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Abstract: In this paper, the high-dimensional linear regression model is considered, where the
covariates are measured with additive noise. Different from most of the other methods, which are
based on the assumption that the true covariates are fully obtained, results in this paper only require
that the corrupted covariate matrix is observed. Then, by the application of information theory, the
minimax rates of convergence for estimation are investigated in terms of the `p (1 ≤ p < ∞)-losses
under the general sparsity assumption on the underlying regression parameter and some regularity
conditions on the observed covariate matrix. The established lower and upper bounds on minimax
risks agree up to constant factors when p = 2, which together provide the information-theoretic limits
of estimating a sparse vector in the high-dimensional linear errors-in-variables model. An estimator
for the underlying parameter is also proposed and shown to be minimax optimal in the `2-loss.

Keywords: sparse linear regression; errors-in-variables model; minimax rate; Kullback–Leibler
divergence; information-theoretic limitations

1. Introduction

In various fields of applied sciences and engineering, such as machine learning [1], a
fundamental problem is to estimate an underlying parameter β∗ ∈ Rd of a linear regression
model as follows

yi = 〈Xi·, β∗〉+ ei, for i = 1, 2, . . . , n, (1)

where {(Xi·, yi)}n
i=1 are i.i.d. observations (Xi· ∈ Rd) and e ∈ Rn is the random noise. In

matrix form, model (1) can be written as y = Xβ∗ + e, where X = (X1·, . . . , Xn·)> ∈ Rn×d

and y, e ∈ Rn. The covariates Xi· (i = 1, 2, . . . , n) are always assumed to be fully observed
in standard formulations. However, this assumption is far away from reality since, in
general, the measurement error cannot be avoided. In many real-world applications, due
to the lack of observation or the instrumental constraint, the collected data, such as remote
sensing data, may always be perturbed and tend to be noisy [2]. It has been shown in [3]
that misleading inference results may be obtained if the method for clean data is applied
to the noisy data naively. Therefore, it is more realistic to explore the case where only the
corrupted covariates of the corresponding true covariates Xi·’s are obtained; see, e.g., [4].
This is known as the measurement error model in the literature.

Estimation in the presence of measurement errors has attracted a lot of interest for
a long time. Bickel and Ritov [5] first studied the linear measurement error models and
proposed an efficient estimator. Then, Stefanski and Carroll [6] investigated the generalized
linear measurement error models and constructed consistent estimators. Extensive results
have also been established on parameter estimation and variable selection for both para-
metric or nonparametric settings; see [7,8] and references therein. It should be noted that
these results are only applicable to classical low-dimensional (i.e., n ≥ d) statistical models.

In the past two decades, high-dimensional statistical models, where the number of
observations is much less than the number of predictors (i.e., n� d), have been paid much
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attention and have achieved fruitful results in a wide range of research areas; see [9,10]
for a detailed review. Most of the existing results are only suitable for models with
clean data, while some researchers have began to focus on the measurement error case.
For example, Loh and Wainwright studied the high-dimensional sparse linear regression
model with corrupted covariates. Though the proposed estimator involves solving a
nonconvex optimization problem, they proved that the global and stationary points are
statistically consistent; see [11,12]. Datta and Zou [13] proposed the Convex Conditioned
Lasso (CoCoLasso), which enjoys the convex benefit of the Lasso in both estimation and
algorithm and can handle a class of corrupted datasets, including the cases of additive or
multiplicative measurement error. Li et al. [14] investigated a general nonconvex estimation
method from statistical and computational aspects and the results can be immediately
applied to the corrupted errors-in-variables linear regression.

Apart from the study on statistical convergence rates and designing efficient algo-
rithms to solve certain estimators, it is also fundamental to information-theoretic limitations
of statistical inference to understand the computationally efficient procedures. Such fun-
damental limits are usually studied by virtue of the minimax rates, which aim to find an
estimator that minimizes the worst-case loss and, thus, can reveal gaps between the perfor-
mance of some computationally efficient algorithm and that of an optimal algorithm. The
minimax rate is always analyzed from two aspects, namely the informational lower bounds
and statistical upper bounds. In the information-theoretic aspect, the Kullback–Leibler (KL)
divergence is always used to provided lower bounds [15]. Recently, in [16], Loh provides a
detailed review of a variety of techniques utilized to derive information-theoretic lower
bounds for minimax estimation and learning, focusing on the problem settings with com-
munity recovery, parameter and function estimation, and online learning for multi-armed
bandits. In the statistical aspect, a special estimator is always constructed to derive upper
bounds; see, e.g., [17,18]. For the high-dimensional linear regression with additive errors,
Loh and Wainwright [19] established minimax rates of convergence for estimating the
unknown parameter in the `2-loss. The proposed estimator was also shown to be minimax
optimal in the additive error case under the `2-loss, assuming that the true parameter is
exact sparse, that is, β∗ has at most s � d nonzero elements, which is also known as the
exact sparsity assumption.

However, this exact assumption may be sometimes too restrictive to be satisfied in
some real applications. For example, in the field of image processing, it is a standard
phenomenon that wavelet coefficients for images usually exhibit an exponential decay, but
do not need to be almost 0 (see, e.g., [20]). Other applications under high-dimensional
scenarios include compressed sensing [21], genomic analysis [22], signal processing [23],
and so on, where it is not suitable to impose an exact sparsity assumption on the underlying
parameter. Hence, it is necessary to investigate minimax rates of estimation when the exact
sparse assumption does not hold.

Our main purpose in the present study is to investigate the more general situation
that coefficients of the true parameter are not almost zeros and then provide minimax
rates of convergence for estimation in sparse linear regression with additive errors. More
precisely speaking, we assume that for q ∈ [0, 1] fixed, the `q-norm of β∗ defined as
‖β∗‖q := (∑

p
j=1 |β

∗
j |q)1/q is bounded from above. Note that this assumption is reduced

to the exact sparsity assumption when q = 0. When q ∈ (0, 1], this type of sparsity
is known as the soft sparsity. The exact sparsity assumption has been widely used for
statistical inference, while the soft sparsity assumption attracts relatively little attention
apart from the work [24–26]. Specifically, under both exact and soft sparsity assumptions,
Raskutti et al. [24] and Ye and Zhang [26] provided minimax rates of convrgence for es-
timation in high-dimensional linear regression, respectively; Wang et al. [25] developed
the optimal rates of convergence and proposed an adaptive `q-aggregation strategy via
model mixing which attains the established optimal rate automatically. It is worth not-
ing that results in [24–26] are all obtained for clean data and cannot be applied to the
errors-in-variables model. This is a fundamental difference from our present study.
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The main contributions of this paper are as follows. By assuming that the regression
parameter is of soft sparsity, in the information-theoretic aspect we establish lower bounds
on the minimax risks for `p (1 ≤ p < ∞)-losses by virtue of the mutual information which
hold for any arbitrary estimator for the model regardless of the specific method. In the
statistical aspect, we propose an estimator which can be solved efficiently and then provide
upper bounds on the `2-loss between the estimator and the true parameter. Moreover, the
lower and upper bounds when p = 2 agree up to constant factors, implying that proposed
estimator is minimax optimal in the `2-loss.

The remainder of this paper is organized as follows. In Section 2, we provide back-
ground on the errors-in-variables linear regression model and some regularity conditions
on the observed covariate matrix. In Section 3, we establish our main results on lower and
upper bounds on minimax risks for `p (1 ≤ p < ∞)-losses over `q-balls. Conclusions and
future work are discussed in Section 4.

We end this section by introducing some notations for future reference. We use
Greek lowercase letter β to denote the vectors. All vectors are column vectors follow-
ing classical mathematical convention. A vector β is supported on S if and only if
S = {i ∈ {1, 2, . . . , d} : βi 6= 0}, and S is the support of β denoted by supp(β), namely
supp(β) = S. For d ≥ 1, let Id stand for the d× d identity matrix. For a matrix X ∈ Rn×d,
let Xij (i = 1, . . . , n, j = 1, 2, . . . , d) denote its ij-th entry, Xi· (i = 1, . . . , n) denote its i-th
row, X·j (j = 1, 2, . . . , d) denote its j-th column.

2. Problem Setup

In this section, we begin with a precise formulation of the problem and then impose
some regularity assumptions on the observed matrix.

Recall the standard linear regression model (1). One of the main types of measurement
errors is the additive error. Specifically, for each i = 1, 2, . . . , n, we observe Zi· = Xi· + Wi·,
where Wi· ∈ Rd is a random vector independent of Xi· with mean 0 and known covariance
matrix Σw. When the noise covariance Σw is unknown, there are some method to estimate it
from the observed data; see, e.g., [4]. For example, a simple method is to estimate Σw from
blank independent observations of the noise. Specifically, suppose that one independently
observes a matrix W0 ∈ Rn×d with n i.i.d. vectors of noise. Then we use Σw = 1

n W>0 W0 as
the estimate of Σw. Some other sophisticated variant of this method in are also provided
in [4].

Throughout this paper, we assume that for i = 1, 2, . . . , n, the vectors Xi·, Wi·, and e are
Gaussian with mean 0 and covariance matrices σ2

xId (σx > 0), σ2
wId, and σ2

e In, respectively,
and we write σ2

z = σ2
x + σ2

w for simplicity.
According to the previous works of [11,12], we fix i ∈ {1, 2, . . . , n} and write Σx to

denote the covariance matrix of Xi· (i.e., Σx = cov(Xi·) = σ2
xId). Let (Γ̂, Υ̂) stand for the

estimators for (Σx, Σxβ∗) which only depend on the observed data {(Zi·, yi)}n
i=1. As has

been discussed in [11], an unbiased and suitable choice of the surrogate pair (Γ̂, Υ̂) for the
additive error case is given by

Γ̂ :=
Z>Z

n
− Σw and Υ̂ :=

Z>y
n

.

Under the high-dimensional scenario (n � d), the matrix Γ̂, which is the estimator
of Σx in the corrupted case, is always negative definite. To be specific, the matrix Z>Z
has rank at most n, and then the positive definite matrices Σw are subtracted to obtain Γ̂.
Consequently, Γ̂ cannot be guaranteed to be positive definite regardless of the amount of
noise. However, this does not affect the current result. Particularly, though the negative
definiteness of Γ̂ leads to a nonconvex optimization problem in estimating β∗ (cf. (14)) as
well as the upper bound, a weaker condition (cf. Assumption 2) allows further analysis.

Instead of assuming the regression parameter β∗ is exact sparse (i.e., supp(β)� d),
we use a general notion to characterize the sparsity of β∗. Specifically, we assume that for
q ∈ [0, 1], and a radius Rq > 0, β∗ ∈ Bq(Rq), where
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Bq(Rq) := {β ∈ Rd : ||β||qq =
d

∑
j=1
|β j|q ≤ Rq}.

The use of `q-ball is a common and popular way to measure the degree of sparsity
(accurately, the above sets are not real “balls” , as they fail to be convex when q ∈ [0, 1)).
Note that β ∈ B0(R0) corresponds to the case that β is exact sparse, while for q ∈ (0, 1],
β ∈ Bq(Rq) corresponds to the case of weak sparsity, which endows a certain decay rate on
the ordered entries of β. Throughout this paper, let q ∈ [0, 1] be fixed, and we assume that
β∗ ∈ Bq(Rq) unless otherwise specified. Moreover, without loss of generality, we assume
that ‖β∗‖2 = 1 and define S2(1) := {β ∈ Rd | ‖β‖2 = 1}, i.e., the `2 unit sphere. Then it
follows that β∗ ∈ Bq(Rq) ∩ S2(1).

In order to estimate the regression parameter, one usually considers an estimator
β̂ : Rn×d ×Rn → Rd, which is a measurable function of the observed data {(Zi·, yi)}n

i=1.
Then, for the purpose of assessing the estimation quality of β̂, it is typical to introduce a
loss function L(β̂, β∗), which represents the loss incurred by the estimator β̂ when the true
parameter β∗ ∈ Bq(Rq) ∩ S2(1). Finally, in the minimax formalism, we aim to choose an
estimator that minimizes the following worst-case loss

min
β̂

max
β∗∈Bq(Rq)∩S2(1)

L(β̂, β∗).

Specifically, in this paper, we shall consider the `p-losses for p ∈ [1,+∞) as follows

Lp(β̂, β∗) := ‖β̂− β∗‖p
p.

We then impose some regularity conditions on the observed matrix Z, which are
beneficial to analyze the minimax rates. The first assumption requires that the columns of
Z are bounded from above in `2-norm.

Assumption 1 (Column normalization). There exists a constant 0 < κc < +∞ such that

1√
n

max
j=1,2,...,d

‖Z·j‖2 ≤ κc.

The second assumption imposes a lower bound on the restricted eigenvalue of the
surrogate gram matrix Γ̂, which in other words is a lower bound for the restricted curvature.

Assumption 2 (Restricted eigenvalue condition). There exists a constant κl > 0 and a function
τl(n, d) such that for all β ∈ Bq(2Rq),

β>Γ̂β ≥ κl‖β‖2
2 − τl(n, d).

Remark 1. (i) Note that though we focused on the random design case in this article,
Assumptions 1 and 2 are stated in deterministic form. This choice is to make them universal to both
fixed and random design matrices. Specifically, previous studies have shown that Assumptions 1
and 2 can be satisfied by a wide range of random matrices with high probability; see, e.g., [11,14,27].
Meanwhile, Assumptions 1 and 2 provide the possibility to analyze the fixed design case in which
the matrices are usually chosen by researchers with suitable constants, i.e., κc in Assumption
1 and κl , τl in Assumption 2. This deterministic form of the regularity condition on the design
matrix is also adopted in the field of modern high-dimensional statistics and machine learning; see,
e.g., [11,12,14,28].

(ii) For the Gaussian model we assumed that for i = 1, 2, . . . , n, the vectors Xi· and Wi· are
independently Gaussian with mean 0 and covariance matrices σ2

xId and σ2
wId, respectively, and

the observed covariate Zi· is also Gaussian with mean 0 and covariance matrix Σz = (σ2
x + σ2

w)Id.
Recall that σ2

z = σ2
x + σ2

w, then one has that Zi· ∼ N (0, σ2
z Id). Furthermore, since the observations

are i.i.d., each column Z·j (j = 1, . . . , d) has i.i.d. elements, and thus ‖Z·j‖2
2 (j = 1, . . . , d) obeys
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the χ2 distribution with freedom n. Then, for Assumption 1, it follows immediately from [27]
[Appendix I] on standard tail bounds for χ2-variates and union bounds that there exist universal

positive constants (c0, c1) and that Assumption 1 holds with κc = c0σz

√
log d

n with probability at
least 1− c1 exp(−logd).

(iii) As for Assumption 2, it follows from [29] [Lemma 1] that there exist universal positive

constants (c0, c1, c2), such that Assumption 2 holds with κl =
σ2

x
2 and τl = c0σ2

x max( σ4
z

σ4
x

, 1) log d
n

with probability at least 1− c1 exp(−c2n min( σ4
x

σ4
z

, 1)).

3. Main Results

In this section, we turn to our main results on lower and upper bounds on minimax
risks. We first begin with deriving intermediate results under Assumptions 1 and 2, then
we will turn to our main results on probabilistic consequences by virtue of Remark 1(ii),
(iii) on the conditions to guarantee Assumptions 1 and 2.

Let Pβ denote the distribution of y in the linear regression model with additive errors,
when β is given and Z is observed. The following lemma tells us the KL divergence
between the distributions induced by two different parameters β, β′ ∈ Bq(Rq). The KL
divergence plays a key role in establishing the information-theoretic related lower bound.
Recall that for two distributions P and Q which have densities dP and dQ with respect to
some base measure µ, the KL divergence is defined by D(P||Q) =

∫
log dP

dQP(dµ).

Lemma 1. In the additive error setting, the KL divergence between the distributions induced by
any β, β′ ∈ Bq(Rq) ∩ S2(1) is equal to

D(Pβ||Pβ′) =
σ4

x
2σ2

z (σ
2
x σ2

w + σ2
z σ2

e )
‖Z(β− β′)‖2

2.

Proof. For each i = 1, 2, . . . , n fixed, by the model setting, (yi, Zi·) is jointly Gaussian with
mean 0. Then by some elementary algebra to compute the covariances, one has that[

yi
Zi·

]
∼ N

([
0
0

]
,
[

β>Σxβ + σ2
e β>Σx

Σxβ Σx + Σw

])
.

Then, it follows from standard results on the conditional distribution of Gaussian
variables that

yi|Zi· ∼ N (β>ΣxΣ−1
z Zi·, β>(Σx − ΣxΣ−1

z Σx)β + σ2
e ). (2)

Now assume that σe and σw are not both 0; otherwise, the conclusion holds trivially.
Since Pβ is a product distribution of yi|Zi· over all i = 1, 2, . . . , n, it follows from (2) that

D(Pβ||Pβ′) = EPβ

[
log

Pβ(y)
Pβ′(y)

]

= EPβ

[
n
2

log

(
σ2

β′

σ2
β

)
−
‖y− ZΣ−1

z Σxβ‖2
2

2σ2
β

+
‖y− ZΣ−1

z Σxβ′‖2
2

2σ2
β′

]

=
n
2

log

(
σ2

β′

σ2
β

)
+

n
2

(
σ2

β

σ2
β′
− 1

)
+

1
2σ2

β′
‖ZΣ−1

z Σx(β− β′)‖2
2,

(3)

where σ2
β := β>(Σx − ΣxΣ−1

z Σx)β + σ2
e , and σ2

β′ is given analogously. Since Σx = σ2
xIn,

Σw = σ2
wIn, and ‖β‖2 = 1 by the assumptions, we immediately arrive at that

σ2
β =

(
σ2

x −
σ4

x
σ2

z

)
‖β‖2

2 + σ2
e =

σ2
x σ2

w
σ2

z
+ σ2

e .
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Substituting this equality into (3) yields that

D(Pβ||Pβ′) =
σ4

x
2σ2

z (σ
2
x σ2

w + σ2
z σ2

e )
‖Z(β− β′)‖2

2.

The proof is completed.

Proposition 1. In the additive error setting, suppose that the observed matrix Z satisfies
Assumption 1 with 0 < κc < +∞. Then, for any p ∈ [1,+∞), there exists a constant cq,p
depending only on q and p such that with probability at least 1/2, the minimax `p-loss over the
`q-ball is lower bounded as

min
β̂

max
β∗∈Bq(Rq)∩S2(1)

‖β̂− β∗‖p
p ≥ cq,p

[
σ2

z (σ
2
x σ2

w + σ2
z σ2

e )

σ4
x κ2

c

] p−q
2

Rq

(
log d

n

) p−q
2

. (4)

Proof. For positive numbers δ > 0 and ε > 0, let Mp(δ) denote the cardinality of a
maximal δ-packing of the ball Bq(Rq) in the lp metric with elements {β1, β2, . . . , βM}, and
N2(ε) denote the minimal cardinality of an ε-covering of Bq(Rq) in `2-norm. We follow the
standard technique in [30] to transform the estimation on lower bound into a multi-way
hypothesis testing problem as follows

P
(

min
β̂

max
β∗∈Bq(Rq)∩S2(1)

‖β̂− β∗‖p
p ≥

1
2p δp

)
≥ min

β̃
P(B 6= β̃), (5)

where B ∈ Rd is a random variable uniformly distributed over the packing set {β1, β2, . . . , βM},
and β̃ is an estimator taking values in the packing set. It then follows from Fano’s
inequality [30] that

P(B 6= β̃) ≥ 1− I(y; B) + log 2
log Mp(δ)

, (6)

where I(y; B) is the mutual information between the random variable B and the observation
vector y ∈ Rn. It now remains to upper bound the mutual information I(y; B). Based on
the procedure of [30], the mutual information is upper bounded as

I(y; B) ≤ log N2(ε) + D(Pβ||Pβ′). (7)

Let absconvq(Z/
√

n) denote the q-convex hull of the rescaled columns of the observed
matrix Z, that is,

absconvq(Z/
√

n) :=

{
1√
n

n

∑
j=1

θjZ·j
∣∣∣θ ∈ Bq(Rq)

}
,

where the normalization factor 1/
√

n is used for convenience. Since Z satisfies
Assumption 1 [31], [Lemma 4] is applicable to concluding that there exists a set
{Zβ̃1, Zβ̃2, . . . , Zβ̃N} such that for all Zβ ∈ absconvq(Z), there exists some index i and
some constant c > 0 such that ‖Z(β − β̃i)‖2/

√
n ≤ cκcε. Combining this inequality

with Lemma 1 and (7), one has that the mutual information is upper bounded as

I(y; B) ≤ log N2(ε) +
σ4

x
σ2

z (σ
2
x σ2

w + σ2
z σ2

e )
nc2κ2

c ε2.

Thus, we obtain by (6) that

P(B 6= β̃) ≥ 1−
log N2(ε) +

σ4
x

σ2
z (σ

2
x σ2

w+σ2
z σ2

e )
nc2κ2

c ε2 + log 2

log Mp(δ)
. (8)
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It remains to choose the packing and covering set radii (i.e., δ and ε, respectively) such
that (8) is strictly above zero, say bounded below by 1/2. For the sake of simplicity, denote

σ2 := σ2
z (σ

2
x σ2

w+σ2
z σ2

e )

σ4
x

. Suppose that we choose the pair (δ, ε) such that

c2n
σ2 κ2

c ε2 ≤ log N2(ε), and (9a)

log Mp(δ) ≥ 6 log N2(ε). (9b)

As long as N2(ε) ≥ 2, it is guaranteed that

P(B 6= β̃) ≥ 1− 2 log N2(ε) + log 2
6 log N2(ε)

≥ 1
2

, (10)

as desired. It remains to determine the values of the pair (δ, ε) satisfying (9). By [31]

[Lemma 3], we know that if c2n
σ2 κ2

c ε2 = Lq,2

[
R

2
2−q
q

(
1
ε

) 2q
2−q log d

]
for some constant Lq,2

depending only on q, then (9a) is satisfied. Thus, we can choose ε satisfying

ε
4

2−q = Lq,2R
2

2−q
q

σ2

c2κ2
c

log d
n

. (11)

In addition, it follows from [31] [Lemma 3] that if δ is chosen to satisfy

Uq,p

[
R

p
p−q
q

(
1
δ

) pq
p−q

log d

]
≥ 6Lq,2

R
2

2−q
q

(
1
ε

) 2q
2−q

log d

, (12)

for some constant Uq,p depending only on q and p, then (9b) holds. Combining (11) and (12),
one has that

δp ≤
[

Uq,p

6Lq,2

] p−q
q
(

ε
4

2−q

) p−q
2

R
2−p
2−q
q = L

p−q
2

q,2

[
Uq,p

6Lq,2

] p−q
q

Rq

[
σ2

c2κ2
c

log d
n

] p−q
2

.

Combining this inequality with (10) and (5), we obtain that there exists a constant cq,p
depending only on q and p such that

P

min
β̂

max
β∗∈Bq(Rq)∩S2(1)

‖β̂− β∗‖p
p ≥ cq,pRq

[
σ2

z (σ
2
x σ2

w + σ2
z σ2

e )

σ4
x κ2

c

log d
n

] p−q
2

 ≥ 1
2

.

The proof is complete.

Note that the probability 1/2 in Proposition 1 is just a standard convention, and it may
be made arbitrarily close to 2/3 by choosing the universal constants suitably. Specifically,
noting from Equation (10) that as long as N2(ε) ≥ 2 is sufficiently large, the probability can
be made sufficiently close to 2/3. The requirement on the sufficiently large value of N2(ε)
can be satisfied by choosing the universal constants Lq,2 and c in view of Equation (11).

Proposition 2. In the additive error setting, suppose that for a universal constant c1, Γ̂ satis-

fies Assumption 2 with κl > 0 and τl(n, d) ≤ c1Rq

(
log d

n

)1−q/2
. Then there exist universal

constants (c2, c3) and a constant cq depending only on q such that, with probability at least
1− c2 exp(−c3 log d), the minimax `2-loss over the `q-ball is upper bounded as

min
β̂

max
β∗∈Bq(Rq)∩S2(1)

‖β̂− β∗‖2
2 ≤ cq

[
σ

2−q
z (σw + σe)2−q + κ

1−q
l

κ
2−q
l

]
Rq

(
log d

n

)1−q/2
. (13)
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Proof. It suffices to find an estimator for β∗, which has a small `2-norm estimation error
with high probability. We consider the estimator formulated as follows

β̂ ∈ arg min
β∈Bq(Rq)∩S2(1)

{
1
2

β>Γ̂β− Υ̂>β

}
. (14)

It is worth noting that (14) involves solving a nonconvex optimization problem when
q ∈ [0, 1), while a near-global solution can be obtained efficiently by the algorithm proposed
in [14]. Since β∗ ∈ Bq(Rq) ∩ S2(1), it follows from the optimality of β̂ that 1/2β̂>Γ̂β̂ −
Υ̂> β̂ ≤ 1/2β∗>Γ̂β∗ − Υ̂>β∗. Define ∆̂ := β̂− β∗, and thus one has that ∆̂ ∈ Bq(2Rq). Then
it follows that

∆̂>Γ̂∆̂ ≤ 2〈∆, Υ̂− Γ̂β∗〉.

This inequality, together with the assumption that Γ̂ satisfies Assumption 2, im-
plies that

κl‖∆̂‖2
2 − τl(Rq, n, d) ≤ 2〈∆̂, Υ̂− Γ̂β∗〉 ≤ 2‖∆̂‖1‖Υ̂− Γ̂β∗‖∞. (15)

It then follows from [11] [Lemma 2] that there exist universal constants (c2, c3, c4) such
that, with probability at least 1− c2 exp(−c3 log d),

‖Υ̂− Γ̂β∗‖∞ ≤ c4σz(σw + σe)‖β∗‖2

√
log d

n
= c4σz(σw + σe)

√
log d

n
. (16)

Combining (15) and (16), one has that

κl‖∆̂‖2
2 ≤ 2c4σz(σw + σe)

√
log d

n
‖∆̂‖1 + τl(Rq, n, d).

Introduce the shorthand σ := σz(σw + σe). Recall that ∆̂ ∈ Bq(2Rq). It then follows from [24]

[Lemma 5] (with τ = 2c4σ
κl

√
log d

n ) and the assumption τl(Rq, n, d) ≤ c1Rq

(
log d

n

)1−q/2
that

‖∆̂‖2
2 ≤

√
2Rq

(
2c4σ

κl

√
log d

n

)1−q/2

‖∆̂‖2 + 2Rq

(
2c4σ

κl

√
log d

n

)2−q

+
c1

κl
Rq

(
log d

n

)1−q/2
.

Therefore, by solving this inequality with the indeterminate viewed as ‖∆̂‖2, we arrive
at the conclusion that there exists a constant cq depending only on q such that (13) holds
with probability at least 1− c2 exp(−c3 log d). The proof is complete.

Remark 2. (i) The lower and upper bounds on minimax risks are dependent on the triple (Rq, n, d),
the error level, and structural properties of the observed matrix Z, as shown in Propositions 1 and 2.
Specifically, by setting p = 2 in Proposition 1, the lower and upper bounds agree up to constant
factors independent of the triple (Rq, n, d), showing the optimal minimax rate in the additive
error case.

(ii) Note that when p = 2 and q = 0 (i.e., the exact sparse case), the minimax rate scales as
Θ
(

R0
log d

n

)
. In the high-dimensional regime when d/R0 ∼ dγ for some constant γ > 0, this rate

is equivalent to R0
log(d/R0)

n (up to constant factors), which re-captures the same scaling as in [19].

(iii) The assumption that τl(Rq, n, d) ≤ c1Rq

(
log d

n

)1−q/2
in Proposition 2 is not unreason-

able. It has been shown in [11] [Lemma 1] that it can be satisfied with high probability for the
high-dimensional linear errors-in-variables model.

The following two theorems are on probabilistic consequences in view of conditions
to ensure Assumptions 1 and 2. The proofs are obtained by applying Propositions 1 and 2
together with Remark 1(ii),(iii), respectively, as well as the elementary probability theory.
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Theorem 1 (Lower bound on `p-loss). In the additive error setting, for any p ∈ [1,+∞), there
exist universal positive constants (c0, c1) and a constant cq,p depending only on q and p such that,
with probability at least 1/2(1− c1 exp(−logd)), the minimax `p-loss over the `q-ball is lower
bounded as

min
β̂

max
β∗∈Bq(Rq)∩S2(1)

‖β̂− β∗‖p
p ≥ cq,p

[
σ2

x σ2
w + σ2

z σ2
e

c2
0σ4

x

] p−q
2

Rq. (17)

Proof. (17) follows from substituting κc = c0σz

√
log d

n for a universal positive constant
c0 to (4). As for the probability, we define the following two events A ={Assumption 1
happens} and B={(17) happens}. Then Proposition 1 is applicable to conclude that
P(B|A ) ≥ 1/2. Note from Remark 1(ii) that P(A ) ≥ 1− c1 exp(−logd) for a univer-
sal positive constant c1. Then it follows from the elementary probability that P(B) =
P(B|A )P(A ) +P(B|A c)P(A c) ≥ P(B|A )P(A ) ≥ 1/2(1− c1 exp(−logd)), which com-
pletes the proof.

Theorem 2 (Upper bound on `2-loss). In the additive error setting, for a universal constant c0,

suppose that σ2
x max( σ4

z
σ4

x
, 1) ≤ c0Rq

(
log d

n

)−q/2
. Then there exist universal constants (c1, c2, c3, c4)

and a constant cq depending only on q such that, with probability at least

(1 − c1 exp(−c2n min( σ4
x

σ4
z

, 1)))(1 − c3 exp(−c4 log d)), the minimax `2-loss over the `q-ball
is upper bounded as

min
β̂

max
β∗∈Bq(Rq)∩S2(1)

‖β̂− β∗‖2
2 ≤ cq

[
σ

2−q
z (σw + σe)2−q + σ

2−2q
x

σ
4−2q
x

]
Rq

(
log d

n

)1−q/2
. (18)

Proof. (17) follows from substituting κl =
σ2

x
2 to (13). As for the probability, we define the

following two events C ={Assumption 2 happens} and D={(18) happens}. Then Proposition 2
is applicable to conclude that P(D |C ) ≥ 1− c3 exp(−c4 log d) for universal positive con-

stants (c3, c4). Note from Remark 1(iii) that P(C ) ≥ 1− c1 exp(−c2n min( σ4
x

σ4
z

, 1)) for uni-
versal positive constant (c1, c2). Then it follows from the elementary probability that

P(D) = P(D |C )P(C ) + P(D |C c)P(C c) ≥ P(D |C )P(C ) ≥ (1− c1 exp(−c2n min( σ4
x

σ4
z

, 1)))
(1− c3 exp(−c4 log d)), which completes the proof.

4. Conclusions

We focused on the information-theoretic limitations of estimation for sparse linear
regression with additive measurement errors under the high-dimensional scaling. The
minimax rates of convergence were analyzed by virtue of lower and upper bounds for
`p-losses over `q-balls based on information theory. The derived lower and upper bounds
together revealed the influence of corruption in the observed covariates on parameter esti-
mation. Note that the assumed Gaussian random design matrices are of particular interest
and widely applied in the field where the design matrix can be chosen by researchers,
such as compressed sensing and signal processing [32]. However, the independent Gaus-
sian assumption is still somewhat restrictive, while our earlier work [14] provides upper
bounds on estimation to sub-Gaussian matrices with nondiagonal covariances. Further
research may generalize the current result, especially the estimation on lower bounds,
to sub-Gaussian matrices with nondiagonal covariances or other types of measurement
errors, such as the multiplicative errors or errors with dependent structures. In addition,
due to the modern high-dimensional challenge, it is of great significance for a method to
be adaptive in learning problems. Hence, it would be a prospective direction to analyze
minimax optimal rates of convergence without knowledge of the sparsity degree, such as q
and the `q-radius.
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