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Abstract: Random walks with invariant loop probabilities comprise a wide family of Markov pro-
cesses with site-dependent, one-step transition probabilities. The whole family, which includes the
simple random walk, emerges from geometric considerations related to the stereographic projection
of an underlying geometry into a line. After a general introduction, we focus our attention on the
elliptic case: random walks on a circle with built-in reflexing boundaries.
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1. Introduction

The random walk (RW) is one of the most widely used mathematical models to express
the irregular evolution of certain physical systems [1–3]. In its simplest form, a RW can
be viewed as a succession of either left-ward or right-ward jumps in the position of a
particle according to certain probabilities. These one-step transition probabilities need not
be constant to grant that the stochastic process thus defined belongs to the class of Markov
chains [4]: the probability should depend only on properties linked to the current status of
the walker, as the calendar time if they suffer from aging [5], or the geographic location
when particles propagate through an inhomogeneous medium [6,7].

A recurrent consequence of time- and site-dependent transition probabilities is the
appearance of some directionality in the evolution of the system: sometimes in the form
of an exogenous bias, sometimes in the form of a restoring force. The inhomogeneous
transition probabilities that we are going to consider here are affected by this peculiarity
but not in a purely local way: we demand that the probability of performing a closed
loop be a function of the number of steps taken exclusively. This means that a fluctuation
that reverts the particle to the stating point is equally as likely as the mirror-reversed one,
irrespective of the initial location chosen.

Despite this, except in the case of the simple RW, the closest-neighbor transition
probabilities depend on the explicit locations of both (starting and ending) sites, indicating
the presence of some geometry beyond the topological structure of the state space of the
system. In a previous work [8], we considered, in detail, the case in which the underlying
metric space was hyperbolic: on the one side, there was evidence pointing to the presence
of hyperbolic geometries in technological, biological, or social complex networks [9–15]
and, on the other side, there was some existing mathematical literature on related processes,
such as the Brownian motion on a hyperbolic plane [16–18].

We must point out, however, that we are neither replacing the topological space nor
assuming that the metric space is determined by the real-world distances between the sites.
Consider, for instance, the case of anomalous diffusion [19] in disordered media [20,21].
Quenched disorder may be the result of the interaction of an initially homogeneous medium
with an external (random) potential, which produces uneven transition rates between the

Entropy 2021, 23, 729. https://doi.org/10.3390/e23060729 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-3221-1211
https://doi.org/10.3390/e23060729
https://doi.org/10.3390/e23060729
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23060729
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23060729?type=check_update&version=1


Entropy 2021, 23, 729 2 of 19

sites [22–26]. Therefore, the metric space that induces inhomogeneities in the involved
probabilities can be the mathematical expression of an energetic landscape.

In this paper, we will extend the analysis done in [8] by considering the case of
elliptic geometry, an underlying geometry that forces the topological space to be finite and,
thus, equivalent to a ring with two reflecting sites and a forbidden node. This circular
arrangement of the nodes should not distract us from the fact that the process describes
the evolution of a particle in a linear but finite medium with arbitrary disposition. Indeed,
when the number of sites is large, the particle behaves as a homogeneous RW in almost
all the domains and experiences the repulsion of the ending points only in their closest
vicinity. Therefore, the process can be useful in modeling homogeneous finite and discrete
systems surrounded by repulsive fields with limited penetrating power.

The manuscript is structured as follows: In Section 2, we introduce the process and
deduce the most general form of the one-step transition probabilities, compatible with
the desired loop invariance. We explore the geometric origin of our inhomogeneous
probabilities in Section 3, based on stereographic projections of hyperbolic and elliptic
metric spaces. We restrict the analysis to the elliptic case from Section 4 on, where we
obtain exact and approximate formulas for the probability function of the process and
its expected values: the mean and the variance of the position of the walker on the ring.
Section 5 is devoted to our analysis of the statistics of extreme events, as first- and last-visit
probabilities. Our conclusions are drawn in Section 6, while we leave to the appendix some
lengthy mathematical expressions.

2. Heterogeneous Processes with Invariant Loop Probabilities

Let us consider the one-dimensional random walk Xt in all its generality, a (possibly
infinite) Markov chain defined on the integers, i.e., Xt ∈ Z for t ∈ N0, with X0 ≡ Xt=0
known. The one-step evolution of the process is tied to a set of site-dependent transition
probabilities: if, at time t, the walker is at a given location, Xt = n, then at time t + 1,
one has

Xt+1 =

{
n + 1, with probability pn→n+1,
n− 1, with probability pn→n−1,

(1)

with pn→n+1 + pn→n−1 = 1. We are interested in finding the conditions that yield
translationally-invariant loop probabilities, that is, those cases for which

pn→n±1 · pn±1→n = p2, (2)

with p as a constant parameter, 0 < p < 1, even when pn→n±1 depends on n. Note how
condition (2) is satisfied in the case of a homogeneous random walk for which p = 1/2.
Indeed, this value represents a threshold that divides the problem into two well-different
domains since one may express p as

p =


1

2 cosh(ξ)
, 0 < p < 1

2 ,

1
2 cos(θ)

, 1
2 < p < 1.

(3)

Note that, while 0 < ξ < ∞, one must demand that 0 < θ < π/3 (These definitions of
ξ and θ may seem arbitrary at this point. Beyond being mathematically correct, there is
no reason to prioritize them over other proposals. As we will see below, these definitions
ease the algebraic treatment and are well adapted to the geometrical interpretation of the
problem. Despite this, alternative parameterizations of p can still be considered).

The first possibility, that is, the case for which

p =
1

2 cosh(ξ)
, (4)

has been analyzed in depth in [8]. Observe how Equation (2) leads to
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pn→n±1 =
1
2

cosh((n± 1)ξ)
cosh(ξ) cosh(nξ)

=
1
2
[1± tanh(ξ) tanh(nξ)], (5)

once symmetry with respect to the origin is demanded: if

pn→n±1 = p−n→−n∓1, (6)

then p0→±1 = 1/2 necessarily, and the general expression follows. One can easily check
that the one-step transition probabilities in (5) generate a process that behaves as a simple
symmetric random walk in the vicinity of n = 0, and as a non-reverting, biased random
walk in outer regions of the line. We refer the reader to [8] for further information about
the statistical properties of a particle moving according with this infinite Markov chain.

The second scenario, when

p =
1

2 cos(θ)
, (7)

is instead more delicate. The one-step probabilities that are derived from Equation (7) with
the constraint in (6) read

pn→n±1 =
1
2

cos((n± 1)θ)
cos(θ) cos(nθ)

=
1
2
[1∓ tan(θ) tan(nθ)], (8)

an expression that differs from (5) in a very fundamental aspect: while this formula ensures
that 0 < pn→n±1 < 1 for any choice of ξ, Equation (8) will finally produce bigger-than-one
transition probabilities for a general value of θ, even if 0 < θ < π/3. A natural way of
avoiding this eventuality is to require that θ be such that cos((n + 1)θ) = 0 for some value
of n, i.e., if one has

θ =
π

2(N + 1)
, (9)

with N ∈ N1 (We discard the case N = 0, because then no loop can be defined. Even
so, some of the expressions below are still valid for this case), then pN→N+1 = 0 and
pN→N−1 = 1, as well as p−N→−N−1 = 0 and p−N→−N+1 = 1. Note that now the possible
values of θ are restricted to belong to the range 0 < θ < π/4, and n ∈ {−N,−N +
1, . . . , N − 1, N}. Therefore, the process evolves again as an ordinary random walk in the
neighborhood of the starting point, and like a reverting random walk as the process leaves
this region. The strength of the reverting bias increases until it becomes that of a hard wall
at positions n = ±N.

For clarity reasons, the values of N that we are going to use in the illustrative ex-
amples to be introduced along the text are relatively small—about ten; this enhances the
peculiarities of the process in front of a homogeneous random walk with hard ending
points. However, as N increases, the fraction of sites whose transition probabilities differ
significantly from 1/2 decreases as 1/N. This implies, in practice, that our process can be
useful in the analysis of homogeneous finite systems bounded by soft walls.

3. A Geometric View of the Problem

Before analyzing the properties of this inhomogeneous random walk equipped with
reflexing barriers, let us discuss how one can recover the one-step probabilities that drive
the dynamics of Xt from geometric arguments. Once again, we resort to the idea that,
coexisting with the topological structure of the state space of the process, there is an
auxiliary metric space that assigns distances to the different locations of the chain and the
ratio of the transition probabilities depends inversely on the relative distance between the
origin and destination points.

In particular, in [8] we show how one can recover (5) from the distances defined in
the absolute of a one-dimensional hyperbolic geometry. Here, we derive anew this result
by introducing a minor modification: This time, we analyze the stereographic projection
of the hyperbola in which the points in the segment are determined from the intersection
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between the line that connects the hyperbola centered at the origin with the distal point of
a tangential circumference also centered at the origin, see Figure 1.

In [8], the intersecting line did not end at the south pole of the circumference but
at the origin itself, what defines a gnomonic instead of a stereographic projection. In a
one-dimensional problem like ours, the difference reduces to some rescaling of the factors
involved that does not affect the essence of discussion, and, in our opinion, stereographic
projections provide a smoother transition between both scenarios: the present hyperbolic
case and the elliptic one.

d1
r cosh(2ξ)

r sinh(2ξ)

O

Figure 1. Projection of a hyperbolic geometry. The points at the hyperbola are placed at the positions
xn = r sinh(2nξ), yn = r cosh(2nξ), n ∈ Z. The segment in red corresponds to the stereographic
projection of the hyperbola, with the points located at the horizontal positions dn = 2r tanh(nξ).

If the points at the hyperbola are placed at regular positions xn = r sinh(2nξ),
yn = r cosh(2nξ), the corresponding points on the segment are sited at horizontal lo-
cations

dn ≡ 2r
sinh(2nξ)

1 + cosh(2nξ)
= 2r tanh(nξ), (10)

and therefore the L1 distance between any two of them is

dn,m ≡ |dn − dm| = 2r
sinh(|n−m|ξ)

cosh(nξ) cosh(mξ)
. (11)

Then, if we assume that the probability of a one-step transition is inversely proportional to
the distance between nearest neighbors,

pn→n+1

pn→n−1
=

dn−1,n

dn,n+1
=

cosh((n + 1)ξ)
cosh((n− 1)ξ)

, (12)

and one recovers Equation (5).
A similar reasoning leads to expression (8), by replacing the hyperbolic geometry by

an elliptic geometry: consider a set of 2N + 1 points placed in a regular disposition on
a circumference of radius r: xn = r sin(2nθ), yn = r cos(2nθ), with the values of n such
that n ∈ {−N,−N + 1, . . . , N − 1, N} and θ defined as in Equation (9). Now consider
the stereographic projection of these points into the line tangent to the upper part of the
circumference: the projected points are at the intersect between this horizontal line, and the
line that connects the original spots and the south pole of the circumference, where there is
no accessible point, see Figure 2.
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θ

2 θ

d1

O

Figure 2. Projection of an elliptic geometry. The points in the circle are placed at regular angular dis-
tances, xn = r sin(2n θ), yn = r cos(2n θ), n ∈ {−N,−N + 1, . . . , N − 1, N}. The red line corresponds
to the stereographic projection of the circle, with the points sited at locations dn = 2r tan(nθ). (N = 3
in this figure).

The projected points on the horizontal line are sited at positions marked by

dn ≡ 2r
sin(2nθ)

1 + cos(2nθ)
= 2r tan(nθ), (13)

and the L1 distance between them reads

dn,m ≡ |dn − dm| = 2r
sin(|n−m|θ)

cos(nθ) cos(mθ)
. (14)

If we demand the same kind of interdependence between transition probabilities and
distances as in (12), i.e.,

pn→n+1

pn→n−1
=

dn−1,n

dn,n+1
=

cos((n + 1)θ)
cos((n− 1)θ)

, (15)

one recovers Equation (8) with the understanding that we assign d±(N+1) = ±∞ to these
inaccesible points: otherwise one cannot formally recover p±N→±(N+1) = 0. Note that this
is consistent with Equation (13) as well as with the fact that

d±N = ±2r tan
(

π

2
· N

N + 1

)
→

N→∞
±∞, (16)

since, in the original elliptic geometry, both values n = ±(N + 1) would be coincident
with the south pole of the circumference. Indeed, as we will see below, it is operationally
convenient to include ±(N + 1) within the spectrum of values of Xt, by attaching a null
probability to these events.

Finally, we observe how site-to-site distances increase as |n| increases. This behavior
is in clear contrast with the hyperbolic case where distances decrease with |n|, because, in
the latter, the length of the projective segment is finite. The borderline case corresponds to
the (flat) Euclidean geometry, which can be recovered by letting ξ, θ → 0, and r → ∞ in
such a way that their product remains finite.

4. Probability Functions

Once we have discussed the geometric interpretation of both processes, we will focus
our attention on the statistical properties of the elliptic setup, as the hyperbolic case was
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analyzed in [8]. We will begin with the probability function pn,t, the probability of finding
the process at site n at time t, if it started from the origin:

pn,t ≡ P(Xt = n|X0 = 0), (17)

for n ∈ {−N − 1,−N, . . . , N, N + 1}, with the proviso that p−N−1,t = pN+1,t = 0 for any
value of t. Here and hereafter, we denote by P(·) the probability of its argument.

Let us consider, in the first place, the case in which t ≤ N and assume for the moment
that n > 0. In order to have pn,t 6= 0, we need to demand, on the one hand, that n and
t have the same parity (i.e., if both are odd or even integers), and, on the other hand,
that n ≤ t, otherwise the site n is inaccessible. The transition probability p0→n,t of a path
connecting sites 0 and n in t steps can be expressed under these circumstances as

p0→n,t = p0→1 · · · pn−1→n · pt−n =
cos(nθ)

[2 cos(θ)]n
· 1

[2 cos(θ)]t−n

=
cos(nθ)

[2 cos(θ)]t
, (18)

where we have used (2), (7) and (8). As it can be observed, Equation (18) does not depend
on the particular path followed, and therefore pn,t is p0→n,t times the number of different
paths that go from 0 to n in t steps, a quantity that can be computed by resorting to standard
combinatorial arguments, leading to

pn,t =

(
t

t−n
2

)
cos(nθ)

[2 cos(θ)]t
. (19)

Note how p−n,t = pn,t, which implies that Equation (19) is indeed valid for |n| ≤ t ≤ N, if
n and t have the same parity:

pn,t =

(
t

t−n
2

)
cos(nθ)

[2 cos(θ)]t
1 t−|n|

2 ∈N0
, (20)

where 1A is equal to one if A is true and zero otherwise.
The condition t ≤ N eases the counting problem, since, for t > N, we will have to

subtract, from the binomial term, the forbidden paths on Z, those paths that connect 0 and n
going through site N + 1 and/or −N − 1. Instead of following this route at this point, let
us consider the recursion relation that satisfies pn,t,

pn,t = pn−1,t−1 · pn−1→n + pn+1,t−1 · pn+1→n

=
1
2

pn−1,t−1 · cos(nθ)

cos((n− 1)θ) cos(θ)
+

1
2

pn+1,t−1 · cos(nθ)

cos((n + 1)θ) cos(θ)
, (21)

an expression that can be rewritten as

pn,t

[
ei2nθ + e−i2nθ + 2 cos(2θ)

]
cos(θ)

= pn−1,t−1

[
ei(2n+1)θ + e−i(2n+1)θ + 2 cos(θ)

]
/2

+ pn+1,t−1

[
ei(2n−1)θ + e−i(2n−1)θ + 2 cos(θ)

]
/2. (22)

The problem posed can be solved with the use of Discrete Fourier Transform (DFT) pairs
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ũk ≡
N+1

∑
n=−N

un · e−iπkn/(N+1) =
N+1

∑
n=−N

un · e−i2knθ , (23)

un ≡ 1
2(N + 1)

N+1

∑
k=−N

ũk · eiπkn/(N+1) =
1

2(N + 1)

N+1

∑
k=−N

ũk · ei2knθ , (24)

definitions that have embedded the following property of periodicity: un+2`(N+1) = un,
ũk+2`(N+1) = ũk, for ` ∈ Z. Therefore, the sums in Equations (23) and (24) could alter-
natively have begun at −N − 1 and ended at N, but we cannot include contemporarily
the terms corresponding to −N − 1 and N + 1, even though, in our case, pn,t = 0 for
|n| = N + 1. In fact, we must proceed with caution, since we have pn,t = 0 for |n| ≥ N + 1,
a boundary condition that is assumed in (22) (In addition, pn,t = 0 if n and t have different
parity, but this fact does not affect the present discussion).

To find the solution to Equation (22), let us multiply the whole expression by e−i2knθ ,
sum from n equal to −N to N, take into account the boundary conditions where they apply,
and obtain

[ p̃k−1,t + p̃k+1,t + 2 cos(2θ) p̃k,t] cos(θ)

= cos((2k− 3)θ) p̃k−1,t−1 + cos((2k + 3)θ) p̃k+1,t−1

+ 2 cos(θ) cos(2kθ) p̃k,t−1. (25)

As in the case of Equation (21), we could use this recursion in conjunction with the fact that
p̃k,0 = 1 to compute p̃k,t. Since pn,t is real and symmetric, so is p̃k,t. Moreover, as p̃k,t is a
probability function, p̃0,t = 1. Therefore, we can compute p̃±1,1 from (25)

p̃±1,1 =
cos(3θ)

cos(θ)
+ 1− cos(2θ) = 1− 2 sin2(θ), (26)

and then

p̃k+1,1 =
cos((2k− 3)θ) + cos((2k + 3)θ)

cos(θ)
+ 2 cos(2kθ)− p̃k−1,1 − 2 cos(2θ) p̃k,1, (27)

for k > 0. Once we have found all the p̃k,1, we can proceed similarly with p̃k,2 and so on.
Fortunately, we can obtain a closed form for p̃k,t. From (20) we have that, for t ≤ N,

p̃k,t =
N+1

∑
n=−N

pn,t · e−i2knθ =
t

∑
n=−t

(
t

t−n
2

)
cos(nθ)

[2 cos(θ)]t
1 t−|n|

2 ∈N0
· e−i2knθ . (28)

This means that

p̃k,t =
t

∑
j=0

(
t
j

)
cos((2j− t)θ)
[2 cos(θ)]t

· e+i2k(2j−t)θ

=
1

2[2 cos(θ)]t
t

∑
j=0

(
t
j

)[
e+i(2k+1)(2j−t)θ + e−i(2k−1)(2j−t)θ

]
=

1
2

[
cos((2k + 1)θ)

cos(θ)

]t
+

1
2

[
cos((2k− 1)θ)

cos(θ)

]t
. (29)

Note that, in particular, p̃0,t = 1 and

p̃±1,t =
1
2
+

1
2

[
cos(3θ)

cos(θ)

]t
=

1
2
+

1
2

[
1− 4 sin2(θ)

]t
, (30)
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in concordance with the result found in (26). The point is that expression (29) satisfies
relation (25), for any value of t and θ, and thus it is the general solution for p̃k,t.

By no means does this imply that pn,t can be expressed as in Equation (20) for t > N;
we must invert (29) to obtain

pn,t =
cos(nθ)

[2 cos(θ)]t
`max

∑
`=`min

(
t

t−n
2 − `(N + 1)

)
(−1)`1 t−|n|

2 ∈N0
, (31)

with

`min =

⌈
− t + n

2(N + 1)

⌉
, (32)

`max =

⌊
t− n

2(N + 1)

⌋
, (33)

and where d·e and b·c are the ceiling function and floor function, respectively.
Figure 3 shows three snapshots of the time evolution of pn,t for N = 16. Note how, for

both instances, the theoretical curve and the histogram converge to the dashed curve. This
curve represents the quasi-steady-state probability function peven

n ,

peven
n =

2
N + 1

cos2(nθ)1 n
2∈Z, (34)

to which the probability function tends. The reason for calling this a quasi-steady state is
because the graph is bipartite: starting from the origin, the particle can be found in odd
locations if and only if t is odd, and in even locations if and only if t is even. Therefore,
Equation (34) is valid when t is even. Fortunately, the steady state when t (and n) is odd is
just the same

podd
n =

2
N + 1

cos2(nθ)1 n−1
2 ∈Z

, (35)

and, since these two scenarios have the same likelihood due to the alternation of even and
odd values of t, one arrives at

peq.
n =

1
2

podd
n +

1
2

peven
n =

1
N + 1

cos2(nθ), (36)

the equilibrium distribution in the ergodic sense. The very existence of this steady-state
and the expression itself can be deduced from (29). Let p̃k be

p̃k ≡ lim
t→∞

p̃k,t = lim
t→∞

1
2

[
cos((2k + 1)θ)

cos(θ)

]t
+

1
2

[
cos((2k− 1)θ)

cos(θ)

]t

=
1
2

δk,−1 + δk,0 +
1
2

δk,1, (37)

where δk,` is the Kronecker delta that returns 1 if k = ` and zero otherwise. The inversion
of (37) leads to (36).
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Figure 3. The probability function pn,t. We depict the probability of finding the system at position n
after: (a) t = 40 steps; (b) t = 80 steps; and (c) t = 120 steps; if X0 = 0 and N = 16. As the values of t
are even quantities, only even values of n are shown. The solid curve corresponds to Equation (31), the
red dashed curve to Equation (34), and histograms were obtained from 100,000 numerical simulations
of the process, with the binning (here and hereafter) chosen to include only one attainable site in
each category.

Let us consider now the counting-path approach. To this end, let us express Equation (31)
in the following form

pn,t =
cos(nθ)

[2 cos(θ)]t
∞

∑
`=−∞

(
t

t−(−1)`n
2 − `(N + 1)

)
(−1)`1 t−|n|

2 ∈N0
, (38)

with the understanding that (
a
b

)
= 0, (39)

if either b or b− a are negative integers. The most noticeable change in this formula is the
replacement n 7→ (−1)`n. This can be understood on the basis of mirroring arguments:
For N < t < 3(N + 1), the number of paths beginning at 0 and ending at n touching or
passing though N + 1 is equal to the number of trajectories starting at 0 and reaching the
point 2(N + 1)− n,(

t
t−2(N+1)+n

2

)
=

(
t

t+n
2 − (N + 1)

)
=

(
t

t−n
2 + (N + 1)

)
,

if t and n have the same parity. These paths must be subtracted from the total, as well as
the trajectories beginning at 0 and ending at n touching or passing through −N − 1,(

t
t+2(N+1)+n

2

)
=

(
t

t+n
2 + (N + 1)

)
=

(
t

t−n
2 − (N + 1)

)
.

Therefore, when the starting point is the origin, the change of sign introduced by every
refection can be dropped after a rearrangement of the terms.

This is no longer true if m 6= 0. In such a case

pn,t;m =
cos(nθ)

cos(mθ)[2 cos(θ)]t
∞

∑
`=−∞

(
t

t−(−1)`n+m
2 − `(N + 1)

)
(−1)`1 t−|n−m|

2 ∈N0
, (40)

that is, for t ≥ |m− n| and sharing both magnitudes the same parity, one has

pn,t;m =
cos(nθ)

cos(mθ)[2 cos(θ)]t
C [−N,N]

n,t;m , (41)

where the leading factor is just pm→n,t, the product of transition probabilities of a path
connecting sites m and n in t steps, and
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C [L,M]
n,t;m ≡

∞

∑
`=−∞

( t
t−(−1)`(n−M+L

2 )+(m−M+L
2 )−`(M−L+2)

2

)
(−1)`1 t−|n−m|

2 ∈N0
(42)

is the number of paths stating at X0 = m and ending at Xt = n, in such a way that one has
that L ≤ Xt′ ≤ M, 0 ≤ t′ ≤ t. Note that the properties of binomials guarantee that factor
(−1)` can be moved from the parenthesized term with the n to the one with the m after
some reordering, as demanded by the “time reversal” symmetry of this magnitude,

C [L,M]
n,t;m = C [L,M]

m,t;n . (43)

In practical implementations of Formula (40), as in the confection of Figure 4, one can
replace the limits in (40) with ±L,

L ≡
⌊

t + |n|+ |m|
2(N + 1)

⌋
. (44)

This is a good proxy since, at most, one must discard two terms in the sum. A more
precise expression leads to a piece-wise definition of pn,t;m that is highly dependent on the
particular values of N, n, m, and t, see Appendix A.
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(a) (b) (c)

Figure 4. The probability function pn,t;m. We depict the probability of finding the system at position
n after: (a) t = 10 steps; (b) t = 150 steps; and (c) t = 1000 steps; if m = 8 and N = 16. As the
values of t are even quantities, only even values of n are shown. The solid curve corresponds to
Equation (40), the red dashed curve to Equation (36), and histograms were obtained from 100,000
numerical simulations of the process.

The intricacy of Equation (40) discourages the search for a general expression for the
expected value, E[·], of the position

µt;m ≡ E[Xt|X0 = m] =
m+t

∑
n=m−t

n · pn,t;m, (45)

although some approximations can be considered. For t ≤ N − |m|, one has

µt;m '
t

∑
k=0

(
t
k

)
m− 2k + t
cos(mθ)

cos((m− 2k + t)θ)
[2 cos(θ)]t

= m− tan(θ) tan(mθ) · t, (46)

the process shows reversion to the origin, and ultimately

lim
t→∞

µt;m = 0, (47)

from the existence of the equilibrium probability (40). From this same expression, one can
conclude that the time evolution of the standard deviation of the process, σt;m,

σ2
t;m ≡ E

[
X2

t |X0 = m
]
− µ2

t;m, (48)



Entropy 2021, 23, 729 11 of 19

will attain a limiting value as well,

lim
t→∞

σ2
t;m =

N

∑
n=−N

n2 · 1
N + 1

cos2(nθ) =
1
6

(
2N2 + 4N + 3

)
− 1

2 sin2(θ)
, (49)

while, for small values of t, one has

σ2
t;m '

t

∑
k=0

(
t
k

)
(m + 2k− t)2

cos(mθ)

cos((m + 2k− t)θ)
[2 cos(θ)]t

− (m− tan(θ) tan(mθ)t)2

=
1

cos2(θ)
t− tan2(θ)t2 − tan2(θ) tan2(mθ)t2

=
1

cos2(θ)
t− tan2(θ)

cos2(mθ)
t2. (50)

We can observe in Figure 5 the good agreement between the numerical simulations of the
process and the different expressions found: In Figure 5a, we observe the slow return of
the mean of the process to the origin, whereas in Figure 5b, we find how the variance
of the process exhibits a sigmoid-like shape, tending toward the value dictated by the
equilibrium probability. As we will see in the next section, the exponential character of the
time-evolution of the process is behind these features.

0 50 100 150 200 250 300
0

2

4

6

8

t

μ
t;
m

0 50 100 150 200
0

10

20

30

t

σ
t;
m
2

(a) (b)

Figure 5. Expected values of pn,t;m. In (a), we consider the evolution of µt;m for m = 8. The solid
black curve is the exact evolution predicted by pn,t;m, Equation (45), the blue dotted curve depicts
the linear behavior predicted by Equation (46), and the red dashed line coincides with the origin.
In (b), we show the bounded growth σ2

t;m, for m = 8. Again, the solid black curve represents the
exact Formula (48), the blue dotted curve corresponds to approximate expression (50), while the red
dashed line stems from Equation (49). In both cases, N = 16, and the solid circles were obtained from
100,000 numerical simulations of the process.

5. First- and Last-Time Events

Equation (40) can be easily generalized to p[L,M]
n,t;m ,

p[L,M]
n,t;m ≡ P

(
Xt = n|X0 = m, L ≤ Xt′ ≤ M, 0 ≤ t′ ≤ t

)
, (51)

the probability that the process Xt goes form X0 = m to Xt = n, in such a way that one has
that L ≤ Xt′ ≤ M, 0 ≤ t′ ≤ t, due to the factorization of this probability as the likelihood
of a single path connecting points m and n in t steps (which is always the same irrespective
of the trajectory) times the amount of those trajectories that do not exceed the chosen limits,
C [L,M]

n,t;m , see Equation (42),

p[L,M]
n,t;m =

cos(nθ)

cos(mθ)[2 cos(θ)]t
C [L,M]

n,t;m . (52)
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This quantity can be used to obtain the survival probability, S [L,M]
t;m , the probability that, at

time t, the process starting from X0 = m has never left the interval [L, M],

S [L,M]
t;m =

M

∑
n=L

p[L,M]
n,t;m . (53)

Please, note that the only restriction in the parameter set affecting the survival probability
is that we denoted by L the lower limit of the interval and by M its higher limit, L ≤ M.
Thus, in this case, S [L,M]

t;m is well defined having t and m with either the same parity or not.
Survival probabilities are commonly used to compute the probability that the first-visit

of the process to site n, starting from site m, has taken place at time t,

ft,n;m ≡ P(Tn;m = t), (54)

where the random variable Tn;m is defined as [3]

Tn;m ≡ min{t > 0 : Xt = n|X0 = m}, (55)

through the relationship
ft,n;m = S [−N,n−1]

t−1;m − S [−N,n−1]
t;m , (56)

for −N ≤ m < n ≤ N, and the relationship

ft,n;m = S [n+1,N]
t−1;m − S [n+1,N]

t;m , (57)

for −N ≤ n < m ≤ N. In the present case, these expressions are very intricate to be used
in practice due to the abundance of summations, and the following alternative procedure
leads to more compact expressions: Consider, in the first place, a configuration that satisfies
−N ≤ m < n ≤ N, then the only way of reaching n at time t for the first time, is being
at n− 1 by t− 1, without having surpassed this point previously, and a final transition
n− 1→ n,

ft,n;m = p[−N,n−1]
n−1,t−1;m × pn−1→n =

cos(nθ)

cos(mθ)[2 cos(θ)]t
C [−N,n−1]

n−1,t−1;m (58)

where the typical restrictions to values and parities of n, m, and t considered throughout
the text do apply here. If one has that −N ≤ n < m ≤ N, then

ft,n;m = p[n+1,N]
n+1,t−1;m × pn+1→n =

cos(nθ)

cos(mθ)[2 cos(θ)]t
C [n+1,N]

n+1,t−1;m. (59)

Figure 6 shows three instances of ft,n;m, for different choices of n and m.
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(a) (b) (c)

Figure 6. Probability function ft,n;m. We depict the probability of that the first visit of the process
to site n starting from m occurs after t steps: (a) n = 4 and m = 0; (b) n = 8 and m = 0; and (c)
n = 0 and m = 8. In all cases N = 16. As n−m is even, only even values of t are shown. The solid
curve corresponds to Equation (58) or (59), and histograms were obtained from 100,000 numerical
simulations of the process.
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In fact, this approach paves the way for the computation of f2t,n;n, the probability that
the process returns for the first time to a given point n after 2t steps, f2t,n;n,

f2t,n;n = pn→n−1 × p[−N,n−1]
n−1,2t−2;n−1 × pn−1→n + pn→n+1 × p[n+1,N]

n+1,2t−2;n+1 × pn+1→n

=
1

[2 cos(θ)]2t

(
C [−N,n−1]

n−1,2t−2;n−1 + C
[n+1,N]
n+1,2t−2;n+1

)
. (60)

When t ≤ N − |n|, the first-return probability does not depend on n and satisfies a
well-known identity for regular random walks,

f2t,n;n =
1

2t− 1
1

[2 cos(θ)]2t

(
2t
t

)
=

1
2t− 1

pn,2t;n, (61)

but this formula ceases to be valid as t grows. On the one side, as we have already seen,
pn,2t;n tends to a time-independent function of n, see Equations (34) and (35),

pn,2t;n '
2

N + 1
cos2(nθ),

and, on the other side, f2t,n;n decays exponentially with t, as we will prove next. To this end,
we have to analyze C [L,M]

n,t;m for t� M− L. Indeed, from very existence of the steady-state
distribution and using symmetry arguments, one concludes that we can approximate this
magnitude by the following expression:

C [L,M]
n,t;m '

4
M− L + 2

cos
(

π

2
2n−M− L
M− L + 2

)
cos
(

π

2
2m−M− L
M− L + 2

)[
2 cos

(
π

M− L + 2

)]t
. (62)

According to Equation (60), we need to evaluate

C [−N,n−1]
n−1,t;n−1 ' 4

N + n + 1
sin2

(
π

N + n + 1

)[
2 cos

(
π

N + n + 1

)]t
, (63)

and

C [n+1,N]
n+1,t;n+1 ' 4

N − n + 1
sin2

(
π

N − n + 1

)[
2 cos

(
π

N − n + 1

)]t
, (64)

to assess the behavior of f2t,n;n for large values of t. If n = 0, Equations (63) and (64) are
coincident, and we arrive to the following compact expression:

f2t,0;0 '
2

N + 1
tan2(2θ)

[
cos(2θ)

cos(θ)

]2t
. (65)

In general, the most stringent term is the one for which N ± n + 1 is smaller, i.e.,

f2t,n;n '
1

N − |n|+ 1
tan2

(
π

N − |n|+ 1

)cos
(

π
N−|n|+1

)
cos(θ)

t

. (66)

In Figure 7, we can observe how the approximate formulas are still valid for values
of t well apart from those used in their respective derivations. In Figure 7a, there is an
effective crossover between both limiting behaviors that takes place at t ≈ 40, beyond the
restriction t ≤ N − |n|, as n = 0 and N = 16. This means that, for any value of t, one has a
surrogate, compact expression for f2t,0;0. In Figure 7b, we find that (61) is still valid outside
the region where t ≤ N − |n|, n = 8 now; however, there is no intersection between the
expressions (61) and (66). This is due to the presence of the second, transitory exponential
regime that dominates the evolution for values of t in the range 20 . t . 40.
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Figure 7. The probability function f2t,n;n. We depict the probability of that the first return of the
process to site n occurs after 2t steps: (a) n = 0; (b) n = 8. In both cases, N = 16. The solid
curve corresponds to Equation (60), the blue dotted curve depicts Equation (61), and the red dashed
lines correspond to Equations (65) and (66), respectively. Histograms were obtained from 100,000
numerical simulations of the process.

Consider now g2t,n;2T,n, the probability that the last return of process to the initial
point n after 2T steps takes place at time 2t. This probability can be obtained from the
likelihood of being in the initial spot at time 2t multiplied by the probability of staying
either above of below this value for the remaining period,

g2t,n;2T,n = pn,2t;n

(
pn→n−1 × S

[−N,n−1]
2(T−t)−1;n−1 + pn→n+1 × S

[n+1,N]
2(T−t)−1;n+1

)
. (67)

with

S [−N,n−1]
2(T−t)−1;n−1 =

n−1

∑
m=−N

p[−N,n−1]
m,2(T−t)−1;n−1

=
1

cos((n− 1)θ)[2 cos(θ)]2(T−t)−1

n−1

∑
m=−N

cos(mθ)C [−N,n−1]
m,2(T−t)−1;n−1,

and similarly

S [n+1,N]
2(T−t)−1;n+1 =

N

∑
m=n+1

p[n+1,N]
m,2(T−t)−1;n−1

=
1

cos((n + 1)θ)[2 cos(θ)]2(T−t)−1

N

∑
m=n+1

cos(mθ)C [n+1,N]
m,2(T−t)−1;n+1;

with the understanding that the whole term inside the parentheses reduces to one if t = T.
In this case, due to the nature of Equation (67), to obtain an approximate formula, one

must use contemporarily small and large t approximations. Let us focus exclusively on
the case n = 0 to reduce the mathematical complexity, and consider in the first place that
t ≤ N � T. For t ≤ N, we can express the leading factor as

p0,2t;0 =
1

[2 cos(θ)]2t

(
2t
t

)
,

whereas for T − t� N, we have

C [1,N]
m,2(T−t)−1;1 = C [−N,−1]

−m,2(T−t)−1;−1 '
4

N + 1
sin(2θ) sin(2mθ)[2 sin(2θ)]2(T−t)−1,

for m ∈ {2, 4, · · · , 2bN/2c}. This symmetry leads to
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g2t,n;2T,n ' 8
N + 1

(
2t
t

)
[2 cos(2θ)]2(T−t)−1

[2 cos(θ)]2T sin(2θ)
N/2

∑
k=1

cos(2kθ) sin(4kθ)

=
2

N + 1

(
2t
t

)
[2 cos(2θ)]2(T−t)

[2 cos(θ)]2T
sin2(2θ)

sin(θ) sin(3θ)
, (68)

where we have further assumed that N is an even magnitude to avoid the floor function.
The reverse situation corresponds to t� N ≥ T− t. Here, we have that the task is simpler
if we consider the following alternative expression for g2t,n;2T,n,

g2t,n;2T,n = pn,2t;n

∞

∑
t′=T−t+1

f2t′ ,n;n, (69)

that is, the probability of being in the initial site at time 2t multiplied by the probability that
the next return to this location takes longer than the remaining period. Indeed, to perform
the desired analysis, it is better to express (69) as

g2t,n;2T,n = pn,2t;n

(
1−

T−t

∑
t′=1

f2t′ ,n;n

)
, (70)

since we already know that

f2t′ ,n;n =
1

2t′ − 1
1

[2 cos(θ)]2t′

(
2t′

t′

)
,

for t′ ≤ N. Then, if we combine this expression with

p0,2t;0 '
2

N + 1
,

t� N, we obtain

g2t,0;2T,0 '
2

N + 1

{
1−

T−t

∑
t′=1

1
2t′ − 1

1

[2 cos(θ)]2t′

(
2t′

t′

)}
. (71)

As T − t ≤ N, the sum contains a reduced number of terms, and it can be formally
expressed in terms of the Gaussian hypergeometric function (Note in particular that the
sum does not converge for T − t→ ∞). In Figure 8a, we can observe the goodness of both
approximate formulas which, one more time, intersect at t ≈ 40.

Equation (71) can be easily extended to encompass arbitrary values of n,

g2t,n;2T,n =
2

N + 1
cos2(nθ)

{
1−

T−t

∑
t′=1

1
2t′ − 1

1

[2 cos(θ)]2t′

(
2t′

t′

)}
,

but we must be aware that T must be long enough to allow the system to reach the steady
state, which is not the case if N = 16 and T = 75, cf. Figure 4b. However, for these
intermediate situations, heuristic expressions with a clear inspiration in the arcsin law of
regular random walks like

g2t,n;2T,n '
1√

4(T − t) + 1
pn,2t;n (72)

may become useful, see Figure 8b.
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Figure 8. The probability function g2t,n;2T,n. We depict the probability that the last return of the
process to site n after 2T steps occur at time 2t: (a) n = 0 and (b) n = 8. In both cases, T = 75 and
N = 16. The solid curve corresponds to Equation (67) in both panels. In panel (a), the blue dotted
curve shows Equation (68), and the red dashed line corresponds to the approximate Equation (71). In
panel (b), the green dotted line follows the heuristic Equation (72). Histograms were obtained from
100,000 numerical simulations of the process.

6. Conclusions and Future Work

The random walks with invariant loop probabilities constitute a family of Markov
processes which, having site-dependent transition probabilities, can be addressed using
simple analytical tools. This new class of stochastic processes splits in two different
subclasses delimited by the simple random walk in one dimension; however, despite that,
the complete family can be obtained by resorting to a single geometrical argument—the
stereographic projection of an underlying metric space.

The case in which this associated metric space leads to hyperbolic probabilities was
analyzed in depth in a previous work. Here, we concentrated our efforts in the comple-
mentary case, the stereographic projection of a circle into the real line that defines a set
of elliptic probabilities. The formalism induces the automatic emergence of two ending,
reflexing nodes in the ring that surrounds a forbidden site with a regular disposition of the
rest of the nodes.

We derived the probability function of the process in the first place, a function that
tends to a steady-state distribution. After that, we considered the statistical properties
related to extreme events: the waiting time until the first visit to a target if the process is
presently at some given location, or the probability of having witnessed the last visit to a
target if the observation time is finite.

We leave, for future work, the search for physical implementations of the under-
lying metric space that can account for the transformation of a regular layout into an
inhomogeneous medium whose properties can be satisfactorily captured by one of these
stereographic random walks.

Another interesting extension of this model, also left for future publications, consists
in the concatenation of finite chains (of different lengths) by their ending points, a setup
that may describe a series of basins of attraction. In this case, the final nodes must be par-
tially reflexing and partially transmitting sites, which will break the exact loop invariance
assumed here and have a possible impact on the ergodicity of the system.
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Appendix A

Assume that N, n, m, and t are even quantities, and that 2 ≤ m ≤ N − 2,

pn,t;m =
cos(nθ)

cos(mθ)[2 cos(θ)]t
C [−N,N]

n,t;m . (A1)

Then, for 0 ≤ t ≤ N −m one has

C [−N,N]
n,t;m =


0, −N ≤ n ≤ m− t− 2,(

t
t−n+m

2

)
, m− t ≤ n ≤ m + t,

0, m + t + 2 ≤ n ≤ N,

where the last condition cannot be satisfied for t = N −m. For N −m + 2 ≤ t ≤ N + m,
one has

C [−N,N]
n,t;m =


0, −N ≤ n ≤ m− t− 2,(

t
t−n+m

2

)
, m− t ≤ n ≤ 2N −m− t,(

t
t−n+m

2

)
−
(

t
t+n+m

2 − (N + 1)

)
, 2(N + 1)−m− t ≤ n ≤ N,

where the first condition cannot be satisfied for t = N + m. For N + m + 2 ≤ t ≤ 2N,
one has

C [−N,N]
n,t;m =



(
t

t−n+m
2

)
−
(

t
t+n+m

2 + (N + 1)

)
, −N ≤ n ≤ t−m− 2(N + 1),(

t
t−n+m

2

)
, t−m− 2N ≤ n ≤ 2N −m− t,(

t
t−n+m

2

)
−
(

t
t+n+m

2 − (N + 1)

)
, 2(N + 1)−m− t ≤ n ≤ N.

For 2(N + 1) ≤ t ≤ 3N −m,

C [−N,N]
n,t;m =



(
t

t−n+m
2

)
−
(

t
t+n+m

2 + (N + 1)

)
,−N ≤ n ≤ 2N −m− t,(

t
t−n+m

2

)
−
(

t
t+n+m

2 + (N + 1)

)
−
(

t
t+n+m

2 − (N + 1)

)
,

2(N + 1)−m− t ≤ n ≤ t−m− 2(N + 1),(
t

t−n+m
2

)
−
(

t
t+n+m

2 − (N + 1)

)
, t−m− 2N ≤ n ≤ N.
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For instance, the example shown in panel (a) of Figure 4 corresponds to the case N = 16,
t = 10, and m = 8. Therefore, one has

pn,10;8 =



0, −16 ≤ n ≤ −4,
cos(nθ)

cos(8θ)[2 cos(θ)]10

(
10

18−n
2

)
, −2 ≤ n ≤ 14,

cos(16θ)

cos(8θ)[2 cos(θ)]10

[(
10
1

)
−
(

10
0

)]
, n = 16,

with θ = π/34 and n even. Elementary calculus proves that

16

∑
n=−16

pn,10;8 =
1

cos(8θ)[2 cos(θ)]10

[
8

∑
k=0

(
10
k

)
cos(2(k− 1)θ) + 9 cos(16θ)

]

= 1− 1

cos(8θ)[2 cos(θ)]10 [10 cos(16θ) + cos(18θ)− 9 cos(16θ)]

= 1,

since cos(18θ) = − cos(16θ).
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