than the lower-bound capacity, the node will fail. If the

load distribution of vp
i leads some neighboring nodes to fall below their capacity, this may

trigger further failures in the neighboring nodes by load distribution. For example, if the
node vp

h cannot sustain the load from Lvp
i
, this may result in failure of neighboring node vp

s .

Lp
vp

i
(0)− ∆Lp

is
− < Cvp

s
(min) (10)
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Then, successive failures will occur on node vp
e . This process continues until no failures

occur and load redistributions in both networks finish [16].

Entropy 2021, 23, x FOR PEER REVIEW 9 of 20 
 

 

(0) ( )p p
si

p p
is vv

L L C min−− Δ < ,  (10)

Then, successive failures will occur on node p
ev . This process continues until no fail-

ures occur and load redistributions in both networks finish [16]. 

 
Figure 2. Schematic diagram of load redistribution after a node failure. 

4.1.2. Overload Cascading Failure in the Cyber Network 
When one node in a complex network fails, entirely or partially, and shifts its load to 

nearby nodes in the system, overloading could occur, leading to the failure of further 
nodes [36]. If this continues, overloading could fail the whole system.  

The cyber node failure will lead to larger-scale data collection and processing fail-
ures, so control signals will not be sent to the physical network in real time. In the cyber 
network, when a router fails, the untreated information will be redistributed to its neigh-
boring nodes, and the information flow tends to choose routers with high processing ca-
pacity to maintain the smooth operation of the whole network [37]. Therefore, the load of 
the failed node will be redistributed to its nearest neighbor, depending on the probability: 

(0)
( )
c c
s s

c
i

c c
r ri

v vc
is v

v vr

C L
L L

C L
+

∈Γ

−
Δ =

−
,  (11)

(0)
( )
c c
h h

c
i

c c
r ri

v vc
ih v

v vr

C L
L L

C L
+

∈Γ

−
Δ =

−
,  (12)

where c
isL

+Δ  and c
ihL

+Δ  are the increased load for c
sv  and c

hv , respectively, and iΓ  is 
the set of neighboring nodes directly connecting to c

iv . 
If the load of c

sv  and c
hv  are more than the upper node capacity 

( )c c
s sv v
L t C> ,  (13)

( )c c
h hv v
L t C> ,  (14)

then the successive failures will occur on c
sv  and c

hv  at time t , and its load will be redis-
tributed to other functional nodes. All the remaining functional nodes will get an addi-
tional load from the failed nodes, which may lead to overloading and failure of the other 
nodes. The process takes place until no further failure is possible and the cyber supply 
network is considered stable. 

  

Figure 2. Schematic diagram of load redistribution after a node failure.

4.1.2. Overload Cascading Failure in the Cyber Network

When one node in a complex network fails, entirely or partially, and shifts its load
to nearby nodes in the system, overloading could occur, leading to the failure of further
nodes [36]. If this continues, overloading could fail the whole system.

The cyber node failure will lead to larger-scale data collection and processing failures,
so control signals will not be sent to the physical network in real time. In the cyber network,
when a router fails, the untreated information will be redistributed to its neighboring nodes,
and the information flow tends to choose routers with high processing capacity to maintain
the smooth operation of the whole network [37]. Therefore, the load of the failed node will
be redistributed to its nearest neighbor, depending on the probability:

∆Lc
is
+ = Lvc

i
(0)

Cvc
s − Lvc

s

∑r∈Γi
(Cvc

r − Lvc
r )

, (11)

∆Lc
ih
+ = Lvc

i
(0)

Cvc
h
− Lvc

h

∑r∈Γi
(Cvc

r − Lvc
r )

, (12)

where ∆Lc
is
+ and ∆Lc

ih
+ are the increased load for vc

s and vc
h, respectively, and Γi is the set

of neighboring nodes directly connecting to vc
i .

If the load of vc
s and vc

h are more than the upper node capacity

Lvc
s (t) > Cvc

s , (13)

Lvc
h
(t) > Cvc

h
, (14)

then the successive failures will occur on vc
s and vc

h at time t, and its load will be redis-
tributed to other functional nodes. All the remaining functional nodes will get an additional
load from the failed nodes, which may lead to overloading and failure of the other nodes.
The process takes place until no further failure is possible and the cyber supply network is
considered stable.



Entropy 2021, 23, 769 9 of 18

4.1.3. Cascading Failure in the Cyber-Physical Supply Networks

The cascading failure process in the cyber-physical supply networks can generally be
described as follows [3,27,38]:

1. One or several nodes in cyber-physical supply networks will be selected as the
initial failure. When a node fails, all connectivity links connected to it will become
dysfunctional and are viewed as failed.

2. Load redistribution of failed nodes. In the physical supply network, failed nodes will
reduce the loads of upstream and downstream nodes. In the cyber supply network,
loads of failed nodes will redistribute to upstream and downstream nodes.

3. Calculate the new loads in the cyber-physical supply network. In the physical supply
network, if the load of a node is less than its minimum capacity and the node fails,
remove the underload nodes. In the cyber supply network, if the load of the nodes is
more than its maximum capacity and the node fails, remove the overload nodes. For
removed nodes, check whether the counterpart nodes fail or the neighbors fail.

4. A node that has no connections with a node from its couple network is regarded as
failed. In the physical supply network, a node fails if its load is less than its minimum
capacity. If the failed node is coupled to a counterpart node in the cyber supply
network, then the counterpart node in the cyber supply network is also removed. In
the cyber supply network, a node fails if its load is larger than its maximum capacity.
If the failed node is coupled to a counterpart node in the physical supply network,
then the counterpart node in the physical supply network is also removed.

5. Cascading failures will continue on the cyber-physical supply network until no further
failed node and link occur.

As shown in Figure 3, a cascading failure is triggered by the failure of node vp
i . First,

vp
i is removed from the system along with its connectivity and dependency links. As a

result, vp
s fails due to the load redistribution from vp

i . The failure of vp
i means that vs

i has
no support and consequently fails. Second, vc

f fails due to the load redistribution from vc
i ,

and the failure of vp
s makes vc

s has no support and consequently fails. Third, vp
f fails from

the lack of support due to the failure of node vc
f . Finally, vp

f is removed, and the cascading

failure stops. The remaining functioning nodes are
{

vp
e , vp

m, vp
h , vp

o , vp
u

}
in network Gp and{

vc
e, vc

m, vc
h, vc

o, vc
u
}

in network Gc.

4.2. Evaluation Index

Cascading failures can bring about significant degradation of performance. Several
metrics have been developed to compute the damage caused by cascading failures, such as
the size of the largest connected component [3,39] and the largest connected subgraph’s
average degree [40]. We used the ratio of the survival nodes to measure the robustness of
cyber-physical supply networks [41]:

R =
N′p + N′c
Np + Nc

, (15)

where Np and Nc are the initial numbers of nodes in the physical supply network and
cyber supply network, respectively. N′p and N′c are the numbers of nodes remaining in the
network Gp and Gc after being attacked, respectively.



Entropy 2021, 23, 769 10 of 18
Entropy 2021, 23, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 3. Illustration of a cascading failure that occurs in the cyber-physical supply networks under 
physical node failure. 

4.2. Evaluation Index 
Cascading failures can bring about significant degradation of performance. Several 

metrics have been developed to compute the damage caused by cascading failures, such 
as the size of the largest connected component [3,39] and the largest connected subgraph’s 
average degree [40]. We used the ratio of the survival nodes to measure the robustness of 
cyber-physical supply networks [41]: 

' '
p c

p c

N N
R

N N
+

=
+

,  (15)

Figure 3. Illustration of a cascading failure that occurs in the cyber-physical supply networks under
physical node failure.

5. Numerical Simulation

We extracted the supply network data of China’s electric vehicle supply network as the
physical supply network, and the cyber supply network as the BA scale-free network [16,42].
The physical supply network was obtained from a secondary data source using Mergent
Online, which lists global firms’ information, including suppliers, customers, and competi-
tors. The number of physical supply network nodes was 317, including 269 suppliers, five
manufacturers, and 43 customers and the directed edges were 497. The cyber network had
317 nodes, and the average degree was about 5. The physical supply network and cyber
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supply network were fully coupled, meaning all nodes in the physical supply network
were one-to-one coupled to nodes in the cyber supply network. All simulations were
repeated 20 times to minimize randomness, and the average values were used for further
analysis. A flowchart of the numerical simulation is presented in Figure 4 to intuitively
describe the iterative procedure of cascading failure in cyber-physical supply networks.
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5.1. The Cascading Process under Cyber Node Failure
5.1.1. The Cascading Process of One Node Failure

We first investigated the relationship between R and ϕ with different values of δ, and
the results are presented in Figure 5. R ascends with the increase in ϕ. For the cyber supply
network, nodes’ subsequent failures are provoked by loads exceeding the upper bound.
The higher the upper-bound value, the smaller the cascading size [16]. R also ascends with
the increase in δ. As a critical parameter for adjusting the cyber node capacity, the rise of δ
can improve the network’s cascading robustness. For example, in the case of ϕ = 1.1 and
δ= 0.1, R is 0.61. When ϕ stays the same, δ rises to 0.9, and R is 0.73, the cascading failures



Entropy 2021, 23, 769 12 of 18

are reduced. Under the same set of other parameters, the increase of ϕ and δ can improve
R, indicating that the damage of cascading failures to the network will decline.

We also observed that there is a critical threshold ϕ∗. When ϕ is less than or equal to
ϕ∗, the cascading failures can be triggered. When ϕ is greater than ϕ∗, the network will not
have cascading failures. This is evident in the case of ϕ∗ = 1.35 and δ= 0.9, and ϕ < ϕ∗

will lead to the cascading failures of the network.
Figure 6 presents the heatmaps of R within the parameter space [ϕ, δ]. We observed

that the critical thresholds ϕ∗ and δ∗ divide the heatmaps into two zones: safety zone and
sensitive zone. In the safety zone, the value of R is relatively large, and R increases slightly
with the increase in δ when ϕ > 1.2. In the sensitive zone, the value of R is relatively small,
and R increases significantly with the increase in δ when ϕ < 1.2.
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5.1.2. The Cascading Process of Several Node Failures

Figure 7 shows how the network robustness changes with ϕ and δ. The sizes of
the safety zones become smaller under several node attacks. Parameter δ is much more
influential, while the effect of ϕ is relatively weak, meaning that the node’s load in the
cyber-physical networks has many effects on robustness.
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Figure 7. The effect of ϕ and δ on R under several node failures.

As shown in Figure 8, the influence of several node attacks on the robustness of
networks is almost identical under different values of α, but α= 0.9 harms networks more
seriously than α= 0.1 and α= 0.5. With the increase in α, the networks become more
sensitive to several node attacks.
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5.2. The Cascading Process under Physical Node Failure
5.2.1. The Cascading Process of One Node Failure

Next, we investigated the relationship between R and γ with different values of α
in cyber-physical supply networks, and the results are presented in Figure 9. First, as γ
changes from 0 to 1, the robustness of the whole network decreases. R descends with the
increase in γ. The reason is as follows: One firm’s failure can cause losses to its upstream
and downstream firms, resulting in further failures of these firms. The successive failures
of firms are caused by loads being less than the lower bound. A smaller γ could make the
network more robust to cascading failure. The higher the value of the lower bound, the
greater the cascading size [14].
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Moreover, when the cyber-physical supply networks face node attacks, a critical
threshold can determine whether the network will have cascading failures. When γ is less
than or equal to γ∗, the network will not have cascading failures, and when γ is greater
than γ∗, cascading failures can be triggered. As shown in Figure 9, when α= 0.5, the critical
threshold γ∗ = 0.85 and γ > γ∗ will lead to cascading failures in the network. The critical
threshold is also observed in α. When α is less than α∗, the increase of α is beneficial to the
cascading robustness of the network. When α is greater than or equal to α∗, the raising
effect of node load expansion on cascading robustness will be saturated.

Figure 10 presents the heatmaps of R within the parameter space [α, γ]. The critical
thresholds, α∗ and γ∗, divide the heatmaps into two zones: the sensitive and safety zones.
In the sensitive zone, the cascading robustness of the network varies with the setting of
[α, γ]. When the capacity parameter space [α, γ] falls into the safety zone, the cascading
robustness reaches the maximum value of 1, which means that cascading failure will
not occur. The larger the safety zone, the lower the capacity extension costs to prevent
cascading failures on the network [43].
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5.2.2. The Cascading Process of Several Node Failures

In practical scenarios, several node attacks are also prevalent. This subsection evalu-
ates the cascading robustness of the cyber-physical supply networks when facing several
node attacks. Figure 11 shows the cascading robustness under several node attacks. We
found that the sizes of safety zones become smaller under several node attacks. The param-
eter α is much more influential, while the effect of γ is relatively weak, meaning that the
node’s capacity in the cyber-physical networks has many effects on robustness.
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Figure 11. The effect of α and γ on R under several node failure.

In Figure 12, with the increase in failure nodes, numerous nodes become faulty quickly.
When a few fractions fall faulty, the damage caused by removing nodes is biggish. However,
with the increased fraction of initial failure increased, the effect of damaging the network
gradually decreases. Secondly, the cascading robustness ascends with the increase in δ.
Due to the fact that the node load increases with an increase in δ, the number of failure
nodes in the intralayer network and the couple network is more considerable. Thirdly, the
process of cascading failure emerges a second-order transition.
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6. Discussion and Conclusions
6.1. Discussion

The above results indicate that the occurrence of unexpected failures is sufficient to
cause cascading failure across the whole cyber-physical supply network. The simulation
results suggest several implications for managers to better deal with the mentioned failures
and improve the robustness of the cyber-physical supply network.

Firms should improve robustness by establishing proper capacity. The allocated
capacity is greater than the needed load to better withstand possible failures in the cyber-
physical supply network. The experimental results display that the cascading failure
depends on a specific capacity range, this could reduce the influence of node failure.
Managers should properly allocate the capacity to resist failure and reduce the probability
of failure; however, firm capacity is limited by the cost. Additionally, as the load increases,
the strengthened capacity may gradually lose its effectiveness in mitigating cascading
failures. Therefore, assigning a proper capacity in the cyber-physical supply network
can not only assist in reducing the size of cascading failure, but also reduce the cost of
maintaining the capacity.

The impact of cascading failures on the cyber-physical supply network should be com-
prehensively measured. Unlike the cascading failures in most physical supply networks
resulting from overloading, this paper identified two kinds of cascading failure processes:
underload cascading failure in the physical supply network and overload cascading failure
in the cyber supply network. The proposed model can help managers to better understand
the dynamic behaviors of cyber-physical supply networks during cascading failures. There-
fore, to obtain relatively objective evaluation results, managers may need to measure the
impact of cascading failures from different processes in the cyber-physical supply network.

This study is not without limitations. First, our physical supply network model was
constructed from Mergent Horizon. The data were verified to be accurate and enable us
to build China’s electric vehicle supply network. However, this dataset may not capture
all the firms and relationships in the network. Second, our model concentrates on firms’
short-term reactions to a failure, as we delete firms from the cyber-physical supply network
and do not consider if and when the firms will recover to regular operation. Lastly, we did
not consider the adaptive strategies of firms confronted by cascading failures. In spite of
these limitations, our study is very useful because this study uncovers the cascade window
for cyber-physical supply networks, and the parameter space can determine the occurrence
and scale of the cascading failure.

6.2. Conclusions

We studied the robustness of the cyber-physical supply networks against cascading
failures. Our model consists of a physical supply network where the failure of a node
results in flow redistribution and possible further failures due to underloading, and a
cyber supply network where the failure of a node leads to flow redistribution and possible
further failures due to overloading. The relationship between the cyber supply network
and physical supply is one-to-one interdependence. Besides, we employed China’s electric
vehicle supply network and BA network to model cascading failures for cyber-physical
supply networks. We obtained some meaningful results that can provide theoretical
guidance to build cyber-physical supply networks with higher robustness:

Firstly, the negative correlation between the robustness of the cyber-physical supply
networks and the upper-bound capacity parameter ϕ was proved in cyber node failure. In
general, cyber devices do not operate at full capacity, and a larger value of ϕ means more
redundant capacity of devices and can mitigate the cascading propagation.

Secondly, a positive relationship was observed between the lower-bound capacity and
cascading size, and the size of cascading failures is mainly determined by γ under physical
node failure. The lower-bound capacity parameter γ is related to the firm’s operating
agility and resilience. A more competitive firm is often related to a lower value of γ.
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Thirdly, a U-shaped relationship was observed between the node load and robustness
of cyber-physical supply networks under cyber or physical node failure. As the load rises,
the strengthened capacity may gradually lose its effectiveness in mitigating cascading
failures, that is, as the load increases, it becomes increasingly difficult to reduce cascading
failures by strengthening capacity.

In the future, we can develop cascade defense strategies to reduce the consequences
of cascading failures in cyber-physical supply networks. Moreover, we will find the
optimal cyber-physical supply networks with comprehensive tolerance against random
and targeted failure.
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