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Abstract: In this paper, we study the dynamic risk measures for processes induced by backward
stochastic differential equations driven by Teugel’s martingales associated with Lévy processes
(BSDELs). The representation theorem for generators of BSDELs is provided. Furthermore, the
time consistency of the coherent and convex dynamic risk measures for processes is characterized
by means of the generators of BSDELs. Moreover, the coherency and convexity of dynamic risk
measures for processes are characterized by the generators of BSDELs. Finally, we provide two
numerical examples to illustrate the proposed dynamic risk measures.
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1. Introduction

Let (Ω,F , P) be a probability space and T > 0 be a fixed terminal time. Let {Bt, 0 ≤ t < ∞}
and {Lt, 0 ≤ t < ∞} be two mutually independent processes defined on (Ω,F , P), where
{Bt, 0 ≤ t < ∞} is a one-dimensional Brownian motion and {Lt, 0 ≤ t < ∞} is aR-valued
Lévy process corresponding to a standard Lévy measure ν satisfying the following conditions:

(i)
∫
R(1∧ y2)ν(dy) < ∞,

(ii)
∫
(−ε,ε)c eλ|y|ν(dy) < ∞, for some λ > 0 and for every ε > 0.

Let F = {Ft, t ≥ 0} be the natural filtration generated by {Bt, 0 ≤ t < ∞} and
{Lt, 0 ≤ t < ∞}.

Throughout this paper, we consider the following integral equation:

Yt = ξ +
∫ T

t
g(s, Ys, Zs, Ks)ds−

∫ T

t
ZsdBs −

∞

∑
i=1

∫ T

t
K(i)

s dH(i)
s , t ∈ [0, T], (1)

where the terminal value ξ is a given FT -measurable square integrable random vari-
able, g(·) is a given map, and H(i)

t is the orthonormalized Teugel’s martingale of order
i associated with the Lévy process {Lt, 0 ≤ t < ∞}. The above equation is called back-
ward stochastic differential equations associated with Lévy processes (BSDELs) introduced
by Bahlali et al. [1]. When Equation (1) is independent of Teugel’s martingales, then
Equation (1) is reduced to the following form:

Yt = ξ +
∫ T

t
g(s, Ys, Zs, Ks)ds−

∫ T

t
ZsdBs, t ∈ [0, T], (2)

which is the classical backward stochastic differential equations (BSDEs) introduced by
Pardoux and Peng [2] first. Pardoux and Peng [2] proved that there exists a unique adapted
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and square integrable solution of the BSDE (2) under uniform Lipschitz condition on g. BS-
DELs can be seen as a natural generalization of BSDEs. Nualart and Schoutens [3] provided
a martingale representation theorem associated with Lévy processes. Furthermore, Nualart
and Schoutens [4] extended the classical BSDEs to BSDELs and established the existence
and uniqueness of solutions for the BSDEL (1) which is independent of Brownian motion.
For more studies on BSDELs, see El Otmani [5,6], Ren et al. [7], Ren and El Otmani [8], and
the references therein.

Briand et al. [9] first studied the representation theorem for generators of BSDEs under the
continuous assumption on the generators with respect to t and E[supt∈[0,T] |g(t, 0, 0)|2 < ∞].
Jiang [10] obtained the representation theorem for Lipschitz generators of BSDEs. Zhang and
Fan [11] provided a representation theorem for generators of BSDEs with infinite time intervals
and linear growth generators. For more studies on the representation theorem for generators of
BSDEs, we refer to Song et al. [12], Xiao and Fan [13], Zheng and Li [14], Wu and Zhang [15],
and the references therein. In this paper, we are concerned with representation theorem for
generators of the BSDELs (1). For this issue, to our best knowledge, there is no reference
available in the literature.

Risk measures have been extensively researched in finance and in the insurance in-
dustry such as the adjustment of life insurance rates. To quantify the riskiness of financial
positions, Artzner et al. [16,17] introduced the concept of coherent risk measure by propos-
ing the theory of axiomatic system of capital requirements. By weakening coherence
axioms, Föllmer and Schied [18] and, independently, Frittelli and Rosazza Gianin [19] intro-
duced convex risk measures. Their work attracts many researcher’s interest. For example,
see Delbaen [20], Cheridito et al. [21,22], Riedel [23], Rosazza Gianin [24], Detlefsen and
Scandolo [25], Klöppel and Schweizer [26], Delbaen et al. [27], Acciaio et al. [28], Föllmer
and Schied [29], Song et al. [30], and the references therein.

BSDEs have become a popular tool for studying dynamic risk measures since Peng [31]
investigated BSDEs and g-expectations. For instance, El Karoui et al. [32] studied dynamic
risk measures for random variables via BSDEs. Jiang [33] established the one-to-one
relationship between the generators BSDEs and the corresponding dynamic risk measures
for random variables. Penner and Réveillac [34] established a link between risk measures
for processes and BSDEs and studied the corresponding time-consistent dynamic risk
measures for processes induced by BSDEs. Xu [35] studied multidimensional dynamic
convex risk measures induced by conditional g-expectations. Ji et al. [36] provided some
time-consistent dynamic risk measures for processes via BSDEs, and established the one-
to-one relationship between the generators BSDEs and the corresponding dynamic risk
measures for processes. A essential property for dynamic risk measures is time-consistency
(see Bion-Nadal [37,38]). These time-consistent dynamic risk measures are constructed by
BSDEs where the financial positions are random variables at some terminal time. However,
time-inconsistent preference is realistic in financial markets. For example, see Yong [39],
Wang and Shi [40], and Agram [41].

In this paper, we study dynamic risk measures induced by BSDELs. In a financial
market, jump dynamics, which might be caused by policy interference, natural accidents,
and so on, indeed exist. For instance, a stock’s price and its return show abnormal and
sharp volatility. Thus, investors can be risk-averse and master the best time of those
jump dynamics if they have sufficient awareness. Therefore, the processes of stock price
and its return can be modeled by BSDELs (1). Based on the above consideration, we
construct dynamic risk measures by means of BSDELs (1). First, the representation theorem
for generators of BSDELs is provided. Second, the time-consistency of the coherent and
convex dynamic risk measures for processes is characterized by means of the generators of
BSDELs. Moreover, the coherency and convexity of dynamic risk measures for processes
are characterized by the generators of BSDELs. Finally, we provide two numerical examples
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to illustrate the proposed dynamic risk measures. The obtained results extends the results
of Briand et al. [9], Jiang [10], Penner and Réveillac [34], and Ji et al. [36].

The rest of the paper is organized as follows. In Section 2, we briefly state some
preliminaries including the definitions of time-consistent dynamic convex and coherent
risk measures for processes and some results on BSDELs. The definition of dynamic risk
measures for processes induced by BSDELs is also provided in Section 2. In Section 3, our
main results are presented, that is, the coherency and convexity of dynamic risk measures
for processes are characterized by the generators of BSDELs, and the representation theorem
for generators of BSDELs is provided. Section 4 contains all the proofs of the main results
of this paper. We provide two numerical examples to illustrate the proposed dynamic risk
measures in Section 5. Finally, conclusions are summarized.

2. Preliminaries
2.1. Notations of Dynamic Risk Measures for Processes

For any positive integer n and z ∈ Rn, |z| denotes its Euclidean norm. For any
t ∈ [0, T], we introduce the following spaces.

• L2(Ω,Ft, P) is the space of random variables ξ which are Ft-measurable with E[|ξ|2] < ∞.

• L∞(Ω,Ft, P) is the space of random variables ξ which are Ft-measurable and essentially
bounded.

• H2
T is the space of (Ft)-progressively measurable processes Z : Ω× [0, T]→ R such that

‖Z‖2
H2

T
= E

[∫ T

0
|Zs|2ds

]
< ∞.

• S2
T is the space of (Ft)-progressively measurable and càdlàg processes Y : Ω× [0, T]→ R

such that

‖Y‖2
S2

T
= E

[
sup

t∈[0,T]
|Yt|2

]
< ∞.

• R∞ is the space of (Ft)-progressively measurable and càdlàg processes ϕ : Ω× [0, T]→ R
such that

‖ϕ‖R∞ =

∥∥∥∥∥ sup
t∈[0,T]

|ϕt|
∥∥∥∥∥

∞

< ∞.

• `2 is the space of real valued sequences (xn)n≥0 such that

‖x‖2
`2 =

∞

∑
n=1
|xn|2 < ∞.

• P2(`2) is the space of predictable processes K taking values in `2 such that

‖K‖2
P2(`2) = E

[∫ T

0
‖Ks‖2

`2 ds
]
=

∞

∑
i=1

E
[∫ T

0
|K(i)

s |2ds
]
< ∞.

• E2 is the Banach space of processes (Y, Z, K) ∈ S2
T × H2

T ×P2(`2) under the following
norm

‖(Y, Z, K)‖2
E2 = E

[
sup

t∈[0,T]
|Yt|2 +

∫ T

0
|Zs|2ds +

∫ T

0
‖Ks‖2

`2 ds

]
.

For the convenience of the reader, we introduce the concept of related time-consistent
dynamic risk measures for processes, see Cheridito et al. [22], Penner and Réveillac [34],
and Ji et al. [36].
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For 0 ≤ t ≤ s ≤ T, we define the projection πt,s := R∞ → R∞ as

πt,s(X)r = 1[t,T](r)Xr∧s, r ∈ [0, T],

R∞
t,s := πt,s(R∞) and R∞

t := πt,T(R∞).

On a general level, a conditional risk measure ρt is any map fromR∞
t to L∞(Ω,Ft, P).

ρt can be described as a risk assessment at time t, which is taken into account the informa-
tion available up to this time. For t ∈ [0, T], the map ρt has the following usual axioms for
all X, Y ∈ R∞

t .

(A) (Conditional cash invariance) For all m ∈ L∞(Ω,Ft, P),

ρt(X + m1[t,T]) = ρt(X)−m.

(B) (Monotonicity) ρt(X) ≥ ρt(Y), if X ≤ Y.

(C) (Subadditivity) ρt(X + Y) ≤ ρt(X + Y).

(D) (Conditional positive homogeneity) ρt(λX) = λρt(X), ∀λ ∈ L∞(Ω,Ft, P), λ ≥ 0.

(E) (Conditional convexity) For all λ ∈ L∞(Ω,Ft, P), λ ∈ [0, 1],

ρt(λX + (1− λ)Y) ≤ λρt(X) + (1− λ)ρt(Y).

(F) (Normalization) ρt(0) = 0.

Definition 1. A map ρt : R∞
t → L∞(Ω,Ft, P) for t ∈ [0, T] is called a conditional coherent risk

measure for processes, if it satisfies (A), (B), (C), and (D).

Definition 2. A map ρt : R∞
t → L∞(Ω,Ft, P) for t ∈ [0, T] is called a conditional convex risk

measure for processes, if it satisfies (A), (B), (E), and (F).

A sequence (ρt)t∈[0,T] is called a dynamic coherent risk measure for processes, if for
each t ∈ [0, T], ρt : R∞

t → L∞(Ω,Ft, P) is a conditional coherent risk measure for processes.
Similarly, a sequence (ρt)t∈[0,T] is called a dynamic convex risk measure for processes,

if for each t ∈ [0, T], ρt : R∞
t → L∞(Ω,Ft, P) is a conditional convex risk measure

for processes.
For each X ∈ R∞, we use the notation

ρt(X) = ρt(πt,T(X)).

Definition 3. A dynamic convex risk measure for processes (ρt)t∈[0,T] is called time consistent if

ρt(X) = ρt

(
X1[t,s) − ρs(X)[s,T]

)
, X ∈ R∞, t ∈ [0, T], s ∈ [t, T].

2.2. Some Results on BSDELs

Let Lt− = lims↗t Ls and ∆Lt = Lt − Lt− . Following Nualart and Schoutens [3,4], the
so-called power jumps of the Lévy process {Lt, t ∈ [0, T]} are given by

L(1)
t = Lt, L(i)

t = ∑
0≤s≤t

(∆Ls)
i, i ≥ 2.

We denote by (H(i))i≥1 the Teugel’s martingales, associated with the Lévy process {Lt, t ∈
[0, T]}, which is a linear combination of the Y(j), j = 1, . . . , i :

H(i)
t = ci,iY

(i)
t + ci,i−1Y(i−1)

t + . . . + ci,1Y(1)
t ,
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where Y(i)
t = L(i)

t − E[L(i)
t ] = L(i)

t − tE[L(i)
1 ] for all i ≥ 1. From Nualart and Schoutens [3],

we can see that the coefficients ci,k correspond to the orthonormalization of the polynomials
1, x, x2, . . . with respect to the measure u(dx) = x2ν(dx) + σ2δ0(dx). The martingales
(H(i))i≥1 , also called the orthonormalized ith-power-jump processes, can be chosen to
be pairwise strongly orthonormal martingales, and their predictable quadratic variation
processes are given by

〈H(i), H(j)〉t = δi,jt, i ≥ 1, j ≥ 1.

We define Ai,j
t as

Ai,j
t =

[
H(i), H(j)

]
t
−
〈

H(i), H(j)
〉

t
, t ∈ [0, T], i ≥ 1, j ≥ 1,

which means that {Ai,j
t , t ∈ [0, T]} is a martingale.

We assume that [
Ai,j, Am,n

]
t
= 0, i ≥ 1, j ≥ 1, m ≥ 1, n ≥ 1.

For more related results on Teugel’s martingales associated with the Lévy process {Lt, t ∈
[0, T]}, see Nualart and Schoutens [3,4].

For simplicity of presentation, we rewrite BSDELs (1) as

Yt = ξ +
∫ T

t
g(s, Ys, Zs, Ks)ds−

∫ T

t
ZsdBs −

∞

∑
i=1

∫ T

t
K(i)

s dH(i)
s , t ∈ [0, T], (3)

where ξ ∈ L2(Ω,FT , P) and g(t, y, z, k) := Ω× [0, T]×R×R× `2 → R is F-progressively
measurable. We introduce some assumptions which will be used in this paper.

(H1) (Integrability) g(·, 0, 0, 0) ∈ H2
T .

(H2) (Lipschitz condition) There exists a constant CL > 0 such that

|g(t, y, z, k)− g(t, y1, z1, k1)| ≤ CL(|y− y1|+ |z− z1|+ ‖k− k1‖`2),

for any y, y1, z, z1 ∈ R, k, k1 ∈ `2.

(H3) (Normalization) g(t, 0, 0, 0) = 0, dP× dt− a.s.

(H4) (Convexity) g is convex in (y, z, k), i.e., for any (y1, z1, k1), (y2, z2, k2) ∈ R2 × `2,
λ ∈ [0, 1],
g(t, λy1 + (1− λ)y2, λz1 + (1− λ)z2, λk1 + (1− λ)k2)

≤ λg(t, y1, z1, k1) + (1− λ)g(t, y2, z2, k2), dP× dt− a.s.

(H5) (Subadditivity) g is subadditive in (y, z, k), i.e., for any (y1, z1, k1), (y2, z2, k2) ∈ R2 × `2,

g(t, y1 + y2, z1 + z2, k1 + k2) ≤ g(t, y1, z1, k1) + g(t, y2, z2, k2), dP× dt− a.s.

(H6) (Positive homogeneity) g is positively homogeneous in (y, z, k), i.e., for any (y, z, k) ∈
R2 × `2, α ≥ 0,

g(t, αy, αz, αk) = αg(t, y, z, k), dP× dt− a.s.

(H7) (Monotonicity) g is nonincreasing in y.

Remark 1. From Bahlali et al. [1], under the assumptions (H1) and (H2), for any ξ ∈ L2(Ω,FT , P),
there exists a unique adapted solution (Y, Z, K) ∈ E2 of Equation (3).
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Remark 2. Following from Nualart and Schoutens [3,4], in the case of a Poisson process
{Nt, 0 ≤ t < ∞} with parameter λ > 0, we know that all Teugel’s martingales are equal to
Nt − λt, that is, H(1)

t = Nt−λt√
λ

and H(i)
t = 0, i ≥ 2. All orthonormalized ith-power-jump

processes, i ≥ 2, are equal to zero in the case of a Brownian motion {Bt, 0 ≤ t < ∞}.

From Theorem 3.2 of Bahlali et al. [1], we can show the following Proposition 1
without any substantial difficulties. Therefore, we omit its proof here. Meanwhile, the
following Proposition 2 is taken from Theorem 3.3 of Bahlali et al. [1].

Proposition 1. Assume that g satisfies (H1) and (H2). For i = 1, 2, let the terminal condition
ξi ∈ L2(Ω,FT , P), and let

(
Yi, Zi, Ki) ∈ E2 be the solution of Equation (3) corresponding to

ξ = ξ1, ξ = ξ2, respectively. Then, the following estimate holds:

E

( sup
0≤t≤T

|Y1
t −Y2

t |
)2
 ≤ CE

[
|ξ1 − ξ2|2

]
, (4)

where C is a positive constant.

Proposition 2. For i = 1, 2, assume that gi satisfies (H1) and (H2), and let the terminal condition
ξi ∈ L2(Ω,FT , P). Let

(
Yi, Zi, Ki) ∈ E2 be the solution of Equation (3) corresponding to

ξ = ξ1, ξ = ξ2, respectively. We suppose the following conditions hold:

(i) ξ1 ≥ ξ2, P-a.s.

(ii) g1(s, Y2, Z2, K2) ≥ g2(s, Y2, Z2, K2) dP× dt-a.s.

(iii) For all i ∈ N, let K̃(i) denote the `2-valued stochastic process such that its i first components are
equal to those of K2 and its N\{1, 2, · · ·, i} last components are equal to those of K1. With
this notation, we define for i ∈ N

γi
s =

{(
K1(i)

s −K2(i)
s

)−1(
g1(t, Y2

s , Z2
s , K̃(i−1)

s )−g1(t, Y2
s , Z2

s , K̃(i)
s )
)

, K1(i)
s − K2(i)

s 6= 0,

0, otherwise,

satisfying that ∑∞
i=1 γi

t4Hi
t > −1.

Then,
Y1

t ≥ Y2
t , t ∈ [0, T].

Remark 3. The third condition of comparison Theorem 2 is that we add. Without the additional
condition, it does not hold in general for solutions of BSDEs associated with Lévy processes (see
the counter-example in Barles et al. [42]). In the proof of Bahlali et al. [1], They actually use
this condition.

In this paper, define the dynamic risk measures for processes ρ by

ρt(X) = Yt(X), ∀t ∈ [0, T], X ∈ R∞, (5)

where Y is the first component of the solution (Yt(X), Zt(X), Kt(X)) of the following
BSDEL:

Yt = −XT +
∫ T

t
g(s, Ys + Xs, Zs, Ks)ds−

∫ T

t
ZsdBs −

∞

∑
i=1

∫ T

t
K(i)

s dH(i)
s , t ∈ [0, T]. (6)

The following lemma shows the existence and uniqueness of the solution of BSDEL
(6) and its proof will be postponed to Section 4.
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Lemma 1. Assume that g satisfies (H1) and (H2). For any X ∈ S2
T , there exists a unique adapted

solution in E2, denoted by (Yt,T(X), Zt,T(X), Kt,T(X)), solving BSDEL (6).

Remark 4. For simplicity of the notation, we sometimes denote the solution (Yt,T(X), Zt,T(X),
Kt,T(X)) of BSDEL (6) by (Yt(X), Zt(X), Kt(X)). Thanks to the uniqueness of the solution,
for each X ∈ R∞, we have that Yt(X) = Yt(πt,T(X)), which is consistent with our notation
ρt(X) = ρt(πt,T(X)). For 0 ≤ t ≤ s ≤ T, we also denote by (Yt,s(X), Zt,s(X), Kt,s(X)) the
solution of BSDEL (6) on [0, s] at time t. Accordingly, for all t ∈ [0, s], X ∈ R∞, we have that
Yt,s(X) = Yt,s(πt,s(X)).

3. Main Results

In this section, we will state the main results of this paper. Namely, we will state
the connections between the generators of BSDELs and the dynamic risk measures for
processes via BSDELs. By a product, we will also give a representation theorem of the
generators of BSDELs. Their proofs will be postponed to Section 4.

Before we provide the connections between the generators of BSDELs (3) and the
dynamic risk measures for processes via BSDELs, we need to give a representation theorem
for generators of BSDELs (3), which will be used in the later. As pointed in the Introduction,
the study about representation theorems for generators is an interesting topic and is useful
in financial mathematics. The following Theorem 1 is one of the main results of this paper.

Theorem 1. Assume that g satisfies (H1) and (H2). Let the terminal condition ξ ∈ L2(Ω,FT , P).
Denote by (Yt(g, T, ξ), Zt(g, T, ξ), Kt(g, T, ξ)) the solution of Equation (3). Then, for each
(t, y, z, k) ∈ [0, T)×R2 × `2, p ∈ [1, 2), the following equality

g(t, y, z, k) = Lp − lim
ε→0+

1
ε

[
Yt

(
g, t + ε, y + z(Bt+ε − Bt) +

∞

∑
i=1

ki(H(i)
t+ε − H(i)

t )

)
− y

]
(7)

holds true for almost every t ∈ [0, T). Furthermore, there exists a subsequence {nm}∞
m=1 ⊂ {n}∞

n=1
such that dP× dt-a.s.,

g(t, y, z, k) = lim
m→∞

nm

[
Yt

(
g, t +

1
nm

, y + z(Bt+ 1
nm
− Bt) +

∞

∑
i=1

ki(H(i)
t+ 1

nm
− H(i)

t )

)
− y

]
. (8)

Now, we are in a position to state the connections between the generators of BSDELs
and the dynamic risk measures for processes via BSDELs, which are another main results
of this paper.

Theorem 2. Assume that g satisfies (H1) and (H2). Denote by (Yt(X), Zt(X), Kt(X)) the
solution of BSDEL (6) corresponding to X ∈ R∞. Let ρ be defined as (5). Then,

(i) (ρt)t∈[0,T] is a dynamic convex risk measure for processes if and only if g satisfies assumption
(H3), (H4), and (H7).

(ii) If (ρt)t∈[0,T] is a dynamic convex risk measure for processes, then (ρt)t∈[0,T] is time-consistent.

Theorem 3. Assume that g satisfies (H1) and (H2). Denote by (Yt(X), Zt(X), Kt(X)) the
solution of BSDEL (6) corresponding to X ∈ R∞. Let ρ be defined as (5). Then,

(i) (ρt)t∈[0,T] is a dynamic coherent risk measure for processes if and only if g satisfies assumption
(H5), (H6), and (H7).

(ii) If (ρt)t∈[0,T] is a dynamic coherent risk measure for processes, then (ρt)t∈[0,T] is time-consistent.
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By choosing some specific generators of BSDELs, we construct dynamic risk measures
for processes by means of BSDELs.

Remark 5. Consider g : Ω× [0, T]×R×R× `2 → R defined by g(t, y, z, k) = −y + |z|+ k.
Let (Yt(X), Zt(X), Kt(X)) be the adapted solution of BSDEL (6) corresponding to X ∈ S2

T . Let
ρt(X) = Yt(X), ∀t ∈ [0, T], X ∈ R∞. Then, ρ is a dynamic coherent risk measure.

Remark 6. Consider g : Ω× [0, T]×R×R× `2 → R defined by g(t, y, z, k) = −y+ 2|z|2 + k
if |z| ≤ 1, and g(t, y, z, k) = −y + 3|z|+ k − 1 if |z| ≥ 1. Let (Yt(X), Zt(X), Kt(X)) be the
adapted solution of BSDEL (6) corresponding to X ∈ S2

T . Let ρt(X) = Yt(X), ∀t ∈ [0, T], X ∈ R∞.
Then, ρ is a dynamic convex risk measure. However, ρ is not a dynamic coherent risk measure.

4. Proofs of Main Results

In this section, we will provide the proof of Lemma 1 and all proofs of the results
stated in Section 3.

Proof of Lemma 1. In order to prove the existence and uniqueness of the solution of BSDEL
(6), we define a new function f X : Ω× [0, T]×R×R× `2 → R as

f X(t, y, z, k) := g(t, y + X(s), z, k), (9)

where t ∈ [0, T], (y, z, k) ∈ R ×R × `2. It is easy to see that f X satisfies the Lipschitz
condition (H2). Therefore, we only need to show that f X satisfies assumption (H1). By
using assumption (H2), we obtain for all t ∈ [0, T],

∫ T

0
| f X(s, 0, 0, 0)|2ds =

∫ T

0
|g(s, X(s), 0, 0)|2ds

≤ 2C2
L

(∫ T

0
|g(s, 0, 0, 0)|2ds +

∫ T

0
|X(s)|2ds

)
≤ 2C2

L

(∫ T

0
|g(s, 0, 0, 0)|2ds + sup

s∈[t,T]
|X(s)|2

)
.

Notice that g satisfies assumption (H1) and X ∈ S2
T . By taking mathematical expectation,

we immediately deduce that

E
[∫ T

0

∣∣∣ f X(s, 0, 0, 0)
∣∣∣2ds

]
< ∞.

Thus, f X satisfies assumption (H1).

In order to prove Theorem 1, we need to have two additional results. The following
Proposition 3 comes from Proposition 2.2 of Jiang [33]. Proposition 4 concerning on a priori
estimate for BSDELs is new and needs to be proved.

Proposition 3. Let q > 1 and 1 ≤ p < q. For any (Ft)-progressively measurable process
ψ : Ω× [0, T]→ R satisfying E

[∫ T
0 |ψs|qds

]
< ∞, the following equality

ψt = Lp − lim
ε→0+

1
ε

∫ t+ε

t
ψsds

holds true for almost every t ∈ [0, T).
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Proposition 4. Assume that g satisfies (H1) and (H2). Denote by (Y, Z, K) the solution of BSDEL
(3) corresponding to ξ ∈ L2(Ω,FT , P). Then we have

E

[
sup

s∈[t,T]
eβs|Ys|2 +

∫ T

t
eβs|Zs|2ds +

∞

∑
i=1

∫ T

t
eβs|K(i)

s |2ds
∣∣∣Ft

]

≤ CE

[
eβT |ξ|2 +

(∫ T

t
e

βs
2 |g(s, 0, 0, 0)|ds

)2∣∣∣Ft

]
,

where C is a positive constant and β = 2CL + 4C2
L.

Proof. By Itô’s formula (see Theorem 32 of Protter [43], Page 78), for any constant β,
we have

eβt|Yt|2 +
∫ T

t
eβs|Zs|2ds +

∞

∑
i=1

∫ T

t
eβs|K(i)

s |2ds

= eβT |ξ|2 −
∫ T

t
βeβs|Ys|2ds + 2

∫ T

t
eβsYsg(s, Ys, Zs, Ks)ds− 2

∫ T

t
eβsYsZsdBs

− 2
∞

∑
i=1

∫ T

t
eβsYsK(i)

s dH(i)
s −

∞

∑
i=1

∞

∑
j=1

∫ T

t
eβsK(i)

s K(j)
s dAi,j

s .

(10)

Applying the Lipschitz condition (H2) to g and then the inequality ab ≤ a2

2 + b2

2 , we
deduce that

2
∫ T

t
eβsYsg(s, Ys, Zs, Ks)ds

≤ 2
∫ T

t
eβs|Ys||g(s, Ys, Zs, Ks)|ds

≤ 2
∫ T

t
eβs|Ys||g(s, Ys, Zs, Ks)− g(s, 0, 0, 0)|ds + 2

∫ T

t
eβs|Ys||g(s, 0, 0, 0)|ds

≤ 2CL

∫ T

t
eβs|Ys|

(
|Ys|+ |Zs|+ ‖Ks‖`2

)
ds + 2

∫ T

t
eβs|Ys||g(s, 0, 0, 0)|ds

≤ 2CL

∫ T

t
eβs|Ys|2ds + 2C2

L

∫ T

t
eβs|Ys|2ds +

1
2

∫ T

t
eβs|Zs|2ds

+ 2C2
L

∫ T

t
eβs|Ys|2ds +

1
2

∫ T

t
eβs‖Ks‖2

`2 ds + 2
∫ T

t
eβs|Ys||g(s, 0, 0, 0)|ds

=
(

2CL + 4C2
L

) ∫ T

t
eβs|Ys|2ds +

1
2

∫ T

t
eβs|Zs|2ds +

1
2

∫ T

t
eβs‖Ks‖2

`2 ds

+ 2
∫ T

t
eβs|Ys||g(s, 0, 0, 0)|ds.

(11)

Taking β = 2CL + 4C2
L, from (10) and (11), we have

eβt|Yt|2 +
1
2

∫ T

t
eβs|Zs|2ds +

1
2

∞

∑
i=1

∫ T

t
eβs|K(i)

s |2ds

≤ eβT |ξ|2 − 2
∫ T

t
eβsYsZsdBs − 2

∞

∑
i=1

∫ T

t
eβsYsK(i)

s dH(i)
s

−
∞

∑
i=1

∞

∑
j=1

∫ T

t
eβsK(i)

s K(j)
s dAi,j

s + 2
∫ T

t
eβs|Ys||g(s, 0, 0, 0)|ds.

(12)
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Therefore, we get

eβt|Yt|2 +
1
2

E
[∫ T

t
eβs|Zs|2ds

∣∣∣Ft

]
+

1
2

E

[
∞

∑
i=1

∫ T

t
eβs|K(i)

s |2ds
∣∣∣Ft

]

≤ 2E
[

eβT |ξ|2 +
∫ T

t
eβs|Ys||g(s, 0, 0, 0)|ds

∣∣∣Ft

]
,

(13)

and

sup
u∈[t,T]

eβu|Yu|2 ≤ eβT |ξ|2 + 2
∫ T

t
eβs|Ys||g(s, 0, 0, 0)|ds

+ 4 sup
u∈[t,T]

∣∣∣∣∫ u

t
eβsYsZsdBs

∣∣∣∣+ 4 sup
u∈[t,T]

∣∣∣∣∣ ∞

∑
i=1

∫ u

t
eβsYsK(i)

s dH(i)
s

∣∣∣∣∣
+ 4 sup

u∈[t,T]

∣∣∣∣∣ ∞

∑
i=1

∞

∑
j=1

∫ u

t
eβsK(i)

s K(j)
s dAi,j

s

∣∣∣∣∣.
(14)

By Burkholder–Davis–Gundys inequality (see Theorem 48 of Protter [43], Page 193) and
then the inequality ab ≤ a2

2 + b2

2 , we have

E

[
sup

u∈[t,T]

∣∣∣∣∫ u

t
eβsYsZsdBs

∣∣∣∣
∣∣∣∣∣Ft

]
≤ CE

[(∫ T

t
e2βs|Ys|2|Zs|2ds

) 1
2
∣∣∣∣∣Ft

]

≤ CE

(2C
∫ T

t
eβs|Zs|2ds

) 1
2
(

1
2C

sup
s∈[t,T]

eβs|Ys|2
) 1

2
∣∣∣∣∣Ft


≤ C2E

[∫ T

t
eβs|Zs|2ds

∣∣∣∣∣Ft

]
+

1
4

E

[
sup

s∈[t,T]
eβs|Ys|2

∣∣∣∣∣Ft

]
.

(15)

Using Burkholder–Davis–Gundys inequality again, we easily deduce that

E

[
sup

u∈[t,T]

∣∣∣∣∣ ∞

∑
i=1

∞

∑
j=1

∫ u

t
eβsK(i)

s K(j)
s dAi,j

s

∣∣∣∣∣
∣∣∣∣∣Ft

]
= 0. (16)

Similarly, by Burkholder–Davis–Gundys inequality, |a+ b|r ≤ max(1, 2r−1)(|a|r + |b|r), r >
0 and then Jensen’s inequality (see Theorem 19 of Protter [43], Page 11), we have
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E

[
sup

u∈[t,T]

∣∣∣∣∣ ∞

∑
i=1

∫ u

t
eβsYsK(i)

s dH(i)
s

∣∣∣∣∣
∣∣∣∣∣Ft

]

≤ CE


 ∞

∑
i=1

∞

∑
j=1

∫ T

t
e2βs|Ys|2K(i)

s K(j)
s d[H(i), H(j)]s

 1
2 ∣∣∣∣∣Ft


= CE


 ∞

∑
i=1

∫ T

t
e2βs|Ys|2|K(i)

s |2ds +
∞

∑
i=1

∞

∑
j=1

∫ T

t
e2βs|Ys|2K(i)

s K(j)
s dAi,j

s

 1
2 ∣∣∣∣∣Ft


≤ CE

( ∞

∑
i=1

∫ T

t
e2βs|Ys|2|K(i)

s |2ds

) 1
2
∣∣∣∣∣Ft

+ CE


∣∣∣∣∣∣

∞

∑
i=1

∞

∑
j=1

∫ T

t
e2βs|Ys|2K(i)

s K(j)
s dAi,j

s

∣∣∣∣∣∣
1
2 ∣∣∣∣∣Ft


≤ CE

( ∞

∑
i=1

∫ T

t
e2βs|Ys|2|K(i)

s |2ds

) 1
2
∣∣∣∣∣Ft

+ CE

∣∣∣∣∣∣
∞

∑
i=1

∞

∑
j=1

∫ T

t
e2βs|Ys|2K(i)

s K(j)
s dAi,j

s

∣∣∣∣∣∣
∣∣∣∣∣Ft

 1
2

≤ CE

( ∞

∑
i=1

∫ T

t
e2βs|Ys|2|K(i)

s |2ds

) 1
2
∣∣∣∣∣Ft


+ CE

 sup
u∈[t,T]

∣∣∣∣∣∣
∞

∑
i=1

∞

∑
j=1

∫ u

t
e2βs|Ys|2K(i)

s K(j)
s dAi,j

s

∣∣∣∣∣∣
∣∣∣∣∣Ft

 1
2

= CE

( ∞

∑
i=1

∫ T

t
e2βs|Ys|2|K(i)

s |2ds

) 1
2
∣∣∣∣∣Ft


≤ C2E

[
∞

∑
i=1

∫ T

t
eβs|K(i)

s |2ds

∣∣∣∣∣Ft

]
+

1
4

E

[
sup

s∈[t,T]
eβs|Ys|2

∣∣∣∣∣Ft

]
.

(17)

Therefore, we have

E

[
sup

s∈[t,T]
eβs|Ys|2

∣∣∣∣∣Ft

]
≤ E

[
eβT |ξ|2 + 2

∫ T

t
eβs|Ys||g(s, 0, 0, 0)|ds

∣∣∣∣∣Ft

]

+ C2E

[∫ T

t
eβs|Zs|2ds

∣∣∣∣∣Ft

]
+

1
4

E

[
sup

s∈[t,T]
eβs|Ys|2

∣∣∣∣∣Ft

]

+ C2E

[
∞

∑
i=1

∫ T

t
eβs|K(i)

s |2ds

∣∣∣∣∣Ft

]
+

1
4

E

[
sup

s∈[t,T]
eβs|Ys|2

∣∣∣∣∣Ft

]
.

(18)

Finally, combining (13) and (18), there exists a constant C > 0 such that

E

[
sup

s∈[t,T]
eβs|Ys|2 +

∫ T

t
eβs|Zs|2ds +

∞

∑
i=1

∫ T

t
eβs|K(i)

s |2ds
∣∣∣Ft

]

≤ CE
[

eβT |ξ|2 +
∫ T

t
eβs|Ys||g(s, 0, 0, 0)|ds

∣∣∣Ft

]
≤ CE

[
eβT |ξ|2 +

(
1√
C

sup
s∈[t,T]

e
βs
2 |Ys|

)(√
C
∫ T

t
e

βs
2 |g(s, 0, 0, 0)|ds

)∣∣∣Ft

]

≤ CE

[
eβT |ξ|2 + C

2

(∫ T

t
e

βs
2 |g(s, 0, 0, 0)|ds

)2∣∣∣Ft

]
+

1
2

E

[
sup

s∈[t,T]
eβs|Ys|2

∣∣∣∣∣Ft

]
.

Thus, we have completed the proof of this proposition.
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Based on Propositions 3 and 4, we can prove Theorem 1.

Proof of Theorem 1. Let us pick ε > 0 small enough such that t + ε < T. Suppose that
g satisfies (H1) and (H2). For any given (t, y, z, k) ∈ [0, T) ×R2 × `2, we consider the
following BSDEL:

Yε
s =y + z(Bt+ε − Bt) +

∞

∑
i=1

ki(H(i)
t+ε − H(i)

t ) +
∫ t+ε

s
g(u, Yε

u, Zε
u, Kε

u)du

−
∫ t+ε

s
Zε

udBu −
∞

∑
i=1

∫ t+ε

s
K(i),ε

u dH(i)
u , s ∈ [0, t + ε].

(19)

Then, there exists a unique adapted solution in E2, denoted by (Yε, Zε, Kε), solving
BSDEL (19)

For any given (t, y, z, k) ∈ [0, T)×R2 × `2 and t < s < t + ε, let us set

Ỹε
s := Yε

s −
(

y + z(Bs − Bt) +
∞

∑
i=1

ki(H(i)
s − H(i)

t )

)
, Z̃s := Zε

s − z, K̃s := Kε
s − k.

Applying Itô’s formula to Ỹε
s , we have

Ỹε
s =

∫ t+ε

s
g

(
u, Ỹε

u + y + z(Bu − Bt) +
∞

∑
i=1

ki(H(i)
u − H(i)

t ), Z̃ε
u + z, K̃ε

u + k

)
du

−
∫ t+ε

s
Z̃ε

udBu −
∞

∑
i=1

∫ t+ε

s
K̃(i),ε

u dH(i)
u , s ∈ [t, t + ε].

(20)

Then, there exists a unique adapted solution in E2, denoted by (Ỹε, Z̃ε, K̃ε), solving
BSDEL (20).

By Proposition 4, Lipschitz condition (H2) and then Hölder’s inequality (see Proposi-
tion 1.3.2 of Zhang [44], Page 13), we deduce that

E

[
sup

s∈[t,t+ε]

|Ỹε
s |2 +

∫ t+ε

t
|Z̃ε

s |2ds +
∞

∑
i=1

∫ t+ε

t
|K̃(i),ε

s |2ds
∣∣∣Ft

]

≤ Ce(2CL+4C2
L)T E

(∫ t+ε

t

∣∣∣∣∣g
(

u, y + z(Bu − Bt) +
∞

∑
i=1

ki(H(i)
u − H(i)

t ), z, k

)∣∣∣∣∣du

)2∣∣∣Ft


≤ C1E

[(∫ t+ε

t

(
|g(u, 0, 0, 0)|+|y|+|z|+‖k‖`2 + |z(Bu − Bt)|+|k(Hu − Ht)|

)
du
)2∣∣∣Ft

]

≤ C1E

[
ε
∫ t+ε

t

(
|g(u, 0, 0, 0)|+|y|+|z|+‖k‖`2 + |z(Bu − Bt)|+|k(Hu − Ht)|

)2

du
∣∣∣Ft

]

≤ 6C1εE
[∫ t+ε

t

(
|g(u, 0, 0, 0)|2+|y|2+|z|2+‖k‖2

`2 + |z(Bu − Bt)|2+|k(Hu − Ht)|2
)

du
∣∣∣Ft

]
,

(21)

where C1 = CC2
Le(2CL+4C2

L)T is a positive constant. Therefore, taking the expectation in the
previous inequality, we have

E

[
sup

s∈[t,t+ε]

|Ỹε
s |2 +

∫ t+ε

t
|Z̃ε

s |2ds +
∞

∑
i=1

∫ t+ε

t
|K̃(i),ε

s |2ds

]

≤ 6C1εE
[∫ t+ε

t

(
|g(u, 0, 0, 0)|2+|y|2+|z|2+‖k‖2

`2

)
du
]
+ 6C1εE

[∫ t+ε

t
|z(Bu − Bt)|2du

]
+ 6C1εE

[∫ t+ε

t
|k(Hu − Ht)|2du

]
.

(22)
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By Fubini Theorem, we have

E
[∫ t+ε

t
|z(Bu − Bt)|2du

]
=
∫ t+ε

t
E
[
|z(Bu − Bt)|2

]
du

=
∫ t+ε

t
z2(u− t)du

=
1
2

ε2|z|2 → 0, (ε→ 0+).

(23)

Applying Fubini Theorem again and then Itô’s formula, we have

E
[∫ t+ε

t
|k(Hu − Ht)|2du

]
=
∫ t+ε

t
E
[
|k(Hu − Ht)|2

]
du

=
∫ t+ε

t

{
E
[

2
∫ u

t
k(Hs − Ht)d(k(Hs − Ht)) +

∫ u

t
d[k(H· − Ht), k(H· − Ht)]s

]}
du

=
∫ t+ε

t

{
E
[∫ u

t
d〈k(H· − Ht), k(H· − Ht)〉s

]}
du

=
∫ t+ε

t

{
E
[∫ u

t
‖k‖2

`2 ds
]}

du

=
1
2

ε2‖k‖2
`2 → 0, (ε→ 0+).

(24)

Combining (23) and (24), and absolute continuity of integral, we obtain

lim
ε→0+

1
ε

E

[
sup

s∈[t,t+ε]

|Ỹε
s |2 +

∫ t+ε

t
|Z̃ε

s |2ds +
∞

∑
i=1

∫ t+ε

t
|K̃(i),ε

s |2ds

]
= 0 (25)

Set

Mε
t :=

1
ε

E

[∫ t+ε

s
g

(
u, Ỹε

u + y + z(Bu − Bt) +
∞

∑
i=1

ki(H(i)
u − H(i)

t ), Z̃ε
u + z, K̃ε

u + k

)
du
∣∣∣Ft

]

Nε
t :=

1
ε

E
[∫ t+ε

t
g(u, y, z, k)du

∣∣∣Ft

]
.

Taking conditional expectation in the BSDEL (20), we have

1
ε
(Yε

t − y) =
1
ε

Ỹε
t

=
1
ε

E

[∫ t+ε

t
g

(
u, Ỹε

u + y + z(Bu − Bt) +
∞

∑
i=1

ki(H(i)
u − H(i)

t ), Z̃ε
u + z, K̃ε

u + k

)
du
∣∣∣Ft

]
= Nε

t + (Mε
t − Nε

t ).

(26)
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By Jensen’s inequality, Hölder’s inequality, Lipschitz condition (H2), and (23)–(25), we have

lim
ε→0+

E
[
(Mε

t − Nε
t )

2
]

= lim
ε→0+

1
ε2 E

[∣∣∣∣E
[∫ t+ε

t

(
g(u, Ỹε

u + y + z(Bu − Bt) +
∞

∑
i=1

ki(H(i)
u − H(i)

t ), Z̃ε
u + z, K̃ε

u + k)

− g(u, y, z, k)

)
du
∣∣∣Ft

]∣∣∣∣2
]

≤ lim
ε→0+

1
ε2 E

[
E

[∣∣∣∣ ∫ t+ε

t

(
g(u, Ỹε

u + y + z(Bu − Bt) +
∞

∑
i=1

ki(H(i)
u − H(i)

t ), Z̃ε
u + z, K̃ε

u + k)

− g(u, y, z, k)

)
du
∣∣∣∣2∣∣∣Ft

]]

≤ lim
ε→0+

5C2
L

ε
E
[∫ t+ε

t

(
|Ỹε

u|2 + |Z̃ε
u|2 + ‖K̃ε

u‖2
`2 + |z(Bu − Bt)|2 + |k(Hu − Ht)|2

)
du
]

= 0.
(27)

Using Proposition 3, (H1) and (H2), for any 1 ≤ p < 2 and (y, z, k) ∈ R×R× `2, we have

lim
ε→0+

E
[
|Nε

t − g(u, y, z, k)|p
]

= lim
ε→0+

E
[∣∣∣∣1ε E

[∫ t+ε

t
g(u, y, z, k)du

∣∣∣Ft

]
− g(t, y, z, k)

∣∣∣∣p]
= 0, a.e., t ∈ [0, T).

(28)

Thus, we have completed the proof of the first part of Theorem 1.
By using the relationship between the almost sure convergence and the moment

convergence with Fubini’s theorem, we can see that the first part of Theorem 1 directly
implies the second part. The proof is complete.

The proofs of Theorems 2 and 3 will be decomposed into several steps as outline below.

Proposition 5. Assume that g satisfies (H1) and (H2). Denote by (Yt(X), Zt(X), Kt(X)) the
solution of BSDEL (6) corresponding to X ∈ S2

T . Then, the following statements are equivalent:

(i) For all t ∈ [0, T], Yt(0) = 0.

(ii) g satisfies (H3), that is, g(t, 0, 0, 0) = 0, dP× dt− a.s.

Proof. By the uniqueness of the solution of BSDEL (6), it is clearly seen that (ii) ⇒ (i)
holds. Let us prove that (i)⇒ (ii) holds. Suppose that (i) holds, that is, for all t ∈ [0, T],
Yt(g, T, 0) = 0. Then, for all s ∈ [0, t], Ys(g, t, 0) = 0. Following from Theorem 1, we can
see that (ii) holds.

For conditional cash invariance and time-consistency of Yt(·), we have the
following result.

Proposition 6. Assume that g satisfies (H1) and (H2). Denote by (Yt(X), Zt(X), Kt(X)) the
solution of BSDEL (6) corresponding to X ∈ S2

T . Then, we have the following statements:

(i) For any m ∈ L2(Ω,Ft, P), t ∈ [0, T], Yt

(
X + m1[t,T]

)
= Yt(X)−m.



Entropy 2021, 23, 741 15 of 27

(ii) If g also satisfies (H3), then (Yt(·))t∈[0,T] is time-consistent, i.e.,

Yt

(
X1[t,s) −Ys(X)1[s,T]

)
= Yt(X),

for all X ∈ S2
T and all t ∈ [0, T], s ∈ [t, T].

Proof. Let us prove that (i) holds. For each X ∈ S2
T , m ∈ L2(Ω,Ft, P), we consider the

following BSDEL:

Ỹt = −XT −m +
∫ T

t
g
(

s, Ỹs + Xs + m, Z̃s, K̃s

)
ds

−
∫ T

t
Z̃sdBs −

∞

∑
i=1

∫ T

t
K̃(i)

s dH(i)
s , t ∈ [0, T].

Obviously, we have

Ỹt + m = −XT +
∫ T

t
g
(

s, Ỹs + Xs + m, Z̃s, K̃s

)
ds

−
∫ T

t
Z̃sdBs −

∞

∑
i=1

∫ T

t
K̃(i)

s dH(i)
s , t ∈ [0, T].

Thanks to uniqueness of the solution of BSDEL (6), we get Ỹt = Yt(X + m1[t,T]) and
Ỹt + m = Yt(X). Thus, for each X ∈ S2

T , m ∈ L2(Ω,Ft, P),

Yt

(
X + m1[t,T]

)
= Yt(X)−m t ∈ [0, T].

Now we prove that (ii) holds. Suppose that g satisfies (H3). To this end, we first
prove that

Yt,T(X) = Yt,s

(
X1[t,s) −Ys,T(X)1[s,s]

)
, s ∈ [t, T].

Let us denote by (Y, Z, K) the solution of BSDEL (6) corresponding to X ∈ S2
T . Following

from the uniqueness of the solution of BSDEL (6), we obtain

Yt,T(X) = −XT +
∫ T

t
g(r, Yr + Xr, Zr, Kr)dr−

∫ T

t
ZrdBr −

∞

∑
i=1

∫ T

t
K(i)

r dH(i)
r

= −XT +
∫ T

s
g(r, Yr + Xr, Zr, Kr)dr−

∫ T

s
ZrdBr −

∞

∑
i=1

∫ T

s
K(i)

r dH(i)
r

+
∫ s

t
g(r, Yr + Xr, Zr, Kr)dr−

∫ s

t
ZrdBr −

∞

∑
i=1

∫ s

t
K(i)

r dH(i)
r

= Ys,T(X) +
∫ s

t
g(r, Yr + Xr, Zr, Kr)dr−

∫ s

t
ZrdBr −

∞

∑
i=1

∫ s

t
K(i)

r dH(i)
r

= Yt,s

(
X1[t,s) −Ys,T(X)1[s,s]

)
.
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Let X̃ = X1[t,s) −Ys,T(X)1[s,T], t ∈ [0, T], s ∈ [t, T]. Then, we get X̃ ∈ S2
T . Now, we denote

by
(

Ỹ, Z̃, K̃
)

the solution of BSDEL (6) corresponding to X = X̃. Then we have

Ỹt = Ys,T(X) +
∫ s

t
g
(

r, Ỹr + Xr, Z̃r, K̃r

)
dr−

∫ s

t
Z̃rdBr −

∞

∑
i=1

∫ s

t
K̃(i)

r dH(i)
r

−Ys,T(X) + Ys,T(X) +
∫ T

s
g
(

r, Ỹr −Ys,T(X), Z̃r, K̃r

)
dr

−
∫ T

s
Z̃rdBr −

∞

∑
i=1

∫ T

s
K̃(i)

r dH(i)
r .

(29)

Due to the uniqueness of the solution, we have

Yt,T(X) = Yt,s

(
X1[t,s) −Ys,T(X)1[s,s]

)
= Ys,T(X) +

∫ s

t
g
(

r, Ỹr + Xr, Z̃r, K̃r

)
dr

−
∫ s

t
Z̃rdBr −

∞

∑
i=1

∫ s

t
K̃(i)

r dH(i)
r ,

(30)

Ys,T

(
−Ys,T(X)1[s,T]

)
= Ys,T(X) +

∫ T

s
g
(

r, Ỹr −Ys,T(X), Z̃r, K̃r

)
dr

−
∫ T

s
Z̃rdBr −

∞

∑
i=1

∫ T

s
K̃(i)

r dH(i)
r .

(31)

By Propositions 5 and 6(i), we get

Ys,T

(
−Ys,T(X)1[s,T]

)
= Ys,T

(
0−Ys,T(X)1[s,T]

)
= Ys,T(0) + Ys,T(X)

= Ys,T(X).

(32)

Finally, we have

Yt

(
X1[t,s) −Ys(X)1[s,T]

)
= Yt(X̃) = Ỹt

= Yt(X)−Ys,T(X) + Ys,T(X)

= Yt(X),

for all X ∈ S2
T , t ∈ [0, T], s ∈ [t, T].

For conditional convexity of Yt(·), we have the following result.

Proposition 7. Assume that g satisfies (H1), (H2), and (H3). Denote by (Yt(X), Zt(X), Kt(X))

the solution of BSDEL (6) corresponding to X ∈ S2
T . Then, the following statements are equivalent:

(i) For any t ∈ [0, T], Yt(·) is conditional convex in S2
T , i.e., for each X1, X2 ∈ S2

T , λ ∈
L2(Ω,Ft, P), λ ∈ [0, 1],

Yt

(
λX1 + (1− λ)X2

)
≤ λYt(X1) + (1− λ)Yt(X2), a.s.

(ii) For any t ∈ [0, T], Yt(·) is conditional convex in R∞, i.e., for each X1, X2 ∈ R∞, λ ∈
L∞(Ω,Ft, P), λ ∈ [0, 1],

Yt

(
λX1 + (1− λ)X2

)
≤ λYt(X1) + (1− λ)Yt(X2), a.s.
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(iii) g satisfies (H4), i.e., g is convex in (y, z, k).

Proof. First, we prove that (iii)⇒ (i) holds. Suppose that g satisfies (H4). Let X1, X2 ∈ S2
T .

Denote by (Y1
t (X), Z1

t (X), K1
t (X)) and (Y2

t (X), Z2
t (X), K2

t (X)) the solutions of BSDEL (6)
corresponding to X = X1 and X = X2, respectively. Then, we have

Y1
t = −X1

T +
∫ T

t
g
(

s, Y1
s + X1

s , Z1
s , K1

s

)
ds−

∫ T

t
Z1

s dBs −
∞

∑
i=1

∫ T

t
K1(i)

s dH(i)
s , t ∈ [0, T],

Y2
t = −X2

T +
∫ T

t
g
(

s, Y2
s + X2

s , Z2
s , K2

s

)
ds−

∫ T

t
Z2

s dBs −
∞

∑
i=1

∫ T

t
K2(i)

s dH(i)
s , t ∈ [0, T].

For all λ ∈ L2(Ω,Ft, P) and λ ∈ [0, 1], we set

X̃ = λX1 +(1−λ)X2, Ỹ = λY1 +(1−λ)Y2, Z̃ = λZ1 +(1−λ)Z2, K̃ = λK1 +(1−λ)K2.

By assumption (H4), we get

g
(

t, Ỹt + X̃t, Z̃t, K̃t

)
≤ λg

(
t, Y1

t + X1
t , Z1

t , K1
t

)
+ (1− λ)g

(
t, Y2

t + X2
t , Z2

t , K2
t

)
, a.s.

Thus, we have

λYt(X1) + (1− λ)Yt(X2)

= −(λX1
T + (1− λ)X2

T) +
∫ T

t
λg
(

s, Y1
s + X1

s , Z1
s , K1

s

)
ds +

∫ T

t
(1− λ)g

(
s, Y2

s + X2
s , Z2

s , K2
s

)
ds

−
∫ T

t

(
λZ1

s + (1− λ)Z2
s

)
dBs −

∞

∑
i=1

∫ T

t

(
λK1(i)

s + (1− λ)K2(i)
s

)
dH(i)

s

= −X̃T+
∫ T

t

(
λg
(

s, Y1
s + X1

s , Z1
s , K1

s

)
+(1− λ)g

(
s, Y2

s + X2
s , Z2

s , K2
s

))
ds

−
∫ T

t
Z̃sdBs −

∞

∑
i=1

∫ T

t
K̃sdH(i)

s

≥ −X̃T +
∫ T

t
g
(

s, Ỹs + X̃s, Z̃s, K̃s

)
ds−

∫ T

t
Z̃sdBs −

∞

∑
i=1

∫ T

t
K̃(i)

s dH(i)
s .

(33)

Note that Ỹt = λYt(X1) + (1− λ)Yt(X2). By Proposition 2, we get for all X1, X2 ∈ S2
T ,

λ ∈ L2(Ω,Ft, P), λ ∈ [0, 1], t ∈ [0, T],

Yt

(
λX1 + (1− λ)X2

)
≤ λYt(X1) + (1− λ)Yt(X2), a.s.

Second, let us prove that (i)⇒ (iii) holds. For each ξ, η ∈ L2(Ω,FT , P), we set

X1 = ξ1[T,T], X2 = η1[T,T].

Then, X1, X2 ∈ S2
T . Consider the following BSDELs:

Y1
t = −ξ +

∫ T

t
g
(

r, Y1
r , Z1

r , K1
r

)
dr−

∫ T

t
Z1

r dBr −
∞

∑
i=1

∫ T

t
K1(i)

r dH(i)
r , t ∈ [0, T],

Y2
t = −η +

∫ T

t
g
(

r, Y2
r , Z2

r , K2
r

)
dr−

∫ T

t
Z2

r dBr −
∞

∑
i=1

∫ T

t
K2(i)

r dH(i)
r , t ∈ [0, T].

By the uniqueness of solutions of BSDELs, we get

Yt(X1) = Y1
t = Yt(g, T,−ξ), Yt(X2) = Y2

t = Yt(g, T,−η).
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Then, by using the conditional convexity of Yt(·), we have for each ξ, η ∈ L2(Ω,FT , P), λ ∈
[0, 1], t ∈ [0, T],

Yt(g, T, λξ + (1− λ)η) ≤ λYt(g, T, ξ) + (1− λ)Yt(g, T, η), a.s. (34)

For all (y1, z1, k1), (y2, z2, k2) ∈ R×R× `2, λ ∈ [0, 1], let

ỹ = λy1 + (1− λ)y2, z̃ = λz1 + (1− λ)z2, k̃ = λk1 + (1− λ)k2.

Using Theorem 1, we get that there exists a subsequence {nm}∞
m=1 ⊂ {n}∞

n=1 such that
dP× dt-a.s.,

g(t, ỹ, z̃, k̃) = lim
m→∞

nm

[
Yt

(
g, t +

1
nm

, ỹ + z̃(Bt+ 1
nm
− Bt)

+
∞

∑
i=1

k̃i(H(i)
t+ 1

nm
− H(i)

t )

)
− ỹ

]
.

(35)

Using Theorem 1 again, we get

g(t, y1, z1, k1) = Lp − lim
m→∞

nm

[
Yt

(
g, t +

1
nm

, y1 + z1(Bt+ 1
nm
− Bt)

+
∞

∑
i=1

k1,i(H(i)
t+ 1

nm
− H(i)

t )

)
− y1

]
.

(36)

Furthermore, there exists a subsequence {nmj}∞
j=1 ⊂ {nm}∞

m=1 such that dP× dt-a.s.,

g(t, y1, z1, k1) = lim
j→∞

nmj

[
Yt

(
g, t +

1
nmj

, y1 + z1(Bt+ 1
nmj
− Bt)

+
∞

∑
i=1

k1,i(H(i)
t+ 1

nmj

− H(i)
t )

)
− y1

]
.

(37)

Similarly, there exists a subsequence {nmjl}∞
l=1 ⊂ {nmj}∞

j=1 such that dP× dt-a.s.,

g(t, y2, z2, k2) = lim
l→∞

nmjl

[
Yt

(
g, t +

1
nmjl

, y2 + z2(Bt+ 1
nmjl
− Bt)

+
∞

∑
i=1

k2,i(H(i)
t+ 1

nmjl

− H(i)
t )

)
− y2

]
.

(38)

Due to the uniqueness of the solution and assumption (H3), for all s ∈ [0, T], ξ ∈
L2(Ω,Fs, P), we get

Yt(g, T, ξ) = Yt(g, s, ξ), ∀t ∈ [0, s] (39)
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Thus, combining (34) and (39), for all (y1, z1, k1), (y2, z2, k2) ∈ R × R × `2, λ ∈ [0, 1],
we have

Yt

(
g, t+

1
nmjl

, λy1+(1−λ)y2 + (λz1+(1− λ)z2)(Bt+ 1
nmjl
−Bt)

+
∞

∑
i=1

(
λk1,i+(1−λ)k2,i

)
(H(i)

t+ 1
nmjl

− H(i)
t )

)
− (λy1 + (1−λ)y2)

≤ λ

(
Yt
(

g, t +
1

nmjl
, y1 + z1(Bt+ 1

nmjl
− Bt) +

∞

∑
i=1

k1,i(H(i)
t+ 1

nmjl

− H(i)
t )
)
− y1

)

+ (1− λ)

(
Yt
(

g, t +
1

nmjl
, y2 + z2(Bt+ 1

nmjl
− Bt) +

∞

∑
i=1

k2,i(H(i)
t+ 1

nmjl

− H(i)
t )
)
− y2

)
.

(40)

Thus, using Theorem 1, we deduce that for all (y1, z1, k1), (y2, z2, k2) ∈ R × R × `2,
λ ∈ [0, 1],
g(t, λy1 + (1− λ)y2, λz1 + (1− λ)z2, λk1 + (1− λ)k2)

≤ λg(t, y1, z1, k1) + (1− λ)g(t, y2, z2, k2), dP× dt− a.s.

That is, g satisfies assumption (H4).
Obviously, (iii) ⇒ (i) implies (iii) ⇒ (ii). Finally, we prove that (ii) ⇒ (iii) holds.

Suppose that Yt(·) is conditional convex inR∞. Then, we get

Yt(g, T, λξn + (1− λ)ηn) ≤ λYt(g, T, ξn) + (1− λ)Yt(g, T, ηn), a.s., (41)

for all ξn, ηn ∈ L∞(Ω,FT , P), λ ∈ [0, 1], t ∈ [0, T].
Let

ξn = ξ1|ξ|≤n, ηn = ξ1|η|≤n, ξ, η ∈ L2(Ω,FT , P).

Then, we have ξn, ηn ∈ L∞(Ω,FT , P) and ξn → ξ, ηn → η in L2 sense. With the help of
Proposition 1 and the similar argument as in (35)–(38), we deduce that (34) holds. By using
assumption (H3) and Proposition 1, we also obtain that (39) holds. Thus, with the same
method as in the proof of (i)⇒ (iii), we see that g satisfies assumption (H4).

Following the similar argument of conditional convexity of Yt(·) in Proposition 7, we
get the following proposition.

Proposition 8. Assume that g satisfies (H1), (H2), and (H3). Denote by (Yt(X), Zt(X), Kt(X))

the solution of BSDEL (6) corresponding to X ∈ S2
T. Then, the following statements are equivalent:

(i) For any t ∈ [0, T], Yt(·) is subadditive in S2
T , i.e., for each X1, X2 ∈ S2

T ,

Yt

(
X1 + X2

)
≤ Yt(X1) + Yt(X2), a.s.

(ii) For any t ∈ [0, T], Yt(·) is subadditive inR∞, i.e., for each X1, X2 ∈ R∞,

Yt

(
X1 + X2

)
≤ Yt(X1) + Yt(X2), a.s.

(iii) g satisfies (H5), i.e., g is subadditive in (y, z, k).

For monotonicity of Yt(·), we have the following result.

Proposition 9. Assume that g satisfies (H1), (H2), and (H3). Denote by (Yt(X), Zt(X), Kt(X))

the solution of BSDEL (6) corresponding to X ∈ S2
T. Then, the following statements are equivalent:
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(i) For each X1, X2 ∈ S2
T , t ∈ [0, T], Yt(X1) ≤ Yt(X2), if X1 ≥ X2.

(ii) For each X1, X2 ∈ R∞, t ∈ [0, T], Yt(X1) ≤ Yt(X2), if X1 ≥ X2.

(iii) g satisfies (H7), i.e., g is nonincreasing in y.

Proof. First, we prove that (iii)⇒ (i) holds. Let X1, X2 ∈ S2
T , and X1 ≥ X2. Then, we have

−X1(T) ≤ −X2(T) and y + X1 ≥ y + X2, ∀y ∈ R, t ∈ [0, T]. Notice that g is nonincreasing
in y. We have

f X1
(t, y, z, k) := g(t, y + X1(t), z, k) ≤ g(t, y + X2(t), z, k) := f X2

(t, y, z, k),

for all (y, z, k) ∈ R×R× `2. By Proposition 2, we get Yt(X1) ≤ Yt(X2).
Second, we prove that (i)⇒ (iii) holds. Let

X1 = a1[0,T) − ξ1[T,T], X2 = b1[0,T) − ξ1[T,T],

where a, b ∈ R, a ≥ b and ξ ∈ L2(Ω,FT , P). Then, we have X1, X2 ∈ S2
T and X1 ≥ X2.

Suppose that (i) holds, For any ξ ∈ L2(Ω,FT , P), we have

Yt( f X1
, T, ξ) ≤ Yt( f X2

, T, ξ), t ∈ [0, T]. (42)

Similar to obtaining (39), due to the uniqueness of the solution of BSDEL and assumption
(H3), we get

Yt( f Xi
, T, ξ) = Yt( f Xi

, s, ξ), i = 1, 2, (43)

for all ξ ∈ L2(Ω,Fs, P), s ∈ [0, T], t ∈ [0, s]. With the help of Theorem 1 and the similar
argument as in (35)–(38), we have for all (y, z, k) ∈ R×R× `2, t ∈ [0, T],

g(t, y + a, z, k) ≤ g(t, y + b, z, k), a.s.

Notice that the choice of a and b is arbitrary and a ≥ b, we have that g is nonincreasing in y.
Obviously, (iii) ⇒ (i) implies (iii) ⇒ (ii). Finally, we prove that (ii) ⇒ (iii) holds.

Suppose that (ii) holds. Let

X1
n = a1[0,T) − ξn1[T,T], X2

n = b1[0,T) − ξn1[T,T],

where a, b ∈ R, a ≥ b and ξ ∈ L∞(Ω,FT , P). Then we have X1
n, X2

n ∈ R∞ and Yt(X1
n) ≤

Yt(X2
n), t ∈ [0, T]. Using Proposition 1 and the similar argument as in (35)–(38), we have

Yt(X1) ≤ Yt(X2), t ∈ [0, T],

where X1 = a1[0,T) − ξ1[T,T], X2 = b1[0,T) − ξ1[T,T], ξ ∈ L2(Ω,FT , P). Thus, by using
Proposition 1, Theorem 1, and the same method as in the proof of (i)⇒ (iii), we can see
that g satisfies assumption (H7).

For conditional positive homogeneity of Yt(·), we have the following result.

Proposition 10. Assume that g satisfies (H1) and (H2). Denote by (Yt(X), Zt(X), Kt(X)) the
solution of BSDEL (6) corresponding to X ∈ S2

T . Then, the following statements are equivalent:

(i) For any t ∈ [0, T], Yt(·) is positively homogeneous in S2
T , i.e., for each X ∈ S2

T , λ ∈
L∞(Ω,Ft, P), λ ≥ 0,

Yt(λX) = λYt(X), a.s.
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(ii) For any t ∈ [0, T], Yt(·) is positively homogeneous in R∞, i.e., for each X ∈ R∞, λ ∈
L∞(Ω,Ft, P), λ ≥ 0,

Yt(λX) = λYt(X), a.s.

(iii) g satisfies (H6), i.e., g is positively homogeneous in (y, z, k).

Proof. First, we prove that (iii)⇒ (i) holds. Let X1 ∈ S2
T , t ∈ [0, T], λ ∈ L∞(Ω,Ft, P), λ ≥ 0

and X2 = λX1. Then, we have X2 ∈ S2
T . Let us denote by

(
Y1, Z1, K1) and

(
Y2, Z2, K2) the

adapted solution of BSDEL (6) corresponding to X = X1 and X = X2, respectively. Notice
that g satisfies the assumption (H6), that is, g is positively homogeneous in (y, z, k). Then,
we have

λY1
t = −λX1

T +
∫ T

t
g
(

s, λY1
s + λX1

s , λZ1
s , λK1

s

)
ds−

∫ T

t
Z1

s dBs

−
∞

∑
i=1

∫ T

t
K1(i)

s dH(i)
s , t ∈ [0, T],

Y2
t = −λX1

T +
∫ T

t
g
(

s, Y2
s + λX1

s , Z2
s , K2

s

)
ds−

∫ T

t
Z2

s dBs

−
∞

∑
i=1

∫ T

t
K2(i)

s dH(i)
s , t ∈ [0, T].

Due to uniqueness of the solution, we get for any X ∈ S2
T , λ ∈ L∞(Ω,Ft, P), λ ≥ 0, t ∈ [0, T],

Yt(λX) = Y2
t = λY1

t = λYt(X).

Second, we prove that (i)⇒ (iii) holds. Suppose that Yt(·) is positively homogeneous
in S2

T . We obtain Yt(0) = 0 for all t ∈ [0, T]. By proposition 5, we know that g satisfies (H3).
Due to uniqueness of the solution and assumption (H3), we also get

Yt(g, T, ξ) = Yt(g, s, ξ),

for all s ∈ [0, T], t ∈ [0, s], ξ ∈ L2(Ω,Fs, P). Applying the positive homogeneity of Yt(·) in
S2

T , for all ξ ∈ L2(Ω,FT , P), α ≥ 0, we have

Yt(g, T, αξ) = αYt(g, T, ξ).

With the help of Lemma 1 and the similar argument as in (35)–(38), we have for any
(y, z, k) ∈ R2 × `2, α ≥ 0,

g(t, αy, αz, αk) = αg(t, y, z, k), dP× dt− a.s.

That is, g satisfies assumption (H6).
Obviously, (iii) ⇒ (i) implies (iii) ⇒ (ii). Finally, we prove that (ii) ⇒ (iii) holds.

Suppose that (ii) holds. Then, we have

Yt(g, T, αξn) = αYt(g, T, ξn),

for any ξn ∈ L2(Ω,FT , P), t ∈ [0, T], α ≥ 0.
Applying the positive homogeneity of Yt(·) inR∞, we obtain Yt(0) = 0 for all t ∈ [0, T].

Let ξn = ξ1|ξ|≤n, where ξ ∈ L2(Ω,FT , P). Then, we have ξn ∈ L∞(Ω,FT , P) and ξn → ξ in
L2 sense. Using Theorem 1, we get

Yt(g, T, αξ) = αYt(g, T, ξ),
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for any ξ ∈ L2(Ω,FT , P), t ∈ [0, T], α ≥ 0. With the help of the same method as in the proof
of (i)⇒ (iii), we can see that g satisfies assumption (H6).

Proof of Theorem 2. Using Propositions 5, 6(i), 7, and 9, we can directly see that (i) is
right. Furthermore, (ii) is implied by Theorem 2(i) and Proposition 6(ii).

Proof of Theorem 3. Using Propositions 5, 6(i), and 8–10, we can directly see that (i) is
right. Furthermore, (ii) is implied by Theorem 3(i) and Proposition 6(ii).

5. Numerical Illustrations

In this section, we will provide two numerical examples to illustrate the proposed
dynamic risk measures.

Example 1. We suppose that the generator of the BSDEL (6) is independent of (y, k) and is
given by

g(z) =

{
z2, |z| ≤ 1,

2|z| − 1, |z| > 1.

Let Xt = σ2t− σBt, t ∈ [0, T], σ ∈ (0, 1]. For any X ∈ S2
T and σ ∈ (0, 1], we consider the

following equation:

Yt = −XT +
∫ T

t
g(Zs)ds−

∫ T

t
ZsdBs, t ∈ [0, T]. (44)

The solution of (44) is

(Yt, Zt) = (−σ2t + σBt, σ), t ∈ [0, T].

Let
ρt(X) = −σ2t + σBt, ∀t ∈ [0, T], X ∈ R∞.

By Theorem 2, we obtain that ρ is a dynamic convex risk measure.
In the following, we will present some numerical illustrations for this example. Set

T = 5. The curves of ρt(X) as a function of t (for σ = 0.1, 0.25, 0.5, 0.75) and as a function of
σ (for t = 1, 2, 3, 4) are plotted in Figures 1 and 2, respectively. From Figures 1 and 2, it is
interesting to note that the dynamic risk measures ρ tend to decline on the whole, which
is consistent with our intuitive understanding: in securities trading, when the stock price
drops, the loss of investors increases and the corresponding cost risk also increases, as a
result, the absolute value of the dynamic risk measure becomes larger. Furthermore, we
find that the values of the dynamic risk measures ρ appear positive on some time interval,
which can be interpreted by the effect of the large disturbance of Brownian motion at some
point. We mention that the fluctuations of the dynamic risk measures ρ become more
stable in Figure 1 when σ becomes smaller, and the downward trends of the dynamic risk
measures ρ become more obvious in Figure 2 when t becomes bigger. That is because of
choosing to invest in low-risk assets and increasing of investment risk, respectively.

In a financial market, some investors may venture among certain European-type
contingent claims, some bonds, some stocks, and so on. Depending on an investor’s
appetite for risk, he/she may choose a curve in Figure 1 as their investment target, or
choose a reasonable time of trading based on the impact of level of risk appetite in Figure 2.
For example, in order to get more returns, a risk-lover may choose a curve of σ = 0.75 in
Figure 1 as his/her investment target in high-risk assets such as certain European-type
contingent claims and some stocks. On the contrary, a risk-averse investor may choose a
curve of σ = 0.1 in Figure 1 as his/her investment target.
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Figure 1. The trends of ρt(X) as a funtion of t for Example 1 (fixed σ = 0.1, 0.25, 0.5, 0.75).
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Figure 2. The trends of ρt(X) as a funtion of σ for Example 1 (fixed t = 1, 2, 3, 4).

Example 2. We suppose that the generator of the BSDEL (6) is independent of (y, k) and is given
by g(z) = z2. Let Xt = σ2t− σBt, t ∈ [0, T], σ ∈ (0, 1]. For any X ∈ S2

T and σ ∈ (0, 1], we
consider the following equation:

Yt = −
1
2

XT +
∫ T

t
g(Zs)ds−

∫ T

t
ZsdBs, t ∈ [0, T]. (45)

The solution of (45) is

(Yt, Zt) =

(
−σ2

4
(T + t) +

σ

2
Bt,

σ

2

)
, t ∈ [0, T].
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Let

ρt(X) = −σ2

4
(T + t) +

σ

2
Bt, ∀t ∈ [0, T], X ∈ R∞.

From Theorem 2, we obtain that ρ is a dynamic convex risk measure.
In the following, we will also present some numerical illustrations for the example.

Set T = 5. The curves of ρt(X) as a function of t (for σ = 0.1, 0.25, 0.5, 0.75) and as a
function of σ (for t = 1, 2, 3, 4) are plotted in Figures 3 and 4, respectively. It is interesting
to note that, comparing with Figure 3, the downward trends of the dynamic risk measures
ρ are clearly obvious in Figure 4. We mention that the fluctuations of the dynamic risk
measures ρ become more stable in Figure 3 when σ becomes smaller, and there are no
significant differences among the dynamic risk measures ρ in Figure 4 when t changes.
Further, comparing Figures 3 and 4 with Figures 1 and 2, although the changing trends of
the corresponding figures are similar, the fluctuation range of the former is smaller. This is
because the solution of the current example is less affected by the diffusion term, which
leads to a slower evolution speed than that of Example 1.

In a financial market, depending on investors’ appetite for risk, they may choose
different investments in Figure 3. Figure 4 suggests that there may not be much difference
for investors who choose a reasonable time of trading. Thus, the risk lovers, taking more
risks, may choose the time t = 4 of trading to get more returns.

1 2 3 4 5
−4

−3

−2

−1

0

1

2
σ = 0.75

σ = 0.5

σ = 0.25

σ = 0.1

t

ρt(X)

Figure 3. The trends of ρt(X) as a function of t for Example 2 (fixed σ = 0.1, 0.25, 0.5, 0.75).
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Figure 4. The trends of ρt(X) as a function of σ for Example 2(fixed t = 1, 2, 3, 4).

6. Conclusions

In this paper, we study the dynamic risk measures for processes induced by backward
stochastic differential equations driven by Teugel’s martingales associated with Lévy
processes. The representation theorem for generators of BSDELs is provided. Furthermore,
the time-consistency of the coherent and convex dynamic risk measures for processes
is characterized by means of the generators of BSDELs. Moreover, the coherency and
convexity of dynamic risk measures for processes are characterized by the generators of
BSDELs. Finally, we provide two numerical examples to illustrate the proposed dynamic
risk measures.
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