
entropy

Article

Mixed-Stable Models: An Application to High-Frequency
Financial Data

Igoris Belovas 1,* , Leonidas Sakalauskas 2, Vadimas Starikovičius 3 and Edward W. Sun 4
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Abstract: The paper extends the study of applying the mixed-stable models to the analysis of
large sets of high-frequency financial data. The empirical data under review are the German DAX
stock index yearly log-returns series. Mixed-stable models for 29 DAX companies are constructed
employing efficient parallel algorithms for the processing of long-term data series. The adequacy of
the modeling is verified with the empirical characteristic function goodness-of-fit test. We propose
the smart-∆ method for the calculation of the α-stable probability density function. We study the
impact of the accuracy of the computation of the probability density function and the accuracy of
ML-optimization on the results of the modeling and processing time. The obtained mixed-stable
parameter estimates can be used for the construction of the optimal asset portfolio.

Keywords: mixed-stable models; high-frequency data; stock index returns

1. Introduction

The increased availability of high-frequency data has caused a great interest in the
research of this subject. The main applications belong to financial engineering, ranging
from risk management to options hedging, transaction execution, portfolio optimiza-
tion, and forecasting. Thus, Bailey and Steeley [1] compared forecasts of the volatility
of the Australian dollar exchange rate to alternative measures of ex post volatility, using
high-frequency data. Degiannakis and Filis [2] examined the importance of combining
high-frequency financial information, along with the oil market fundamentals, to gain
incremental forecasting accuracy for oil prices, showing that although the oil market fun-
damentals are helpful for long-run forecasting horizons, the combination of the latter with
high-frequency financial data significantly improve oil price forecasts. Zhang and Wang [3]
employed the MIDAS model and the high-frequency data of four stock market indices to
forecast WTI and Brent crude oil prices at a lower frequency. The results indicated that
high-frequency stock market indices have a certain advantage over the lower-frequency
data in forecasting monthly crude oil prices, and the MIDAS model using high-frequency
data proves superior to the ordinary model.

Göncü and Yang compared variance-gamma and normal-inverse Gaussian distribu-
tions with the benchmark of generalized hyperbolic distribution in terms of their fit to the
empirical distribution of Chinese high-frequency stock market index returns, showing that
as the time scale of log-returns decrease, a normal-inverse Gaussian model consistently
outperforms the variance-gamma model [4]. Remarkably, this result for the normal-inverse
Gaussian model is consistent with findings of Belovas from the the same year [5], based on
five Standard & Poor’s stock market indices (covering the period of 10 years, 2006–2016)
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log-returns. Koopman et al. [6] investigated how dependence between high-frequency
price changes of financial stocks (10-second frequency for 10 US financial stocks for January
2012 to Decemeber 2012) varies within the day. Schabek et al. [7] examined high-frequency
log-returns of the Zagreb Stock Exchange CROBEX Index (from September 2017 to March
2018) to assess the reactions of the index to macroeconomic announcements regarding
the Croatian economy within an ultrashort time periods. Tony Cai et al. [8] examined the
estimation of a high-dimensional minimum-variance portfolio based on the high-frequency
returns from S&P 100 Index constituents during the years 2003–2013. Huang and Gao [9]
used high-frequency Bitcoin trading data (from 1 January 2012 to 12 August 2019) to
explore the Bitcoin return predictability.

Ongoing COVID-19 turmoil has set a new trend in high-frequency studies. Thus,
Ambros et al. [10], using 30 min tick returns, studied the impact of changes in the number
of COVID-19 news on eight different stock markets during the initial two months of the
coronavirus crisis, showing that COVID-19-related news impact stock market volatility
positively in Europe, but less so in other markets. Yousaf and Ali [11] analyzed return and
volatility transmission between major cryptocurrencies (Bitcoin, Ethereum and Litecoin)
during the pre-COVID-19 and COVID-19 periods (it is noteworthy that the authors advised
the investors to decrease their investments in Bitcoin).

Methodologies based on high-frequency data analysis also can be found in neural
science and real-time network traffic management (cf. Kaklauskas [12]). A summary of the
literature covering high-frequency and intra-daily data research is presented in [13] and
the references therein.

The paper extends the study of applying the mixed-stable models to the analysis of
large sets of high-frequency financial data; see [4,14,15]. In this research, we apply the
parallel computing approach (cf. [16]) to the mixed-stable modeling of high-frequency data.
We often observe many zero returns in the high-frequency return data in practice because
the underlying asset price does not change at given short-time intervals. The mixed-stable
model is well suited to cope with this specific feature.

We introduce the smart-∆ approach to the calculation of the α-stable probability den-
sity function and consider the impact of the accuracy of the computation of the probability
density function and the accuracy of the maximum-likelihood optimization on the results
of the modeling and processing time.

The mixed-stable model for financial data was first applied in [17]. The preliminary
research [18] was dedicated to the analysis of empirical data covering one specific day. In
the present study, we analyze high-frequency data for the whole year. This will drastically
increase the size of data sets and computing time. We address this issue using more efficient
numerical methods and parallel algorithms.

The paper is organized as follows. The first part is the introduction. Section 2 describes
the real data used in our research, their aggregation and their transforms. Section 3
introduces our modeling methodology and smart-∆ method for calculating the α-stable
probability distribution function. In Section 4, we discuss the impact of computations’ and
optimization’ accuracy on the modeling and processing time and present the modeling
results. The last section is devoted to the concluding remarks.

2. Data

In the previous research of intra-daily data from German DAX component stock
returns ([18]), we analyzed high-frequency data series of 29 stocks from DAX that represent
just one business-active day of the year (17 August 2007). The present paper extends
the research and deals with the whole year’s intra-daily data (from 1 January 2007 to 27
December 2007; 251 days in total). The year 2007 is of particular interest to economists
and financial analysts. Moreover, empirical data of this year comprise a valuable test
case in creating and testing special models, because 2007 is the first year of the Global
Financial Crisis of 2007–2008. Before the current COVID-19 turmoil, it was considered
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by many experts to have been the most severe financial crisis since the Great Depression,
contributing significantly to the Eurozone crisis.

We aggregate raw inhomogeneous intra-daily data into equally-spaced homogeneous
intra-daily time series. The aggregation is done with the previous-tick interpolation. A
linear interpolation relies on future information, whereas the previous-tick interpolation is
based on the information already known (cf. [19]).

2.1. Previous-Tick Interpolation

We denote times of raw inhomogeneous intra-daily series as {ti} and the correspond-
ing prices as {Pi}, where Pi = P(ti). The aggregated homogeneous high-frequency series
{P̃j} is obtained at times t̃j = t0 + j∆t with the step ∆t, where the index j identifies the
regularly spaced sequence. By means of the previous-tick interpolation, we obtain that

P̃j = P(max{ti : ti ≤ t̃j}). (1)

Having obtained equally-spaced price series, we can calculate the corresponding logarith-
mic returns series {Xj}:

Xj = log
P̃j

P̃j−1
.

2.2. Models for Financial Data

Classical techniques in financial engineering heavily relied on the assumption that
the random variables under investigation follow a normal distribution. However, time
series observed in finance often deviate from the Gaussian model, exhibiting fat tails and
asymmetry (cf. [18,19]). In such a situation, the classical approach’s appropriateness for the
modeling of returns is highly questionable. On the other hand, financial asset returns are
the cumulative outcome of a vast number of pieces of information and individual decisions
arriving almost continuously. Hence, in the presence of heavy tails, it is natural to assume
that they are approximately governed by a non-Gaussian distribution (cf. [20]).

We can distinguish several fundamental reasons why models with the α-stable pa-
radigm are used in financial engineering. The first is that stable random variables justify
the generalized central limit theorem, which states that stable distributions are the only
asymptotic distributions for adequately scaled and centered sums of independent identi-
cally distributed random variables (see [20]). The second one is that stable distributions
are heavy-tailed (cf. [18,19]). All but one of the stable distributions have infinite variance,
which implies that observations of a large magnitude can be expected and may dominate
the sums of these random variables. It is not correct to treat these observations as outliers,
since their exclusion takes away much of the significance of the original data; indeed, it is
specifically these observations that may be of the most significant interest. The third reason
is that stable distributions are asymmetric and leptokurtic [21]. Since stable distributions
can accommodate the heavy tails and asymmetry, they ensure a perfect fit for empirical
data. They are particularly valuable models for data sets covering extreme events such
as market crashes or natural catastrophes. The fourth reason is that stable distributions
are a more flexible tool compared to the normal distribution. As was pointed out by Cont,
a parametric model to successfully reproduce specific empirical features of asset returns
must have at least four parameters: a parameter describing the decay of the tails (stability
index), an asymmetry parameter allowing the left and right tails to behave differently, a
scale (volatility) parameter and ultimately a location parameter [22]. Our recent research
on the comparison of models corroborates this opinion [15].

2.3. Empirical Moments

Having processed yearly high-frequency returns data for 29 stocks at different time
steps, we found that almost all data series are asymmetric (some typical examples may be
found in Table 1), and the empirical kurtosis shows that density functions of the series are
more peaked than Gaussian density functions.
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Table 1. Empirical moments for six DAX returns series with different time step ∆t.

Company ∆t, Sec. Mean St. Dev. Skewness Kurtosis Zeros, %

Adidas AG
10 3.5949× 10−7 0.0004 2.1461 704.98 75.32
100 3.6122× 10−6 0.0011 2.3129 142.39 22.96
1000 3.6727× 10−5 0.0029 0.5036 20.285 6.00

Deutsche Bank
10 −1.7318× 10−7 0.0004 −2.1778 1246.5 47.07
100 −1.7408× 10−6 0.0010 −1.1853 253.86 9.15
1000 −1.8183× 10−5 0.0031 −0.0737 31.182 2.59

BASF SE
10 4.0699× 10−7 0.0003 −2.3481 590.28 57.90
100 4.0647× 10−6 0.0009 −0.6817 96.550 10.90
1000 4.1485× 10−5 0.0027 0.4249 29.408 2.80

BMW AG St
10 −4.5688× 10−8 0.0004 −1.1297 870.09 67.96
100 −3.8533× 10−7 0.0010 −0.9190 147.39 18.38
1000 −4.1137× 10−6 0.0029 −0.2380 21.901 5.02

Deutsche Börse
10 −6.0764× 10−8 0.0009 −560.34 422,496 68.42
100 −6.2438× 10−7 0.0028 −196.46 48,486.4 14.64
1000 −8.0474× 10−6 0.0086 −64.547 5074.6 2.47

SAP AG
10 −1.7207× 10−7 0.0004 −13.423 2818.2 57.62
100 −1.7304× 10−6 0.0011 −6.5862 566.56 17.93
1000 −1.7301× 10−5 0.0031 −4.9374 170.55 6.14

However, it should be pointed out that rather often, empirical data exhibit the stag-
nation effect; i.e., series contain numerous zero returns. This phenomenon is especially
characteristic of young emerging markets with low-liquidity financial instruments [17] and
high-frequency financial data [18]. We have examined the obtained returns series for the
stagnation effect. In Table 2, we show max and min lengths of returns series with zeros
removed as well as max and min percent of zeros depending on the level of aggregation.

Table 2. Lengths and stagnation (percent of zero returns) in yearly (1 January–27 December 2007)
stock returns series with different time step ∆t.

∆t, Sec. Min Length Max Length Min Zero % Max Zero %

10 135,001 436,143 43 82

100 3612 71,388 7 43

1000 6051 7385 2 20

As we can see in Table 2, a strong stagnation effect (43 to 82 percent zeros at 10 s time
step) manifests itself in most high-frequency series. To take the zero effect into account, we
apply a generalized mixed-stable model.

3. Stable and Mixed-Stable Models
3.1. α-Stable Distribution

The α-stable distribution is usually described by its characteristic function ϕ(t):

log ϕ(t) =

{
−σα|t|α{1− iβsign(t) tan πα

2 }+ iµt, α 6= 1,

−σ|t|{1 + iβsign(t) 2
π log |t|}+ iµt, α = 1,

(2)

where α ∈ (0, 2], β ∈ [−1, 1], σ > 0, µ ∈ R. Here, α is the stability index (in financial
modeling, it is generally assumed that 1 < α ≤ 2), β is the skewness, µ is the location
parameter and σ is the scale parameter. If σ = 1 and µ = 0, then the distribution is called
standard stable. An overview of stable distributions properties can be found in [20]. The
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probability density function of stable laws cannot be expressed in elementary functions,
except for a few cases: Levy, Cauchy and Gaussian distributions.

The canonical representation (2) has one serious disadvantage. Characteristic functions
have discontinuities at all points with α = 1, β 6= 0. Therefore, for numerical purposes, it is
advisable to use Nolan’s parametrization:

log ϕ0(t)=

{
−σα|t|α(1+iβsign(t) tan πα

2 ((σ|t|)1−α − 1))+iµ0t, α 6= 1,

σ|t|(1 + iβsign(t) 2
π log(σ|t|)) + iµ0t, α = 1.

(3)

This parametrization is a variant of Zolotarev’s (M) parametrization, with the density and
the distribution function jointly continuous in all the four parameters ([20]). The location
parameters of these two representations are related by

µ0 =

{
µ + βσ tan πα

2 , α 6= 1,
µ + βσ 2

π ln σ, α = 1.

The probability distribution function of representations (2) and (3) are related by

p(x, Θ) =
1
σ

p0

(
x− µ0

σ
, α, β

)
. (4)

Here, Θ = (α, β, µ, σ), and p0(x, α, β) is Nolan’s standard stable probability distribution
function with the integral representation

p0(x, α, β) =
1
π

∫ ∞

0
exp(−tα) cos(h(x, t; α, β))dt, (5)

where

h(x, t; α, β) =

{
xt + β tan πα

2 (t− tα), α 6= 1,

xt− βt 2
π ln t, α = 1.

A precise and fast calculation of stable densities is a nontrivial task (cf. [16,20]). To deal
with the integral representation of the probability density function of α-stable distribution
(5), we introduce the smart-∆ approach, replacing the improper integral in (5) by a definite
integral with the upper integration bound ∆ = ∆(α, ε). Here, α is the stability index, and
by ε we denote the error of the approximation. Details of the technique are explained in
Section 3.2.

The problem of parameter estimation in stable modeling is hampered by the lack
of closed form for stable density functions. Hence, many statistical methods depend-
ing on the probability density function’s explicit form cannot be applied. Comparative
studies (see [23]) corroborate that the most accurate method of estimation is the maxi-
mum likelihood method. However, it is the most time-consuming. The vector of stable
parameters Θ = (α, β, µ, σ) can be estimated from the returns {Xj} by maximizing the
log-likelihood function

L(Θ) =
n

∑
k=1

ln p(Xk, Θ). (6)

In [16], we have studied the log-likelihood target function profiles for artificially
generated stable distributed data. We have obtained that the log-likelihood target function
is of an uniextremal nature, often with a very flat surface in the extremum’s neighborhood.
In the present research, we have examined the log-likelihood target function for real
financial data. Target function (6) was calculated for returns series Allianz SE of size 7385,
which was obtained using the previous-tick interpolation (1) with the time step ∆t = 1000.
The ML solution vector for this data set is

α = 1.541470, β = 0.004055, µ = 0.000005, σ = 0.001241.



Entropy 2021, 23, 739 6 of 12

Figure 1 shows 3D cuts of the target function, obtained by fixing pairs of parameters.
As one can see, the target function with real data exhibits qualitatively the same behavior
as with the artificially generated data (cf. [16]).
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Figure 1. 3D cuts of the log-likelihood target function (6), obtained by fixing pairs of parameters.

To optimize the log-likelihood function, we use the Nelder-Mead method. Although
this method is not the fastest one, it is robust and does not require the calculation of
derivatives (gradient or Hessian).

3.2. Stable Probability Density Function Calculation: The Smart-∆ Approach

The lack of analytical representation of the probability distribution function (with
a few exceptions: Gaussian, Cauchy and Levy distributions) hampers the practical im-
plementation of stable models. We can evaluate the stable probability density function
replacing the improper integral (5)

p0(x, α, β) =
1
π

∫ ∞

0
exp(−tα) cos(h(x, t; α, β))dt

with an approximation I0,

I0 =
1
π

∫ ∆

0
exp(−tα) cos(h(x, t; α, β))dt, (7)

with a tail error
I∆ =

1
π

∫ ∞

∆
exp(−tα) cos(h(x, t; α, β))dt. (8)

Calculating I0 with ε
2 precision and dropping I∆ evaluated with the same accuracy yields

ε joint accuracy for the probability density function. For α > 1, as is usually assumed in
financial engineering, we have

|I∆| 6
1
π

∫ ∞

∆
exp(−tα)dt 6

1
π

∫ ∞

∆
exp(−t)dt =

1
π

exp(−∆).
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Hence, the roughest way of evaluating ∆ (see [16]) is

∆ ≈ − ln
πε

2
.

The error of the approximation does not exceed ε/2. Noticing a relation of the bound of I∆
to an upper incomplete gamma function Γ(s, x),

|I∆| 6
1
π

∫ ∞

∆
exp(−tα)dt =

1
πα

∫ ∞

∆α
u

1
α−1e−udu,

we can evaluate ∆ = ∆(α, ε) in a more subtle way, as a root of a nonlinear equation

Γ
(

1
α

, ∆α

)
=

απε

2
.

We can calculate ∆ as follows. For x → ∞, we have Γ(a, x) ∼ xa−1e−x, yielding an
approximate equation

∆α( 1
α−1)e−∆α

=
απε

2
,

or, unlessα = 1,
α

α− 1
∆αe

α
α−1 ∆α

=
α

α− 1

(απε

2

) α
1−α .

Next, ∆ can be expressed in terms of the Lambert W function, i.e.,

∆ = ∆(α, ε) =

− ln πε
2 , α = 1,(

α−1
α W

(
α

α−1
(

απε
2
) α

1−α

)) 1
α , α 6= 1.

(9)

Here, W(x) stands for the Lambert W function (y = W(x) ⇔ x = yey). For x ≥ 0, we
can calculate the principal branch of the Lambert W function using Halley’s method (cf.
Corless et al. [24]). If x < 0 (i.e., α < 1), then we apply an algorithm, proposed by [25], to
calculate the branch W−1. Note that in order to proceed from a standard stable density to a
stable density, we interchange in expression (9) π coefficients with πσ.

3.3. Mixed-Stable Distribution

The mixed-stable model was introduced to deal with the problem of daily zero returns
([17]). The probability density function of a mixed-stable random variable is

f (x, Θ) = (1− r)p(x, Θ) + rδ(x), (10)

where p(x, Θ) is the probability density function (4) of a stable distribution (2) and δ(x) is
the Dirac delta function. The coefficient r ∈ (0, 1) is the index of stagnation.

The empirical cumulative distribution functions of data series with the stagnation
effect exhibit jumps at x = 0. Model (10) enables us to accommodate these jumps. The
likelihood function of the mixed-stable model (10) is given by

l(r, Θ) = Ck
n(1− r)n−krk

n−k

∏
j=1

p(xj, Θ),

where {x1, x2, . . . , xn−k} is a non-zero returns set, obtained by excluding k zero returns
from the initial returns set {X1, X2, . . . , Xn}. By optimizing the first factor (1− r)n−krk, we
obtain rmax = k/n. The optimization of the product is equivalent to the optimization of the
likelihood function of the stable distribution of the non-zero returns set {x1, x2, . . . , xn−k}.
Hence the optimal vector Θmax is estimated with non-zero returns via stable log-likelihood
function (6).
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Having parameters of the mixed-stable law estimated, we proceed with modeling
adequacy testing. Since we have a discontinuous distribution function, classic methods
for continuous distributions (e.g., Kolmogorov–Smirnov or Anderson–Darling tests) are
unsuitable. Therefore, we apply a special goodness-of-fit test based on characteristic
functions (note that characteristic functions are uniformly continuous on the entire space)
proposed in [26].

4. Results and Discussion

Using the maximum-likelihood method (see Section 3), we have estimated parameters
of mixed-stable models (10) for DAX financial data. Next, we studied the impact of
the accuracy of the probability density function (4) calculation (εpd f ) and the maximum-
likelihood optimization (εML) on the results of the modeling and processing time. We
found that insufficient accuracy results in faulty outcomes. We illustrate the facts in Table 3,
which contains Θ = (α, β, µ, σ) estimates for the Deutsche Post AG data series, taken with
time step ∆t = 10 s. For every set of estimates, the corresponding processing time (PT)
and the outcome of the Koutrouvelis goodness-of-fit test ([26]) for the adequacy of the
modeling (KT) are indicated (the significance level of the test is 5%). As we see, we need at
most εpd f = 10−9 and εML = 10−6 to achieve plausible results. Further increase in accuracy
levels shows the convergence of obtained estimates. For higher accuracies, at least seven
significant digits are not changing.

Table 3. Dependence of mixed-stable estimates on the accuracy of the probability density function (4)
calculation (εpd f ) and the accuracy the maximum likelihood optimization (εML); Deutsche Post AG
returns data series with time step ∆t = 10 sec. Processing time (PT) (sec) and Koutrovelis test
outcome (KT, 5% significance level).

εpd f

εML 10−8 10−9 10−10 10−11 10−12

10−5

α 1.965528 1.965528 1.965528 1.965528 1.965528
β 0.984687 0.984687 0.984687 0.984687 0.984687
µ 0.000008 0.000008 0.000008 0.000008 0.000008
σ 0.000531 0.000531 0.000531 0.000531 0.000531

PT 310.16 349.92 375.17 401.31 439.55
KT Rejected Rejected Rejected Rejected Rejected

10−6

α 1.963816 1.933809 1.933809 1.933809 1.933809
β 0.984264 0.030693 0.030699 0.030694 0.030695
µ 0.000005 0.000001 0.000001 0.000001 0.000001
σ 0.000531 0.000518 0.000518 0.000518 0.000518

PT 326.91 394.04 429.73 457.26 504.21
KT Rejected Accepted Accepted Accepted Accepted

10−7

α 1.969975 1.933809 1.933809 1.933809 1.933809
β 0.981810 0.030695 0.030696 0.030695 0.030695
µ −0.000000 0.000001 0.000001 0.000001 0.000001
σ 0.000528 0.000518 0.000518 0.000518 0.000518

PT 359.80 398.40 432.18 469.62 511.38
KT Rejected Accepted Accepted Accepted Accepted

10−8

α 1.969975 1.933809 1.933809 1.933809 1.933809
β 0.981810 0.030695 0.030696 0.030695 0.030695
µ −0.000000 0.000001 0.000001 0.000001 0.000001
σ 0.000528 0.000518 0.000518 0.000518 0.000518

PT 362.98 401.10 436.79 466.31 515.46
KT Rejected Accepted Accepted Accepted Accepted
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Note that because of the flat surface of the ML-target function (see Figure 1), the initial
guess selection is essential for fast and correct optimization. Thus, the global optimization
(either deterministic or stochastic) is the natural way of solving this problem. However, it
requires further in-depth investigation.

An increase in accuracies εpd f and εML causes a surge in processing time (see Table 3).
In Table 4, we show the optimization time for 29 DAX high-frequency returns series taken
with the time step ∆t = 10 s. These results were obtained using parallel algorithms
introduced with early-stage research ([14]) with 64 processes. Note that when εpd f ∼ εML,
convergence is naturally very bad. Next, εpd f and εML cannot be chosen independently, We
must select εpd f in relation to εML (e.g., εpd f = 10−12 is sufficient for εML = 10−7; however,
the convergence stagnates if we choose εpd f = 10−12 for εML = 10−8). The number of
stagnated series for every accuracy pair (εpd f and εML) is given in parentheses next to the
corresponding overall processing time (see Table 4).

Table 4. Dependence of 29 DAX returns series processing time (sec) with 64 processes (for time step
∆t = 10) on the accuracy of the probability density function (4) calculation (εpd f ) and the accuracy of
the maximum likelihood optimization (εML). The number of stagnated series for every accuracy pair
(εpd f and εML) is given in parentheses.

εpd f

εML 10−8 10−9 10−10 10−11 10−12

10−5 3400.24 (-) 3934.80 (-) 4358.86 (-) 4898.37 (-) 5604.82 (-)
10−6 3763.15 (-) 4269.03 (-) 4727.41 (-) 5242.13 (-) 6062.17 (-)
10−7 8671.90 (3) 5762.27 (1) 6224.88 (1) 6088.49 (2) 6403.56 (-)
10−8 8810.85 (3) 9238.92 (3) 8484.65 (3) 6268.37 (3) 12,094.20 (3)

Finally, we present the mixed-stable modeling results for 29 DAX companies. These re-
sults were obtained with εML = 10−7 accuracy of the optimization method and εpd f = 10−12

accuracy of mixed-stable density function calculation. We must stress that we could obtain
these results in a reasonable time using only parallel computations. Table 5 contains esti-
mates of a stagnation parameter r, stable parameters Θ = (α, β, µ, σ) and the outcome of
the Koutrouvelis test (zero stands for “rejected”, unity stands for “not rejected”).

The mixed-stable model, with a corresponding set of estimated parameters, was
accepted for almost all DAX companies, justifying the application of mixed-stable models
in high-frequency finance analysis (see Table 5). Note that considerable differences in
corresponding parameter sets are obtained from yearly (cf. Table 5) and daily (cf. [18])
empirical data. This indicates the necessity of large data sets processing in forecasting and
portfolio construction.

Examples of the use of the estimated mixed-stable parameters for the selection of the
optimal asset portfolio have been provided in our preliminary comparative research [15].
This study compared stable and mixed-stable models with mixed diffusion-jump, the
mixture of normals, scaled-t, logistic and normal-inverse Gaussian models and identified
the mixed-stable one as the most adequate model for the data under analysis. The modeling
results can be applied for the optimal portfolio selection employing two different strategies
(considered in the research) with and without the relation coefficients matrices.
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Table 5. Maximum-likelihood estimates of mixed-stable parameters for 29 DAX returns series with
time step ∆t = 10. The accuracy of the calculation of the probability density function εpd f = 10−12

and the accuracy of the maximum likelihood optimization εML = 10−7. KT stands for the outcome
of the Koutrouvelis test (0, “rejected”; 1, “not rejected”).

Company r α β µ σ KT

Adidas AG 0.75 1.813224 0.004395 0.000002 0.000456 1
Deutsche Bank 0.47 1.822488 −0.013724 −0.000001 0.000272 1
BASF SE 0.58 1.798121 0.009887 0.000001 0.000292 1
BMW AG St 0.68 1.872899 −0.024771 0.000000 0.000405 1
Continental AG 0.66 1.704703 −0.007413 0.000000 0.000363 1
Deutsche Post 0.75 1.933809 0.030695 0.000001 0.000518 1
Deutsche Telekom 0.73 1.995341 −0.064854 0.000001 0.000572 0
Bayer AG O.N. 0.60 1.875897 0.023037 0.000001 0.000364 1
FMC AG 0.77 1.759640 −0.014327 0.000000 0.000484 0
Deutsche Börse 0.68 1.664209 0.015807 0.000003 0.000413 1
MAN SE St 0.68 1.669219 0.001631 0.000002 0.000443 1
Henkel AG 0.77 1.769518 −0.031952 0.000000 0.000511 0
Infineon Techn. 0.82 1.979982 −0.045985 −0.000004 0.000803 0
Linde AG 0.74 1.714015 −0.007574 0.000002 0.000367 1
Merck KGaA 0.77 1.612534 0.003719 0.000000 0.000442 1
RWE AG St 0.58 1.852625 0.025781 0.000001 0.000330 1
Daimler AG 0.49 1.853430 0.039817 0.000001 0.000322 1
SAP AG 0.58 1.919404 0.012302 0.000000 0.000384 1
Siemens AG 0.46 1.815861 −0.002928 0.000001 0.000276 1
METRO AG St 0.75 1.767016 0.044610 0.000004 0.000393 1
ThyssenKrupp 0.68 1.855014 −0.000734 0.000001 0.000461 1
Volkswagen AG St 0.59 1.744243 −0.004622 0.000002 0.000302 1
Deutsche Postbank 0.79 1.678412 −0.005400 0.000000 0.000519 1
HYPO RE 0.75 1.814879 0.027742 0.000000 0.000576 1
Commerzbank AG 0.66 1.901063 −0.007980 0.000000 0.000477 1
Deutsche Lufthansa 0.78 1.932395 −0.016547 0.000000 0.000587 1
Allianz SE 0.43 1.787790 −0.016081 0.000000 0.000255 1
Münchener Rück 0.59 1.779122 0.006533 0.000000 0.000271 1
TUI AG 0.80 1.903315 0.012532 0.000003 0.000699 1

5. Conclusions

Having processed yearly high-frequency returns data for 29 German DAX companies
with different time steps, we found that almost all data series are asymmetric. Moreover,
the empirical kurtosis shows that density functions of the series are more peaked than
Gaussian. We have noticed a stagnation effect in obtained high-frequency returns series.
These factors lead us to the application of mixed-stable models. We introduced the smart-∆
upper integration bound to deal with the computationally demanding α-stable probability
density function in ML-optimization. Parallel algorithms were employed to deal with
sizeable yearly data sets.

We have studied the impact of pdf-computation accuracy and the accuracy of ML-
optimization on the results of the modeling and processing time. We constructed mixed-
stable models for all 29 DAX companies. The adequacy of models was tested with Koutrou-
velis goodness-of-fit test based on the empirical characteristic functions. Almost all models
were accepted with corresponding sets of estimated parameters, justifying the mixed-stable
modeling in high-frequency data analysis. Obtained parameter estimates can be used in
the construction of the optimal asset portfolio.

The next research objective is to compare the presented results (concerning the first
year of the Global Financial Crisis of 2007–2008) with the planned analysis of ongoing
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COVID-19 crisis data. Two more points to be brought to the attention are the robustness of
empirical results for different periods and comparative studies with other markets.
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