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Abstract: Count data appears in many research fields and exhibits certain features that make mod-
eling difficult. Most popular approaches to modeling count data can be classified into observation
and parameter-driven models. In this paper, we review two models from these classes: the log-
linear multivariate conditional intensity model (also referred to as an integer-valued generalized
autoregressive conditional heteroskedastic model) and the non-linear state-space model for count
data. We compare these models in terms of forecasting performance on simulated data and two
real datasets. In simulations, we consider the case of model misspecification. We find that both
models have advantages in different situations, and we discuss the pros and cons of inference for
both models in detail.

Keywords: multivariate count data; INGACRCH; state-space model; bank failures; transactions

1. Introduction

Modeling time series of counts is relevant in a range of application areas, including the
dynamics of the number of infectious diseases, number of road accidents or number of bank
failures. In many applications, such count data dynamics are correlated across several data
series. Examples include from correlated number of bank failures [1], number of crimes [2]
to COVID-19 contagion dynamics [3]. The analysis of such correlations provides detailed
information about the overall connectedness of the series, as well as the dynamics of an
individual series conditional on the others. Several multivariate count data models have
been proposed to capture the overall connectedness of multivariate count data. Each one
of these models has different underlying assumptions as well as computational challenges.
We present a comparative study of two families of multivariate count data models, namely
State Space Models (SSM) and log-linear multivariate autoregressive conditional intensity
(MACI) models, based on simulation studies and two empirical applications.

We provide some examples of the count data and discuss particular properties that
one desires to model when dealing with such data. In this paper, we assume that the
counts are unbounded and we assume both models to be stationary. For discussion on
the difference between bounded and unbounded count data and the difference of the
modeling approaches for these data we refer to [4]. The top panels in Figure 1 present two
conventional data sets that have been used for univariate illustrations, namely the monthly
number of cases of poliomyelitis in the U.S. between 1970 and 1983, and asthma presen-
tations at a Sydney hospital. The middle panel in Figure 1 presents the number of bank
failures in the U.S. over time, a dataset that we also analyze in this paper, and the number
of transactions for BMW in a 30 second interval. The bottom panel in Figure 1 presents a
number of car crashes and a number of earthquakes. The former, number of car crashes
over time is analyzed in Park and Lord [5] with a multivariate Poisson log-normal model
with correlations for modeling the crash frequency by severity. The authors demonstrate
that, accounting for the correlations in the multivariate model can improve the accuracy of
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the estimation. A common feature in all presented datasets is the autocorrelation present
in count data over time that is visible in the time series plots. In multivariate count time
series data, this correlation generalizes to a correlation between past and current values of
a specific series as well as between different series.
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Figure 1. Typical examples of count data coming from applications in different scientific fields.
(a) Monthly number of cases of poliomyelitis in the U.S. (1970–1983). (b) Asthma presentations at
a Sydney hospital (c) Number of bank failures in US (d) Number of transactions for BMW on 30 s
interval (e) Number of car crashes (f) Number of earthquakes.

Models for multivariate count time series typically rely on multivariate Poisson dis-
tributions, where time-variation is defined through one or more rate parameters [6]. In
some cases, Gaussian approximations are used but, as has been shown in [7], this can
lead to reduced performance in the risk forecasting assessment. In general, the quality
of such approximations depends on a particular problem [8]. Estimation of these models
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is computationally demanding for high numbers of counts as the estimation relies on
the sum over all counts. In addition, these models typically have positivity restrictions
on the conditional intensity function that governs the Poisson process over time and the
correlation between different time series. A few exceptions to the positive correlation
assumption exist, see for example, [9,10].

An alternative model for the joint distribution of count data is the copula model.
A number of papers proposed different copula models for multivariate count time series,
see, for example, [11–14]. Copulas are generally used for modeling dependency in multiple
series, which makes them attractive methods also for multiple count time series. However,
several issues arise in their applications to count data such as unidentifiability and not
accounting for potential overdispersion—a property that is common for count data. Genest
and Nešlehová [15] provides a detailed overview of copula models for count data, and
proposes and compares Bayesian and classical inferential approaches for multivariate
Poisson regression. They show that computationally Bayesian and classical approaches are
of a similar order.

Both approaches of modeling joint distribution of count data—multivariate Poisson
distribution and copulas—can be incorporated in the autoregressive conditional intensity
(ACI) framework, often also referred to as an integer-valued generalized autoregressive
conditional heteroskedasticity model (INGARCH). This model belongs to the class of
observation driven models as opposed to parameter driven models, a classification pro-
posed by Cox et al. [16]. ACI models have been dominating the literature for quite a long
time despite their restrictiveness: these models only allow only for positive coefficients
in the equation for conditional intensity. These bounded coefficients lead to several prob-
lems besides potentially unrealistic dependence structure for some data. In particular,
the problem of calculating confidence sets for the parameters that are close to or on the
boundary rises and has not been yet solved in the literature. Another observation driven
model that has been proposed as an alternative to ACI framework is log-linear model,
see Fokianos and Tjøstheim [17], a multivariate extension of which has been considered
in Doukhan et al. [10]. Even though the problem of modeling joint distribution remains,
the advantage of this approach is that no restrictions on the parameter space are required
due to the log-transform of the data.

Another class of models that can be considered for modeling count data, but is rarely
used in the literature, is parameter driven models and, in particular, non-linear state-space
models. In this framework, the observations are driven by an independent unobserved
stochastic process which, for instance, can be a (vector) autoregressive process (VAR(p)).
These models have been discussed extensively in the univariate case, see, for example
Davis et al. [18]. However, these models are rarely used in multivariate applications
due to the computationally demanding estimation methods that have to be used. To our
knowledge, only one very recent study has considered them in a multivariate application
Zhang et al. [19]. Non-linear state-space models are capable of modeling and inferring
complex dependence structures in the data. They allow for both negative and positive
contemporaneous correlation, as well as for both negative and positive Granger-causal
feedback. Thereby, these models avoid the problem of modeling the joint distribution of
time series of counts and provide a coherent inferential tool in the Bayesian framework.
This is what distinguishes our approach from the approach discussed in Zhang et al. [19]
who consider frequentist estimation of these models. We also compare SSM to log-linear
models instead of MACI models since they allow for negative dependence between the
intensities and hence appear to be more natural competitors of SSM models.

In this paper, we compare two classes of models, observation driven and parameter
driven models, in terms of their forecasting performances. We estimate the observation
driven models the quasi-maximum likelihood method. Parameter driven models, however,
fit very well into the Bayesian paradigm and that is what we use for estimation. Certain
advantages come together with this framework, such as those naturally obtained from
the posterior distribution uncertainty about the parameters of the model and forecast of
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the multivariate time series [20]. We in particular use particle Markov chain Monte Carlo
(pMCMC) [21] for the estimation of the parameter driven model. As is discussed in [22],
pMCMC outperforms other methods (variational Bayes [23], integrated nested Laplace
approximation [24] and Riemann manifold Hamiltonian Monte Carlo [25]) in terms of
parameter estimation. There are other recent methods for the estimation of the state-space
models such as auxiliary likelihood-based approximate Bayesian computation [26] and
variational Sequential Monte Carlo [27], but their performance has to be investigated
further, which is outside of the scope of this paper.

We present a set of simulation studies to show how these models perform when they
are correctly specified and misspecified. The simulation results show that, as expected,
the correctly specified models perform generally well, but there are exceptions. Particularly,
parameter driven models have better forecast performances in some simulations even if
they are misspecified. In addition to these simulation studies, we compare the performances
of these models in two real data applications. The two data sets we analyze exhibit different
sample sizes, standard deviation, dispersion and maximum counts. We show that the
overall forecast performances of the models can be very different, depending on the
applications. Furthermore, for the second data set we analyze, we find that observation
driven models capture extreme data values better than parameter driven models.

The remainder of this paper is as follows: Sections 2 and 3 summarize observation
and parameter driven models, respectively. Section 4 presents the model and forecast
comparison tools we use for multivariate count data models. Section 5 presents sim-
ulation results. Section 6 presents results from applications to two data sets. Finally,
Section 7 concludes the paper.

2. Observation Driven Models

In this section, we summarize two observation driven models: multivariate autore-
gressive conditional intensity model and log-linear analog of it. Both of these models are
characterized by the dynamics that depend on the past of the process itself and some noise.
Both models have been considered in Doukhan et al. [10], where the authors discussed
some theoretical properties and proposed to use copula approach for modeling joint count
distribution. Copulas are flexible tools for modeling dependence structure but their use
in count time series models brings challenges. We first summarize the use of Poisson
distribution for count data, analyze both models under an independence assumption in
the Poisson random variables, and at the end of this section, we discuss the extension of
modeling multiple count time series with multivariate Poisson distribution.

2.1. Poisson Distribution

Many of the count time series models take their origins in the idea of Poisson regression
model, an extensive overview of these models is given in Fokianos [28]. Specifically, both
models considered in this section as well as the parameter driven models in Section 3
rely on Poisson distributions. We therefore first provide some background on the Poisson
distribution. Poisson distribution has played an important role in modeling count time
series data as its interpretation is the number of independent events that occur in a time
period. The Poisson distribution is defined for a random variable x takes integer values in
{0, 1, . . . }. The mean of the distribution, λ, describes the average occurrences per interval,
the distribution has the equi-dispersion property since the variance its variance is also λ,
and the probability mass function (pmf) of the distribution is

p(x) =
λxe−λ

x!
, x = 0, 1, 2, 3 . . . , (1)

with E(x) = Var(x) = λ.
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For the simple multivariate case, two Poisson random variables, say x1 and x2, the joint
pmf reads

p(x1, x2) =
2

∏
i=1

e−λi λ
xi
i

xi!
. (2)

The multivariate extension in (2) is rather naive due to the underlying independence
assumption between x1 and x2. Such a model would ignore potential dependency of the
real world data, thus is potentially not suitable for the majority of applications. One way to
use the Poisson distribution for modeling count data in multivariate case and incorporate
correlation structure is through the so-called trivariate reduction [13,29]. The idea is that
correlation can be modeled through the third Poisson variable. Assume we have three
independent random variables xi ∼ Poisson(λt,i − ϕ), where 0 ≤ ϕ ≤ min{λt,1, λt,2}.
Define Yt,1 = X1 + X2 and Yt,2 = X2 + X3. In this way, the random variable X2 is exploited
to model the dependence between Y1 and Y2. The restriction of this approach is that the
correlation is the same between all the series (in case one wants to model the systems
beyond bivariate case) and the dependence can only be positive. We further discuss the
trivariate reduction technique in the context of ACI/INGARCH models. In particular,
the difficulties of extending this to higher dimensions is of interest and presents one with a
challenging task.

2.2. MACI (INGARCH)

The Poisson integer-valued generalized autoregressive conditional heteroscedastic
process (INGARCH) models [30]—also called multivariate autoregressive conditional
intensity models (MACI) in the literature—are built upon GARCH framework and are
capable of capturing time series properties of count data. As for GARCH-type models, it
is assumed that the conditional mean of the process at time t depends on the value of the
process at period t− 1 and its conditional mean at time t− 1. The time series of counts
follow Poisson process with the conditional mean λt, that is,

Xi,t | Ft−1 ∼ Poisson(λi,t), i = 1, . . . , n. (3)

The corresponding joint pmf reads

P(X1t = x1t, . . . , Xnt = xnt | Ft−1) =
n

∏
i=1

e−λit λ
xit
it

xit!
. (4)

The dynamics of the conditional intensity λt = E[Xt | Ft−1] follows

λt = ω +
n

∑
i=1

Aiλt−i +
q

∑
j=1

BjXt−j. (5)

Note that the elements of ω, ai, bj are assumed to be positive to ensure the positivity
of the intensity process λ. (Doukhan et al. [10] argue that the condition || A + B ||2< 1
guarantees stationarity.) In addition, we assume no contemporaneous correlation in the
counts. Consider the bivariate case for the conditional intensity process[

λ1t
λ2t

]
=

[
ω1
ω2

]
+

[
a11 a12
a21 a22

][
λ1t−i
λ2t−i

]
+

[
b11 b12
b21 b22

][
X1t−j
X2t−j

]
, t = 0,±1,±2, . . . . (6)

From Equation (6) it is clear that when A and B are diagonal, there is no dependence
structure between the intensities. Further, when a12 = 0 and b12 = 0 then the intensity of
the first process, λ1,t, depends only on its own past while the second process can depend
on the dynamics of the first one. Finally, if we restrict A to be diagonal and B to be non-
diagonal, every intensity process would depend on its past and possibly on the past of
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all of the observations. This constraint is relevant when one wants to apply graphical
modeling to this problem.

2.3. Quasi-Maximum Likelihood for MACI Models

In this section, we discuss how the inference for MACI/INGARCH models can be exe-
cuted. The details for the multivariate case have also been discussed in Doukhan et al. [10].
For these models, we make use of the classical estimation framework and in particular use
quasi-maximum likelihood estimation. The conditional quasi-likelihood for this model and
θ reads

L(θ) =
T

∏
t=1

n

∏
i=1

(
exp(−λi,t(θ))λ

xi,t
i,t (θ)

xi,t!

)
, (7)

where θ are the parameters of interest. It follows the the quasi log-likelihood function is

l(θ) =
T

∑
t=1

n

∑
i=1

(xi,t log λi,t(θ)− λi,t(θ)), (8)

and the corresponding score function reads

ST(θ) =
T

∑
t=1

n

∑
i=1

(
xi,t

λi,t
− 1
)

∂λi,t(θ)

∂θ

=
T

∑
t=1

∂λT
t (θ)

∂θ
D−1

t (θ)(X t − λt(θ)) ≡
T

∑
t=1

st(θ),

(9)

where ∂λt/∂θT is n× d matrix with d ≡ n(1 + 2n) being the dimension of the parameter
vector θ, Dt is an n× n diagonal matrix and its diagonal elements are λi,t(θ), i = 1, 2, . . . , n,
and Xt consists of elements xi,t, i = 1, 2, . . . , n, t = 1, 2, . . . , T. Thus the recursions for the
quasi-maximum likelihood estimation follow

∂λt

∂ωT = In + A
∂λt−1

∂ωT , (10)

∂λt

∂vecT(A)
= (λt−1 ⊗ In)

T + A
∂λt−1

∂vecT(A)
, (11)

∂λt

∂vecT(B)
= (X t−1 ⊗ In)

T + A
∂λt−1

∂vecT(B)
. (12)

Finally, the Hessian matrix and the conditional information matrix are correspondingly

HT(θ) =
T

∑
t=1

n

∑
i=1

xi,t

λ2
i,t(θ)

∂λi,t(θ)

∂θ

∂λi,t(θ)

∂θT −
T

∑
t=1

n

∑
i=1

(
xi,t

λi,t(θ)
− 1)

∂2λi,t(θ)

∂θ∂θT , (13)

GT =
T

∑
t=1

∂λT
t (θ)

∂θ
D−1

t (θ)ΣtD−1
t (θ)

λt(θ)

∂θT . (14)

Further, one can show that Sn(θ) = 0 has a unique solution, θ̂, which is strongly
consistent and asymptotically normal. For further details of these properties, we refer
the reader to Doukhan et al. [10]. However, that theoretical properties of θ̂ are proven
under assumption that the true value θ0 belongs to the interior of the parameter space Θ.
The problems certainly arise when the true parameter is close or on the boundary of the
parameter space. Dealing with the theoretical problems of the constrained optimization
and parameters near or on the boundary of parameter space is out of the scope of this
paper and generally establishing the theory for this case is a complicated task. One of the
possible solutions is to exploit bootstrap methods for this task, see Hilmer et al. [31] for a
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comparison of some bootstrap methods related to this sort of problem and review of other
possible approaches.

2.4. Log-Linear Autoregressive Model

Log-linear models have appeared in the count data literature in the recent years [10]
and have good potential since they allow for both positive/negative correlation and avoid
parameter boundary problems which MACI models suffer from.

Xi,t | F X,λ
t−1 ∼ Poisson(λi,t), (15)

νt = ω + Aνt−1 + B log(X t−1 + 1n), t ≥ 1, (16)

where FY ,λ
t−1 is the σ−field generated by {X0, . . . , X t, λ0}, 1n is the n-dimensional vector of

ones, νt ≡ log λt. Parameters of this model, ω, A, and B, do not have to be positive which
makes this model more attractive than MACI.

2.5. Quasi-Maximum Likelihood for Log-Linear Models

The inference in log-linear models is very similar to the quasi-maximum likelihood
approach derived for MACI models in Section 2.3. Only minor adjustments have to be
made in corresponding recursions [10]. In particular, the score function for the log-linear
model reads

ST(θ) =
T

∑
t=1

n

∑
i=1

(xi,t − exp(νi,t(θ)))
∂νi,t(θ)

∂θ
=

T

∑
t=1

∂νT
t (θ)

∂θ
(Xt − exp(νt(θ))), (17)

the Hessian matrix is

HT(θ) =
T

∑
t=1

n

∑
i=1

exp(νi,t(θ))
∂νi,t(θ)

∂θ

∂νi,t(θ)

∂θT −
T

∑
t=1

n

∑
i=1

(xi,t − exp(νi,t(θ)))
∂2νi,t(θ)

∂θ∂θT , (18)

and the conditional information matrix for the log-linear model reads

GT(θ) =
T

∑
t=1

n

∑
i=1

exp(νi,t(θ))
∂νi,t(θ)

∂θ

∂νi,t(θ)

∂θT . (19)

Doukhan et al. [10] prove theoretical properties of this model. In particular, they show
that there exists a unique solution θ̂ which is strongly consistent and asymptotically normal.
The authors also show that the condition ∑∞

j=0 || AjB ||2< 1 guarantees both stationarity
and weak dependence.

2.6. Multivariate Poisson Distribution

To allow for contemporaneous correlation, we need to use trivariate reduction tech-
nique discussed before. We consider the bivariate case to give an example, assume that
there are three independent random variables Y1, Y2, Y3 with positive means λ1, λ2, λ3
respectively. Define random variables X1 = Y1 + Y3 and X2 = Y2 + Y3. The new random
variables will have means λ1 + λ3 and λ2 + λ3, where λ3 would also correspond to the
covariance between X1 and X2. The covariance is clearly restricted to be positive, while
correlation will lie between 0 and min{

√
λ1+λ3√
λ2+λ3

,
√

λ2+λ3√
λ1+λ3

}. Thereby the joint pmf of interest,
alternative to what we have in Equation (3), becomes

P(X1t = x1t, X2t = x2t | Ft−1) =e−(λ1+λ2+λ3)
λx1

1 λx2
2

x1!x2!

×
min(x1,x2)

∑
i=0

(
x1
i

)(
x2
i

)
i!
(

λ3

λ1λ2

)i
.

(20)
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Extending this approach to contemporaneous correlation in higher dimensions is
not trivial. Suppose that we would like to model n Poisson random variables, thus Xi ∼
Poisson(λi), i = 1, . . . , n. By defining a random variable X0 ∼ Poisson(λ0) and extending
the argument of the trivariate reduction we can define random variables X1 = Y1 +Y0, X2 =
Y2 + Y0, . . . , Xn = Yn + Y0. The joint pmf is

P(X1 = x1, X2 = x2, . . . , Xn = xn) = exp(−
n

∑
i=1

λi)
n

∏
i=1

λ
xi
i

xi!

×
m

∑
i=0

n

∑
j=1

(
xj
i

)
i!
(

λ0

∏n
i=1 λi

)i
,

(21)

where m = min(x1, x2, . . . , xn). This approach assumes that the covariance is the same
for all the pairs of Poisson random variables which is very restrictive. Karlis and
Meligkotsidou [9] consider the case with richer covariance structure which we discuss
further. For simplicity, assume we want to model trivariate time series of counts
Y1, Y2, Y3. As before, let us specify through Xi and Xij univariate Poisson random
variables, i.e., Xi ∼ Poisson(λi) and Xij ∼ Poisson(λij) with i, j ∈ {1, 2, 3}, i < j. Then
the random variables Yi with i ∈ {1, 2, 3} are defined in the following way

Y1 = X1 + X12 + X13,

Y2 = X2 + X12 + X23,

Y3 = X3 + X13 + X23.

(22)

Thus, Yi ∼ Poisson(λi + λij + λik), where i, j, k ∈ {1, 2, 3}, i 6= j 6= k. Finally, these ran-
dom variables follow the Poisson distribution with λ = (λ1, λ2, λ3, λ12, λ13, λ23), and hence
with the mean vector Aλ = (λ1 + λ12 + λ13, λ2 + λ12 + λ23, λ3 + λ13 + λ23)

′. The variance-
covariance matrix for this distribution is given by

AΣA′ =

λ1 + λ12 + λ13 λ12 λ13
λ12 λ2 + λ12 + λ23 λ23
λ13 λ23 λ3 + λ13 + λ23

 (23)

It is clear from the above examples that the modeling of the time series of counts
with multivariate Poisson distribution in higher dimensions is restrictive and cumbersome.
It is restrictive, since it allows only for positive dependency in the data, which can be
unreasonable for real-world applications. It is cumbersome since the method is only
computationally tractable when one has low counts data, see Equation (21) in which the
number of terms in the sum depends on the number of observed counts. Methods such
as expectation maximization can be applied in this case but they are not trivial and stable
in case of high counts. Moreover, in this case, incorporation of the multivariate Poisson
distribution into MACI or log-linear models also affects computational speed substantially,
and these models lose their attractiveness over more complex models such as nonlinear
state-space models in the next section.

3. Parameter Driven Model: Nonlinear State-Space Model

The advantage of parameter driven models is the clear interpretability of the model
parameters and the high degree of flexibility. The model can easily incorporate different
distributions and extends easily to the multivariate framework. Moreover, in the Bayesian
framework, we have coherent inferential tools derived from the posterior distributions
of the parameters, such as highest posterior density intervals. These models also take
into account uncertainty about the parameters which is incorporated into predictions.
The disadvantage of this approach is challenging estimation procedures that are com-
putationally intensive. Hence, even though theoretically estimation methodologies are
possible to extend to any dimension, in practice that is not feasible due to the time con-
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straints. In this paper, we estimate the parameter-driven model for multivariate count data
using Sequential Monte Carlo and particle Markov Chain Monte Carlo. These methods
became popular with the availability of more computational power. They are restricted
in some ways, and we will discuss these restrictions in the next subsections after intro-
ducing the nonlinear state space model (SSM), which we will compare to the observation
driven models.

3.1. Multivariate SSM

A state-space model is usually presented by an observation equation and a state
equation. The state equation represents a latent process, say ht, which drives the dynamics
of observations yt. In the multivariate SSM for count data below, this dependence between
the observations and the state is nonlinear

Xit ∼ Poisson(λit), i = 1, 2, . . . , n (24)

λt = β exp(ht) (25)

ht =
n

∑
i=1

Φiht−i + ηt, Ση =


σ2

η1
ρη12 . . . ρη1n

ρη21 σ2
η2

. . . ρη2n
...

...
. . .

...
ρηn1 . . . . . . σ2

ηn ,

 (26)

where ηt ∼ N(0, Ση). Equation (24) shows that the observations have Poisson distribution
with mean λt defined through the Equation (25), and λt nonlinearly depends on the
latent process ht which is defined through Equation (26). Note that the latent process is
defined through a VAR(p) process, and hence corresponding theory applies. In particular,
the stationarity condition is that the roots of the Equation (27) must lie outside the unit circle

| λp In − λp−1Φ1 − . . . Φp |= 0. (27)

The dependence structure between counts is modeled through the dependence in
the latent process. Conditioned on the latent process {ht}T

t=1 the observations {Xt}T
t=1

are independent. Furthermore, since the latent process of the model is a VAR(p), we
can account for various dependence structures: positive and negative contemporaneous
correlation, and positive and negative Granger-causal feedback.

These models are challenging to estimate, and an assumption of p = 1 can simplify the
inference. (For extending the model to p > 1 we advise the reader to consider using sparse
priors, such as Minnesota prior, spike and slab or horseshoe prior.) Bivariate specification
of the nonlinear state-space model with the lag p = 1 reads

Xit ∼ Poisson(λit), i = 1, 2 (28)

λit = βi exp(hit), i = 1, 2. (29)(
h1,t+1
h2,t+1

)
=

(
φ11 φ12
φ21 φ22

)(
h1,t
h2,t

)
+

(
η1t+1
η2t+1

)
, Ση =

(
σ2

η1
ρη12

ρη21 σ2
η2

.

)
(30)

The dependence structure between series is described by the Granger-causal relation-
ship in the latent processes hit and contemporaneous relations that are incorporated in Ση .
For example, we say that h2,t does not Granger-cause h1,t if φ12 = 0. Correlation coeffi-
cient ρ in this model allows us to model both positive and negative correlation between
the counts.

3.2. Bayesian Inference in Multivariate SSM

The estimation of nonlinear state-space models naturally fits into the Bayesian frame-
work. The presence of the unobservable process in the model and nonlinear dependence
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of the observations on this unobservable process leads to an intractable likelihood and
posterior. For this reason, and due to the nonlinear SSM structure, we use particle Markov
Chain Monte Carlo (PMCMC) for the estimation of the posterior distribution of the model
parameters Andrieu et al. [21]. The method consists of two parts. First, the likelihood is
estimated in a sequential manner through a particle filter. Second, this estimate is used
within an MCMC sampler, in our case Metropolis-Hastings algorithm. An extensive intro-
duction to nonlinear state-space models and particle filtering can be found, for example,
in Särkkä [32].

Recall the Bayes rule on which the inference is based

p(h1:T |x1:T) =
p(x1:T |h1:T)π(h1:T)

p(x1:T)
, (31)

where π(h1:T) is the prior distribution on the parameters of the volatility process defined
by the dynamic model, p(x1:T |h1:T) is the likelihood of the observations, p(x1:T) is the
normalization constant that is ignored during the inference. Thus, we use Bayes rule in
proportionality terms

p(h1:T |x1:T) ∝ p(x1:T |h1:T)π(h1:T). (32)

We use particle Metropolis-Hastings to estimate the posterior distribution of the
parameters of the model since neither the likelihood nor the posterior are available in
closed form. We use Metropolis-Hastings algorithm to sample from the posterior of
the parameters. Algorithm 1 presents an iteration of the Metropolis-Hastings algorithm.
At every iteration of the algorithm we make a new proposal θc

i for the parameter vector
using a proposal mechanism q(·|θ(i)). Then we accept the proposed candidate θc

i with
probability α. The acceptance probability in Algorithm 1 depends on p(θ, h1:T |x1:T)—
target distribution—and q(·)—proposal distribution. How well we manage to explore
the posterior distribution depends on the acceptance rate of the algorithm. When the
acceptance rate is too high it is often related to too small proposal steps, and the other
way around. Overall, either case slows down the convergence of the Markov Chain.
General advice for the optimal performance of the algorithm is an acceptance rate that is
around 0.234 [33].

Algorithm 1 Particle Metropolis-Hastings Algorithm

1: Given θ(i),
2: Generate θc

i ∼ q(·|θ(i)),
3: Take

θ(i+1) =

{
θc

i , with probability ρ(θ(i), θc
i )

θ(i) with probability 1− ρ(θ(i), θc
i ),

where

ρ(θ(i), θc
t ) = min

(
pc

θi
(x1:T)

p(i)θ (x1:T)

π(θc
i )

π(θi)

q(θ(i)|θc
i )

q(θc
i |θ(i))

, 1

)

Using Algorithm 1 we obtain samples from otherwise intractable distribution
p(θ, h1:T |x1:T). Note, that pc

θi
(x1:T) and p(i)θ (x1:T) are also intractable. Thus, in practice

we substitute them with the estimates p̂θc
i
(x1:T) and p̂θ(i)(x1:T) obtained with Sequential

Monte Carlo.
We further discuss how pθ(x1:T) can be estimated.
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3.3. Estimation of the Likelihood with SMC

Sampling from the posterior distribution with algorithms such as Metropolis-Hastings
requires evaluationg the likelihood. In case of non-linear state-space models, this likelihood
evaluation is not straightforward since the likelihood is a high dimensional integral

L(x1:T) =
∫

p(x1:T , h1:T)dh1:T =
∫

p(x1:T |h1:T)p(h1:T)dh1:T

=
∫

p(x1|h1)p(h1)
T

∏
t=2

p(xt|ht)p(ht|ht−1)dh1 . . . hT ,
(33)

and this likelihood is not analytically tractable. Instead of relying on an analytical result,
the integral from Equation (33) can be approximated using Sequential Monte Carlo methods,
also known as particle filters. This estimate of the likelihood is then used in Algoperithm 1
as p̂θ(x1:T). Algorithm 2 represents a simple version of a particle filter which we use in this
paper. The algorithm consists of three main steps: prediction, updating and resampling.
In the prediction step we sample N particles according to the assumed dynamics of the
latent process p(ht|ht−1). Then we weight each particle according to the distribution of
the data given the latent state p(xt|ht). Finally, in the resampling step we resample the
particles according to these weights. Resampling step is meant to solve the known problem
of particle degeneracy: without resampling we end up only with a few particles with high
weights over time.

Algorithm 2 Bootstrap Particle Filter with resampling

1: Draw a new point h(i)t for each point in the sample set {h(i)k−1 : i = 1, . . . , N} from the
dynamic model:

h(i)t ∼ p(ht|h(i)t−1), i = 1, . . . , N.

2: Calculate the weights
ω
(i)
t ∼ p(xt|h(i)t ), , 1, . . . , N,

and normalize them to sum to unity.
3: Compute the estimate of p(xt|x1:t−1, θ) as

p(xt|x1:t−1, θ) = ∑
i

log ω
(i).
t

Perform resampling:
4: Interpret each weight ω

(i)
t as the probability of obtaining the sample index i in the set

{h(i)t : i = 1, . . . , N}.
5: Draw N samples from that discrete distribution defined by the weights and replace the

old samples set with this new one.

The particle filter provides us with the sequence of distributions p(ht|xt), however
due to particle degeneracy problem discussed previously, sampling from p(h1:T |x1:T) and
approximating p(hk|x1:T), k = 1, . . . , T, is inefficient. One of the possible solutions to
this problem is using so called forward filtering - backward smoothing recursions [34].
The algorithms starts with sampling h∗T ∼ p̂(hT |x1:T), and then backwards for k = T −
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1, T− 2, . . . , 1, we sample h∗k ∼ p̂(hk|h∗k+1, x1:n) . Then we can approximate the distribution
p̂(hk|x1:T) as follows

p̂(hk|x1:T) =
N

∑
i=1

Wi
k ×

 N

∑
j=1

W j
k+1|T

f (h∗,jk+1|h
∗,i
k )

[∑N
l=1 W l

k f (h∗,jk+1|h
∗,l
k )]

δh∗,ik
(hk)


=

N

∑
i=1

Wi
k|Tδh∗,ik

(hk).

(34)

The smoothing comes at cost of O(NT) operations to sample a path from p(h1:T |x1:T)
and O(N2T) operations to approximate p(hk|x1:T). This method works very well, in par-
ticular when dealing with large sample sizes. However, its performance comes at the
price of a high computational costs. Thereby, it is generally recommended to use it when
the sample size of the data is large and hence Sequential Monte Carlo is more likely to
suffer from particle degeneracy. There exist other methods that are computationally less
expensive [34]. However, in higher dimensions, they would be less reliable, and it would
be recommendable to use more expensive methods.

3.4. Forecasting with SSM

One of the interests of statistical inference is the ability to perform forecasting exercises
and thus handling the uncertainty about the future in the best possible way. In this section,
we will discuss how forecasting task fits into the Bayesian framework, and in particular
how it can be done for models of our interest.

Recall that we estimated multivariate SSM model for count data in the Bayesian
framework. Observing the data x = (x1, . . . , xT) we estimated the posterior distribution of
the parameters in our model using particle Markov Chain Monte Carlo methods p(θ|x).
Suppose that we are interested in predicting the next s observations, that is, xT+1, . . . , xT+s.
First, note that the prediction equation for the next step reads

p(xt+1|xt) =
∫

p(xt+1|ht+1)p(ht+1|xt)dht. (35)

In the framework of particle Markov Chain Monte Carlo, it is natural to adopt a
sequential nature of SMC and the fact that we obtain posterior draws in the MCMC part
of the algorithm. Thereby, for every vector θ of the parameters drawn in the MCMC, we
can propagate the particles obtained at time T and based on those make one-step ahead
forecast. The similar idea extends to s-steps ahead forecasts. In this case the uncertainty
about the parameters is included in the forecasts.

When forecasting, the most natural but cumbersome approach would be to update
the posterior distribution every time we get a new observation. It would mean that we
generate as many MCMC chains as we have steps for forecasting. This can be carried out
in a straightforward way by re-estimating the posterior distribution every time or more
efficiently by incorporating this into the SMC framework. However, for large enough
samples, adding an extra estimation into the PMCMC framework should not change the
results substantially. Ignoring this update also makes the forecasting performance of the
frequentist and Bayesian approaches more comparable. Both frameworks are estimated in
different paradigms. While SSM naturally fits into the Bayesian paradigm, the log-linear
model is usually estimated using frequentist methods (quasi-maximum likelihood in this
case). Since our goal is not to compare the two approaches to statistics, this design of
forecasting exercise is more fair.

Figure 2 illustrates the forecasting approach we undertake with the state-space model
in a graphical representation. In particular, one can see that we do not re-estimate the
posterior distribution every time we receive a data point.
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θi,T θi+1,T θi+2,T θM−1,T θM,T

θi,T+1 θi+1,T+1 θi+2,T+1 θM−1,T+1 θM,T+1

θi,T+2 θi+1,T+2 θi+2,T+2 θM−1,T+2 θM,T+2

θi,T+s θi+1,T+s θi+2,T+s θM−1,T+s θM,T+s

Figure 2. Visual representation of forecasting with the state-space model for count data.

4. Model Comparison and Prediction Assessment

We next summarize the measures using which we compare the models in Sections 2 and 3.
Observation driven models in this comparison are represented by the log-linear autoregressive
model. The log-linear autoregressive model is more flexible than the MACI model since
it can account for a negative correlation and thus it is a fairer competitor. The parameter
driven approach is the state-space model, where observations are generated from the Poisson
distribution and dependency is modeled through a latent process. Note that, for the latter
framework, we follow a fully Bayesian approach. Thereby, we compare these two classes of
models by model fit and forecasting performance criteria. The standard measures to access
the model fit and forecast accuracy would be Mean Squared Error (MSE) and Mean Absolute
Error (MAE) defined in Equation (36) respectively.

MSE =
1
s

s

∑
i=1

(xi − x̂i)
2, MAE =

1
s

s

∑
i=1
|xi − x̂i|2. (36)

In Czado et al. [35] the authors propose comparing forecast performance using some
scoring rules. To define scoring rules, let P be the predictive distribution and x be the
counts; then the penalty is defined through s(P, x). Table 1 presents some of the scoring
rules one can use for comparing the performance of count data models.

Table 1. Scoring rules for assessment of the forecasts. The table summarizes scoring rules that we use
to assess forecasting performance of the models under consideration, proposed in Czado et al. [35]
for count data.

Logarithmic score log(P, x) = − log px

Quadratic score qs(P, x) = −2px+ || p ||2

Spherical score sphs(P, x) = − pi
||p|| ,

where || p ||2= ∑∞
k=0 p2

k

Rank probability score rps(P, x) = ∑∞
k=0{Pk − 1(x ≥ k)}2

Squared error score ses(P, x) = (x− µp)2,
where µp is the mean of P
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Note, that in practice, one calculates the mean score

S =
1
n

n

∑
i=1

s(P(i), x(i)). (37)

To compare our results with the conclusions in Zhang et al. [19] we also report Dawid-
Sebastiani (DS) score which is defined in Equation (38)

DSSt,i(X t,i) =
Xt,i − µt,i

σt,i
+ 2 log(σt,i). (38)

5. Simulation Examples

In this section, we demonstrate the performances of the models based on simulated
data. We generate data from various specifications of SSM and log-linear MACI models
and compare the models on forecasting performance. We assess forecasting performance
based on six different scoring measures discussed in the previous section. The design of the
simulation study allows us to assess forecasting performance in the cases of both correct
model specification and misspecified case. Table 2 summarizes three different specifications
of the state-space approach for data generation and Table 3 summarizes specifications of
the log-linear MACI for data generation. Figure 3 illustrates two examples of bivariate time
series generated from these models. For each simulation setting, we generate ten datasets
with different random seeds and report the average results from these ten datasets. State-
space model was estimated using particle Metropolis-Hastings algorithm with N = 5000
particles and M = 20000 Metropolis-Hastings step with a warm-up period of 5000 steps.
The acceptance rate was targeted to be between 25% and 40%.

Table 2. True parameters for the data sets generated from the state-space model in the simulation
examples. All data generating processes include a one-directional Granger-causal feedback through
a non-zero coefficient φ21 and different correlation structures: SSM1 has a positive correlation
coefficient ρ, SSM2 has a negative correlation coefficient ρ and SSM3 has no correlation.

Data Set β1 β2 φ11 φ21 φ12 φ22 ση1 ση2 ρ

SSM1 1.0 2.0 0.5 0.3 0.0 0.5 0.5 0.5 0.3

SSM2 1.0 2.0 0.5 0.3 0.0 0.5 0.5 0.5 −0.3

SSM3 1.0 2.0 0.5 0.3 0.0 0.5 0.5 0.5 0.0

Table 3. True parameters for the data sets generated from the log-linear MACI model in the simu-
lated examples.

Data Set ω1 ω2 a11 a22 b11 b12 b21 b22

LL1 0.9 0.4 −0.5 0.2 0.5 0.2 0.0 0.4

LL2 0.2 0.3 0.2 0.4 0.5 0.2 0.0 0.4

We assess the forecasting performance of two models for multivariate count data: state-
space model and log-linear model. Tables 4 and 5 summarize the forecasting performances
of the models according to various scoring rules. The rows of the tables correspond to
a particular data generating process (see for details of specification Tables 2 and 3) and
columns for a particular scoring rule (see scoring rules specification in Table 1). In particular,
Table 4 shows performance of the state-space model and Table 5 the performance of the
log-linear model. The state-space model outperforms the log-linear MACI model when the
data are generated from SSM1 (SSM with positive correlation) and LL1 (log-linear model
with a negative a11 coefficient). It is particularly interesting that when the data is simulated
from LL1, SSM performs best according to all measures despite being a misspecified model.
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When the data are generated from SSM2 and SSM3, the state-space approach performs best
based on most measures. This result is expected as SSM is the correct model specification
for these simulated data. Finally, log-linear MACI model performs best in the case of
data set LL2—in the case when the model is correctly specified and all the coefficients are
positive—according to most measures.
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Figure 3. Examples of the data generated with the state-space and log-linear MACI models. (a) Di-
mension 1 of the bivariate time series generated from SSM2 in Table 2. (b) Dimension 2 of the
bivariate time series generated from SSM2 in Table 2. (c) Dimension 1 of the bivariate time series
generated from LL2 in Table 2. (d) Dimension 2 of the bivariate time series generated from LL2
in Table 2.

Table 4. Scores for the forecasting exercise with the state-space model, according to the definitions in
Table 1. The smaller score indicates a better result. DGP column corresponds to the data generating
processes in this simulation study, the true parameters are presented in Tables 2 and 3.

DGP log qs sph rps ds se

SSM1 1.484 −0.229 −0.440 0.770 2.352 2.634
SSM2 1.861 −0.235 −0.487 1.000 3.136 3.551
SSM3 1.967 −0.224 −0.475 0.948 3.599 4.075
LL1 1.959 −0.164 −0.405 0.974 2.176 3.214
LL2 1.351 −0.293 −0.543 0.545 1.103 1.087

Table 5. Scores for the forecasting exercise with the log-linear MACI model. The smaller score
indicates a better result. DGP column corresponds to the data generating processes in this simulation
study, the true parameters are presented in Tables 2 and 3.

DGP log qs sph rps ds se

SSM1 1.636 −0.321 −0.553 0.999 2.612 3.088
SSM2 2.089 −0.164 −0.391 1.333 2.614 5.180
SSM3 1.929 −0.220 −0.469 0.948 3.464 4.187
LL1 1.985 −0.159 −0.400 0.996 2.238 3.357
LL2 1.320 −0.309 −0.555 0.555 1.036 1.023
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6. Empirical Applications

In this section, we compare the models in two empirical applications—bank failures
and transactions data. These data sets exhibit different sample sizes, standard deviation,
dispersion and maximum counts. In particular, bank failure time series reach a maximum
of 10 and 24 counts while transaction data reach up to 67 and 60 counts with comparable
mean counts.

6.1. Bank Failures

Bank failures have been analyzed using a univariate Poisson process [36]. A num-
ber of researches have investigated bank failure data of different time periods, see e.g.,
Schoenmaker [1] for an analysis of contagion risk in banking. Overall, it is reasonable to
expect that bank failures in different countries are driven by similar economic phenomena,
and possible contagion/spillover effects exist between economies of different countries.

For this application, we analyze count data using a bivariate data set of bank failures
in the U.S. and Russia that has not been considered in the literature before. We use monthly
number of bank failures for the period between January 2008 and December 2012 for
both countries and apply the bi-variate specifications of the models in Sections 2 and 3.
Especially due to the global financial crisis included in this period, it is important to allow
for potential correlation between the number of bank failures in the U.S. and Russia using
the multivariate count data models. Figure 4 illustrates these time series and Table 6
presents descriptive statistics for this data set.
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Figure 4. Data for bank failures empirical application. (a) Monthly bank failures in Russia January
2008–December 2012. (b) Monthly bank failures in the U.S. January 2008–December 2012. (c) Scatter
plot of data bank failures in subplots (a,b).
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Table 6. Descriptive statistics for the bank failures data for the period January 2008 until December
2012 for Russia and U.S.

Russia U.S.

mean 3.51 7.93
median 3 7
st.d. 2.46 5.93
minimum 0 0
maximum 10 24

The estimation results from both models are presented in Tables 7 and 8. Based on
the state-space model, the correlation is estimated as being low negative and 0 is included
in highest posterior density interval for this parameter. Despite that log-linear MACI
model estimates correlation coefficient to be positive, it provides a large confidence interval
for this parameter which also includes 0. Thus, for this relatively small data set, we do
not find an indication of correlated bank failures using both models. We also note that
some confidence intervals in Table 8 include point 0. As discussed in Section 2, applying
observation driven models with positivity constraints would be problematic for these data
especially in terms of the calculation of confidence intervals.

Table 7. Posterior moments of the parameters of the state-space model for bank failures.

Mean Median Mode HPDl 95% HPDu 95%

β1 1.1450 0.8867 0.0503 0.0503 2.9481
β2 4.0414 3.7053 2.3414 1.8570 7.2843

φ11 0.9569 0.9648 0.9757 0.8968 0.9991
φ21 0.0101 0.0071 −0.0372 −0.0646 0.0856
φ12 0.1193 0.0935 −0.1856 −0.2367 0.5438
φ22 0.7387 0.7518 0.8862 0.4942 0.9733
ση1 0.3335 0.3340 0.0122 0.1722 0.5400
ση2 0.3302 0.3252 0.3189 0.1496 0.5176

ρ −0.0845 −0.0848 −0.0703 −0.1879 0.0209

Table 8. Parameter estimates of the log-linear MACI model for bank failures.

Estimate CIl 95% CIu 95%

w1 0.1259 −0.7545 1.0064
w2 −0.1307 −0.4348 0.1733
a11 0.0732 −0.5380 0.6844
a22 0.6923 0.5535 0.8312
b11 0.0403 −0.2816 0.3621
b21 0.1638 0.0190 0.3086
b12 0.3879 0.0212 0.7546
b22 0.2521 0.1069 0.3974

ρ 0.6513 −0.2131 1.5158

We next compare the models in terms of their forecast performances. For this compar-
ison, we take a sample size of T = 55, and we make five steps ahead predictions using the
log-linear model and the state-space approach. Table 9 presents scores for this forecasting
exercise. Based on all scores, except for the rank probability score (rps), the state-space
model outperforms the log-linear model in terms of forecasting. Based on the simulation
results in Section 5, we conjecture the following: The better performance of the state-space
model can be due to this model being close to the true data generating process, or due to
its property of capturing data properties well even if it is misspecified.
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Table 9. Scores for the forecasting exercise with bank failure data. This table shows scoring rules for
the forecasting exercise in the bivariate model for bank failure data.

Model log qs sph rps ds se

SSM 1.9026 −0.1738 −0.4189 0.9755 2.1619 3.0841
Log-Linear 2.0244 −0.1623 −0.3996 0.8862 2.2934 4.2031

6.2. Transactions

In this empirical application, we analyze the number of transactions on 30 s intervals
for Deutsche Bank AG and Bayer AG (the datawere obtained from FactSet, in the time
period of 3 August 2015 09:05:30 until 3 August 2015 12:25:00 for the training data). We
expect such transactions to be correlated due to their dependence on the time of the day and
the market conditions. The sample size in this application is T = 400, which is significantly
larger than the sample size in the bank failures application. The summary statistics for this
data set are provided in Table 10 and Figure 5 illustrates these time series. Both time series
have fat tails with a few very high values, concentrated around observation 100 and 1 for
Deutsche Bank and Bayer AG, respectively.
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Figure 5. Data for transactions empirical application. (a) Transactions in 30 s. interval for Deutsche
Bank AG. (b) Transactions in 30 sec. interval for Bayer AG. (c) Scatter plot of transactions in (a,b).

Table 10. Descriptive statistics for the transactions data.

Deutsche Bank AG Bayer AG

mean 6.95 7.716
median 5 5
st.d. 8.2462 8.227
minimum 0 0
maximum 67 60
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We apply the bi-variate counterparts of the count data models in Sections 2 and 3
to these data and compare the model performances based on 100 steps ahead forecasts.
In Tables 11 and 12 we present parameter estimates of both models. Both models estimate
positive correlation between these time series. However, in the case of the log-linear MACI
model the estimated correlation coefficient is much higher. In addition, the confidence
intervals of parameter estimates such as b12 and b22 in Table 12 include point 0. Thus, true
parameters being non-positive is a potential problem if other observation driven models,
with positivity constraints, in Section 2 were applied to these data.

Table 13 presents the scores of each model in the forecast sample. In this application,
the log-linear model performs best according to all scoring rules. Based on the simulation
results in Section 5, we conjecture that the log-linear model is potentially closer to the
true data generating process compared to the state space model. We further analyze the
forecasting performances of the models in Figure 6. Particularly in Figure 6b, we observe
that the log-linear MACI model captures better high spikes of the counts and then returns
to the original level of the data. The forecast with the state-space model appears to be too
smooth compared to the data points. Thus, the better forecast performance of the log-linear
MACI is potentially due to its ability to capture these extreme data values successfully.

The under-performance and over-smoothing of the state-space approach can be miti-
gated by implementing a different particle filter. For example, one could take the direction
of implementing look-ahead particle filters such as [37,38]. General idea of the look-ahead
approaches is that in the particle filtering algorithm we make a proposal not just according
to the dynamics of the model p(ht|ht−1), but taking the current observation into account
p(ht|ht−1, yt) or taking into account the complete time series p(ht|ht−1, y1:T) as in [38].
These methods, however, have not been developed for the distributional assumptions we
are considering in this paper and further research is needed in this direction.

Table 11. Posterior moments of the para maters for the state space model for transactions.

Mean Median Mode HPDl 95% HPDu 95%

β1 4.5049 4.4860 4.3782 3.9274 5.1238
β2 5.4475 5.4260 5.2161 4.7971 6.1541

φ11 0.3058 0.3048 0.3137 0.1778 0.4316
φ12 0.0180 0.0181 −0.0469 −0.1007 0.1342
φ21 0.0518 0.0533 0.1520 −0.1118 0.1890
φ22 0.3788 0.3795 0.5341 0.2414 0.5126
ση1 0.8864 0.8853 0.8759 0.8059 0.9675
ση2 0.7521 0.7519 0.7246 0.6835 0.8236

ρ 0.2400 0.2397 0.2499 0.1932 0.2875

Table 12. Parameter estimates of the log-linear MACI model for transactions.

Estimate CIl 95% CIh 95%

w1 0.1232 0.0304 0.2161
w2 −0.0741 −0.1666 0.0184
a11 0.7518 0.6826 0.8211
a22 0.5333 0.4586 0.6080
b11 0.1832 0.1471 0.2193
b21 0.0315 −0.0028 0.0659
b12 0.0024 −0.0256 0.0305
b22 0.4591 0.3847 0.5334

ρ 0.7967 0.6053 0.9881
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Table 13. Scores for transaction forecasts.

Model log qs sph rps ds se

SSM 5.0 −0.0171 −0.2059 3.4601 14.5471 49.97
Log-Linear 4.4549 −0.0232 −0.2152 3.1621 11.3674 44.429
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Figure 6. Forecasts and true data for the transactions empirical application. (a) Transactions in 30 s.
interval for Deutsche Bank AG (black circles), forecast with SSM (green), forecast with log-linear
MACI (red). (b) Transactions in 30 s. interval for Bayer AG (black circles), forecast with SSM (green),
forecast with log-linear MACI (red).

7. Discussion

In this paper, we have reviewed and compared two approaches for modeling mul-
tivariate count time series data. One of the challenges that appears in the literature and
have not been resolved is modeling the dependency between counts in a flexible way that
would also allow for feasible estimation. We have discussed multivariate autoregressive
conditional intensity models (MACI), their log-linear alternative which we refer to as
the multivariate log-linear model and nonlinear state-space model. Both models have
advantages and disadvantages. In particular, the nonlinear state-space framework allows
for various interpretable dependencies that one cannot easily incorporate into MACI or
log-linear approach. However, these models can be computationally expensive to estimate,
in particular in higher-dimensions. Challenges in estimation arise from different sources.
State-space models naturally fit into the Bayesian framework, however, since both the
likelihood and the posterior of the model are analytically intractable this leads to computa-
tionally expensive procedure. MACI models, on the other hand, are quite restrictive: they
restrict coefficients in the model to be positive as well as the correlation between time series.
Both assumptions can be unrealistic in many real-world applications. Log-linear model
avoids the problem of only positive coefficients in the model by logarithmic transformation
of the data. However, estimation can be unstable, and good starting points need to be
chosen for the estimation. When the dimension of the model grows, it becomes harder to
choose good starting points for the optimization problem. The computational advantage
of log-linear and MACI models decreases with the increase in either dimensionality of
the model or the number of counts. This reduction in the computational advantage is
due to the usage of the multivariate Poisson distribution as every pairwise correlation has
to be modeled as a separate Poisson random variable. Moreover, the summation in the
specification of the joint distribution runs through the number of counts. Generally, one
could say that estimation of log-linear models much faster than of the state-space models.
In low dimensions and with the small number of counts these models do not require much
of computational power, however, once the number of counts increases and once we deal
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with higher dimensions, the computations become much more extensive due to large sums
in the multivariate Poisson distribution. Moreover, while running the model on simulated
and empirical data, we found that the estimation can be numerically unstable and can
highly depend on the starting values in the estimation procedure. We follow the suggestion
of Doukhan et al. [10], and the first estimate the model for univariate time series. These
estimates we further use in multivariate estimation. However, the problem of numerical
instability especially remains in small samples according to our experience. Nevertheless,
in terms of flexibility, this model is the best competitor for the state-space approach.

We have compared log-linear models and state-space models for count data in terms
of forecasting performance on multiple simulated data sets and real data applications.
We found that on the simulated data state-space framework generally outperforms log-
linear model, sometimes even under model misspecification. On the real data sets, the
state-space model performs better in bank failures applications which consists of two
time series of bank failures in Russia and U.S. and the counts remain relatively low and
the data are relative smooth. The log-linear model performs better in the transactions
applications in which we consider two time series of transactions counts in 30 seconds
intervals. The challenge of transactions application is that there are spikes of counts which
deviate a lot from the mean. In this case, we notice that the log-linear model approximates
these spikes better. Thus, a possible direction for future research is adapting a multivariate
state-space model for count data to capture such spikes better. A possible way to improve
the model in this regard would be to adapt the particle filtering algorithm. We used
bootstrap particle filter which does not take into account observations when making a
proposal for particles, but taking current (or all) observation into account in the proposal
mechanism for the particles can help approximating the spikes in the data. There have
been proposed multiple look-ahead approaches for particle filters [37,38], but they have
not been adapted to count data.

Finally, both approaches have their drawbacks. In particular, the log-linear model
seems to have numerical stability issues and finding optimal starting values for optimiza-
tion can be a challenge. In the state-space approach, the challenging part is the estimation
of the likelihood, which is intractable and sampled from the posterior distribution. Ad-
ditionally, the state-space model in its current implementation is challenged by possible
spikes in the data to a larger degree than the log-linear model.
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Abbreviations
The following abbreviations are used in this manuscript:

SSM State-Space Model
MACI Multivariate Autoregressive Conditional Intensity
INGARCH Integer-Valued Generalized Autoregressive Conditional Heteroskedastic Model
MCMC Markov Chain Monte Carlo
PMCMC Particle Markov Chain Monte Carlo
SMC Sequential Monte Carlo
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