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Abstract: A Poisson distribution is commonly used as the innovation distribution for integer-valued
autoregressive models, but its mean is equal to its variance, which limits flexibility, so a flexible,
one-parameter, infinitely divisible Bell distribution may be a good alternative. In addition, for a
parameter with a small value, the Bell distribution approaches the Poisson distribution. In this
paper, we introduce a new first-order, non-negative, integer-valued autoregressive model with Bell
innovations based on the binomial thinning operator. Compared with other models, the new model
is not only simple but also particularly suitable for time series of counts exhibiting overdispersion.
Some properties of the model are established here, such as the mean, variance, joint distribution
functions, and multi-step-ahead conditional measures. Conditional least squares, Yule–Walker, and
conditional maximum likelihood are used for estimating the parameters. Some simulation results are
presented to access these estimates’ performances. Real data examples are provided.

Keywords: Bell distribution; count time series; estimation; INAR; overdispersion

1. Introduction

In recent years, studying count time series has attracted a lot of attention in different
fields, such as finance, medical science, and insurance. There are many models for count
data that have been proposed by scholars. The most famous model was first introduced by
McKenzie (1985) [1] and Al-Osh and Alzaid (1987) [2] based on the binomial thinning ◦
operator (Steutel and van Harn 1979 [3]) called the first-order integer-valued autoregressive
(INAR(1)) process. Given a non-negative integer-valued random variable (r.v.) X and a
constant α ∈ (0, 1), the binomial thinning operator ◦ is defined as α ◦ X = ∑X

i=1 ξi, where
the counting series ξi is a sequence of independent identically distributed (i.i.d.) Bernoulli
r.v.s with P(ξi = 1) = 1− P(ξi = 0) = α. Then, the form of the INAR(1) model is

Xt = α ◦ Xt−1 + εt, t = 0, 1, 2, . . . , (1)

where εt is a sequence of i.i.d. discrete r.v.s, with the mean µε and finite variance σ2
ε . εt is

independent of ξi and Xt−s for s ≥ 1. According to Alzaid and Al-Osh (1988) [4], we know
that the mean and variance of the INAR(1) model are

µ := µX =
µε

1− α
and σ2 := σ2

X =
σ2

ε + αµε

1− α2 , respectively.

For innovation εt, the Poisson distribution is often assumed as the distribution of
εt in the INAR(1) model. A natural characteristic of the Poisson distribution is equidis-
persion; i.e., its mean and variance are equal to each other. In practice, however, many
data examples are overdispersed (variance is greater than mean) relative to the Poisson
distribution. For this reason, the INAR(1) model with Poisson innovations is not always
suitable for modeling integer-valued time series. Therefore, several models which describe
the overdispersion phenomena have been discussed in the statistical literature.
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One common approach is to change the thinning operation in the INAR(1) model.
Weiß (2018) [5] summarized several alternative thinning operators, such as random co-
efficient thinning, iterated thinning and quasi-binomial thinning. Ristić et al. (2009) [6]
proposed the negative binomial thinning operator and defined the corresponding INAR(1)
process with geometric marginal distributions. Liu and Zhu (2021) [7] generalized the
binomial thinning operator to the extended binomial one.

Changing the distribution of innovations is also used to modify the INAR(1) model.
Jung et al. (2005) [8] indicated that the INAR(1) model with negative binomial inno-
vations (NB-INAR(1)) is appropriate for generating overdispersion. Jazi et al. (2012) [9]
defined a zero-inflated Poisson ZIP(ρ, λ) for innovations (ZIP-INAR(1)), because a fre-
quent occurrence in overdispersion is that the incidence of zero counts is greater than
expected from the Poisson distribution. Jazi et al. (2012) [10] proposed a modification of
the INAR(1) model with geometric innovations (G-INAR(1)) for modeling overdispersed
count data. Schweer and Weiß (2014) [11] investigated the compound Poisson INAR(1)
(CP-INAR(1)) model, which is suitable for fitting datasets with overdispersion. Accord-
ing to Schweer and Weiß (2014) [11], we can also know that the negative binomial dis-
tribution and the geometric distribution both belong to the compound Poisson distri-
bution. Livio et al. (2018) [12] presented the INAR(1) model with the Poisson–Lindley
innovations, i.e., PL-INAR(1). Bourguignon et al. (2019) [13] introduced the INAR(1) model
with the double Poisson (DP-INAR(1)) and generalized Poisson innovations (GP-INAR(1)).
Qi et al. (2019) [14] considered zero-and-one inflated INAR(1)-type models, and Cunha et al.
(2021) [15] introduced an INAR(1) model with Borel innovations to model zero truncated
count time series.

This paper applies the second approach to dealing with overdispersion. Although sev-
eral models have been proposed in recent years, most of the considered distributions
are based on some generalizations of the Poisson distribution and have more than one
parameter, such as the zero-inflated Poisson, compound Poisson, double Poisson, and gen-
eralized Poisson distributions. Here we use a relatively simple distribution introduced by
Castellares et al. (2018) [16] for the innovations, i.e., the Bell distribution. It has the advan-
tages of having only one parameter, belonging to the exponential family, having a simple
probability mass function, and having infinite divisibility. Infinite divisibility is significant
for constructing the binomial thinning INAR(1) model. Further, the Bell distribution is
suitable for modeling some overdispersed count data. Therefore, we introduce a new
INAR(1) model with Bell innovations (BL-INAR(1)), which can account for overdispersion
in an INAR(1) framework.

In order to observe whether the BL-INAR(1) model has advantages, we compare it
with the INAR(1) model with Poisson innovations (P-INAR(1)), G-INAR(1), PL-INAR(1),
NB-INAR(1), ZIP-INAR(1), DP-INAR(1), and GP-INAR(1) models. Different informa-
tion criteria, such as Akaike’s information criterion (AIC) [17], the Bayesian informa-
tion criterion (BIC) [18], the consistent Akaike information criterion (CAIC) [19], and the
Hannan–Quinn information criterion (HQIC) [20], are used to compare the above eight
models. By comparing the results of different information criteria, it can be seen that the
BL-INAR(1) model is competitive when modeling the overdispersed integer-valued time
series data, which shows that the proposed BL-INAR(1) model is meaningful; see Section 5
for more details.

We organize the remaining parts of this paper as follows. In Section 2, we briefly
review the Bell distribution, including its definition and some properties. Then we propose
the BL-INAR(1) model, and its basic properties are constructed; conditional mean and
variance are obtained. Section 3 discusses estimates of the model parameters by using the
conditional least squares (CLS), Yule–Walker (YW), and conditional maximum likelihood
(CML) methods. In Section 4, a numerical simulation of the estimates is presented with
some discussions. In Section 5, we compare the proposed model with the other seven
INAR(1)-type models when fitting two real data examples, which show the superior
performances of the proposed model. The paper concludes in Section 6.
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2. The BL-INAR(1) Model

In this section, we present a brief review of the Bell distribution (Castellares et al., 2018 [16]).
Its definition and some properties are presented. Later we introduce the BL-INAR(1) model
and derive some basic properties of it.

2.1. The Bell Distribution

At first, we introduce the Bell numbers. Bell (1934) [21] has provided the following expansion:

exp(ex − 1) =
∞

∑
n=0

Bn

n!
xn, x ∈ R,

where Bn is the Bell number defined by

Bn =
1
e

∞

∑
k=0

kn

k!
. (2)

The Bell number Bn is the n-th moment of the Poisson distribution with parameter equal
to 1. Some Bell numbers are listed as follows. B0 = B1 = 1, B2 = 2, B3 = 5, B4 = 15,
B5 = 52, B6 = 203, B7 = 877, B8 = 4140, B9 = 21,147, B10 = 115,975, B11 = 678,570,
B12 = 4,213,597 and B13 =27,644,437.

For the convenience of the reader, we introduce the following definition and properties
of the Bell distribution described in Castellares et al. (2018) [16]:

Definition 1. A discrete r.v. Z taking values in N0 = {0, 1, 2, . . .} has a Bell distribution with
parameter θ > 0, denoted as Z ∼ Bell(θ), if its probability mass function is given by

Pr(Z = z) =
θze−eθ+1Bz

z!
, z ∈ N0, (3)

where Bz is the Bell number in (2).

We can see that the Bell distribution has only one parameter, and it belongs to the one-
parameter exponential family of distributions. If Z ∼ Bell(θ), the probability generating
function is

GZ(s) = E
(

sZ
)
= exp

(
esθ − eθ

)
, |s| < 1.

The mean and variance of Z are

E(Z) = θeθ and Var(Z) = θ(1 + θ)eθ , respectively. (4)

Note that Var(Z)/E(Z) = 1+ θ > 1; hence, the Bell distribution is overdispersed, which means
the Bell distribution may be suitable for count data with overdispersion in certain situations.

There are some other interesting properties of the Bell distribution, including the
following: (i) the Poisson distribution is not nested in the Bell family, but for small values of
the parameter, the Bell distribution approaches the Poisson distribution; (ii) it is identifiable,
strongly unimodal and infinitely divisible; (iii) a r.v. Z ∼ Bell(θ) has the same distribution
as Y1 + Y2 + · · ·+ YN , where Yn has zero-truncated Poisson distribution with parameter θ,
and N ∼ Poisson(eθ − 1). See Castellares et al. (2018) [16] for more properties.

Additionally, there are some papers based on the Bell distribution, and the following
are a few related references: Batsidis et al. (2020) [22] proposed and studied a goodness-
of-fit test for the Bell distribution, which is consistent against fixed alternatives; Castel-
lares et al. (2020) [23] presented a new two-parameter Bell–Touchard discrete distribution;
Lemonte et al. (2020) [24] introduced a zero-inflated Bell regression model for count data;
Muhammad et al. (2021) [25] proposed a Bell ridge regression as a solution to the multi-
collinearity problems.
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2.2. Definition and Properties of the BL-INAR(1) Process

In this section, we give the definition of the BL-INAR(1) process, and its basic statistical
properties are derived.

Definition 2. Let {Xt}t∈N0 be an INAR(1) process according to (1). It refers to a BL-INAR(1)
model if the innovations {εt}t∈N0 are a sequence of i.i.d. Bell(θ) r.v.s given by (3); i.e.,{

Xt = α ◦ Xt−1 + εt, t ≥ 1,
εt ∼ Bell(θ),

(5)

where 0 < α < 1 and θ > 0, and εt is independent of ξi and Xt−1 for t ≥ 1.

According to Equation (4), we know the mean and variance of εt are finite; therefore,
the process of {Xt}t∈N0 in (5) is an ergodic stationary Markov chain (Du and Li, (1991) [26])
with transition probabilities

Pij = P(Xt = i|Xt−1 = j) = P(α ◦ Xt−1 + εt = i|Xt−1 = j)

=
min(i,j)

∑
m=0

P(α ◦ Xt−1 = m|Xt−1 = j)P(εt = i−m)

=
min(i,j)

∑
m=0

(
j

m

)
αm(1− α)j−m θi−me−eθ+1Bi−m

(i−m)!
, i, j = 0, 1 . . .

Further, we can obtain the joint probability function as follows:

f (i1, i2 . . . iT) = P(X1 = i1, X2 = i2, . . . , XT = iT)

= P(X1 = i1)P(X2 = i2|X1 = i1) . . . P(XT = iT |XT−1 = iT−1)

= P(X1 = i1)
T−1

∏
k=1

[
min(ik ,ik+1)

∑
m=0

(
ik
m

)
αm(1− α)ik−mP(εk+1 = ik+1 −m)

]
. (6)

The conditional mean, conditional variance, mean, variance, covariance and autocor-
relation function of the BL-INAR(1) process are given in the following lemma.

Lemma 1. Let Xt be the process in Definition 2. Then it has the following properties:
(i) E[Xt|Xt−1] = αXt−1 + µε = αXt−1 + θeθ ;
(ii) Var[Xt|Xt−1] = α(1− α)Xt−1 + σ2

ε = α(1− α)Xt−1 + θ(1 + θ)eθ ;
(iii) µ := E[Xt] =

θeθ

1−α ;

(iv) σ2 := Var[Xt] =
θeθ(1+α+θ)

1−α2 ;
(v) γk := Cov(Xk, Xk+1) = αkσ2;
(vi) ρk := Corr(Xk, Xk+1) = αk.

The proof of Lemma 1 is similar to that of Theorem 1 of Qi et al. (2019) [14], so it
is omitted.

According to Lemma 1, the dispersion index (Fisher, 1950 [27]) of Xt is derived
as follows:

Ix :=
σ2

µ
= 1 +

θ

1 + α
> 1;

thus, the BL-INAR(1) process is suited for overdispersed integer-valued time series.
Additionally, we can obtain the k-step ahead conditional mean and k-step ahead

conditional variance of the BL-INAR(1) process in the following theorem.
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Theorem 1. The k-step ahead conditional mean and k-step ahead conditional variance of the
BL-INAR(1) process are given, respectively, by:

E(Xt+k|Xt) = αkXt + µε
1− αk

1− α
,

and

Var(Xt+k|Xt) = αk
(

1− αk
)

Xt + µε
(α− αk)(1− αk)

1− α2 + σ2
ε

1− α2k

1− α2 .

For more details about the proof of this theorem, see Qi et al. (2019) [14] and Ristić,

Bakouch, and Nastić (2009) [6]. It is easy to see that if k→ ∞, E(Xt+k|Xt)→
µε

1− α
=

θeθ

1− α

and Var(Xt+k|Xt) →
αµε + σ2

ε

1− α2 =
θeθ(1 + α + θ)

1− α2 , which are the unconditional mean and

unconditional variance of Xt, respectively.

3. Estimation of Parameters

The true values of parameters α and θ are unknown in practice; therefore, we need to
estimate the value of (α, θ). Sometimes we have to give an estimate of (α, µ) first to get the
estimate of (α, θ). In this section, we consider three methods for estimating parameters,
namely, CLS, YW and CML.

3.1. Conditional Least Squares Estimation

The CLS estimates of the parameters α and θ are obtained by

(α̂, θ̂) = arg min
T

∑
t=2

[Xt − E(Xt|Xt−1)]
2,

and the CLS estimates of (α, µ) are given by

α̂CLS =
(T − 1)∑T

t=2 XtXt−1 −∑T
t=2 Xt ∑T

t=2 Xt−1

(T − 1)∑T
t=2 X2

t−1 −
(

∑T
t=2 Xt−1

)2 ,

and

µ̂CLS =
∑T

t=2 Xt − α̂CLS ∑T
t=2 Xt−1

(T − 1)(1− α̂CLS)
.

Then, the CLS estimate of θ can be obtained by solving the equation θ̂CLSeθ̂CLS = µ̂CLS(1− α̂CLS).
According to Theorems 3.1 and 3.2 in Tjøstheim (1986) [28], we can establish the

consistency and asymptotic normality of the CLS estimates α̂CLS and µ̂CLS in the following
theorem. The proofs of Theorem 2 and the following theorem are given in Appendix A.

Theorem 2. Let α̂CLS and µ̂CLS be the CLS estimates of the BL-INAR(1) process; then (α̂CLS, µ̂CLS)
′

is strongly consistent for (α, µ); and the asymptotic distribution follows as:

√
T(α̂CLS − α, µ̂CLS − µ)′

d−→ N(0, Σ),

where

Σ =

 α(1+α)µ+σ2
ε

(1−α)2
ασ2

µ(1+µ)

ασ2

µ(1+µ)
α(1−α)(µ3−2µσ2−µ3)+σ2

ε σ2

µ2(1+µ)2

,

and µ3 = E(X3
t ) =

(1−α3)µ3+(1+2α2−3α3)µσ2+α2(1−α)σ2

1−α3 .
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Using the delta method, we can obtain the limit distribution of (α̂, θ̂), and we can also
know that θ̂ is consistent.

3.2. Yule–Walker Estimation

Let X1, . . . , XT come from the process {Xt} in Definition 2. The sample mean is
X̄ = 1

T ∑T
t=1 Xt, and the sample autocorrelation function is

ρ̂k =
∑T−k

t=1 (Xt − X̄)(Xt+k − X̄)

∑n
t=1(Xt − X̄)

2 .

From Lemma 1, we know ρk = αk, thus the Yule–Walker (YW) estimate of α is given by

α̂YW = ρ̂(1) =
∑T−1

t=1 (Xt − X̄)(Xt+1 − X̄)

∑T
t=1(Xt − X̄)

2 ,

and
µ̂YW = X̄,

with µ =
θeθ

1− α
; then the estimate of θ can be obtained.

For asymptotic properties of the YW estimates, Freeland and McCabe (2005) [29]
showed that the YW and CLS estimates are asymptotically equivalent for a Poisson INAR(1)
process. The next theorem shows that the conclusion holds for our BL-INAR(1) process.

Theorem 3. In the BL-INAR(1) process, CLS and YW estimates are asymptotically equivalent, i.e.,

α̂CLS − α̂YW = op(T−
1
2 ) and θ̂CLS − θ̂YW = op(T−

1
2 ).

3.3. Conditional Maximum Likelihood Estimation

According to the joint probability function (6), the likelihood function can be obtained as:

f (x1, x2, . . . , xT) = P(X1 = x1)
T−1

∏
t=1

P(Xt+1 = xt+1|Xt = xt)

= f (x1)
T−1

∏
t=1

[
min(xt ,xt+1)

∑
m=0

(
xt
m

)
αm(1− α)xt−mP(εt+1 = xt+1 −m)

]
.

To condition on variable X1, we can obtain the conditional log likelihood function as:

L(α, θ) =
T−1

∑
t=1

log P(Xt+1 = xt+1|Xt = xt),

the CML estimates of (α, θ) are the values of (α̂CML, θ̂CML) obtained by maximizing the
conditional log likelihood function L(α, θ). It is easy to check that the BL-INAR(1) process
satisfies conditions (C1)–(C6) of Franke and Seligmann (1993) [30]; thus, the CML estimates
(α̂CML, θ̂CML) are consistent and asymptotically normal. The proof is similar to those of
Theorems 22.4 and 22.5 of Franke and Seligmann (1993) [30], so it is omitted.

4. Simulation

A Monte Carlo simulation was conducted to study the performances of the CLS, YW,
and CML estimates of the BL-INAR(1) model. The CML estimates were obtained by using
the BFGS quasi-Newton nonlinear optimization algorithm with numerical derivatives. We
considered YW estimates as initial values for the algorithm. The simulation was conducted
using R programming language, and the size of the sample was 100, 250, 500, or 1000.
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The number of replicates was 1000. For the true values of parameters, we considered
α = 0.25, 0.5, and 0.75 and θ = 0.5, and 1.5.

First, we give the Q–Q plots of the CLS, YW, and CML estimates for the BL-INAR(1)
model with sample size T = 1000, α = 0.5, and θ = 1.5 in Figure 1. From the six Q–
Q plots, we can see that they contain roughly straight lines; i.e., the estimates of the
parameters are normally distributed. Then, the numerical simulation results are presented
in Tables 1 and 2. By comparing the two tables, we can find that with the same θ and
T, the mean squared error (MSE) for the estimate of θ increased with the increase of α,
but the MSE for the estimate of α decreased. Additionally, the MSE for the estimate of θ
increased with the increase of θ with the same α and T, but the MSE for the estimate of
α decreased. Furthermore, we can observe that the estimates of CLS and YW are similar,
and the bias tended toward zero for all estimates as the sample size increased. The estimates
of CML converged faster to the true parameter values. We conclude that the CML estimates
produced the smallest mean square errors, and CML performed better than CLS and YW.

Table 1. Empirical means and mean squared errors (in parentheses) of the estimates of the parameters
for some values of α and θ of the BL-INAR(1) model.

T α̂CLS θ̂CLS α̂YW θ̂YW α̂CML θ̂CML

(α, θ) = (0.25, 0.5)
100 0.220445 0.507901 0.218464 0.508838 0.238497 0.500617

(0.011615) (0.003871) (0.011564) (0.003814) (0.007120) (0.003049)
250 0.240011 0.502610 0.239107 0.503039 0.246433 0.500099

(0.004665) (0.001520) (0.004653) (0.001501) (0.002658) (0.001146)
500 0.245254 0.500707 0.244710 0.500965 0.247766 0.499777

(0.002286) (0.000758) (0.002284) (0.000759) (0.001300) (0.000603)
1000 0.246458 0.500868 0.246197 0.500974 0.249120 0.499768

(0.001195) (0.000379) (0.001197) (0.000380) (0.000714) (0.000290)

(α, θ) = (0.5, 0.5)
100 0.475430 0.508229 0.469977 0.512782 0.495566 0.497046

(0.010198) (0.005396) (0.010256) (0.005296) (0.004046) (0.003083)
250 0.488517 0.504259 0.486491 0.505890 0.497636 0.499045

(0.003895) (0.002128) (0.003911) (0.002123) (0.001723) (0.001332)
500 0.493426 0.502160 0.492388 0.503029 0.498222 0.499355

(0.001857) (0.001026) (0.001868) (0.001025) (0.000866) (0.000643)
1000 0.496426 0.501635 0.495922 0.502043 0.499262 0.499936

(0.000914) (0.000530) (0.000916) (0.000529) (0.000412) (0.000322)

(α, θ) = (0.75, 0.5)
100 0.714977 0.535092 0.707308 0.543643 0.745993 0.500460

(0.006966) (0.011276) (0.007639) (0.011838) (0.001321) (0.003355)
250 0.736256 0.513360 0.733057 0.517222 0.748974 0.498915

(0.002354) (0.004357) (0.002456) (0.004432) (0.000494) (0.001352)
500 0.743674 0.505799 0.742084 0.507695 0.749245 0.499568

(0.001052) (0.001967) (0.001079) (0.001983) (0.000243) (0.000681)
1000 0.746006 0.504828 0.745283 0.505726 0.749925 0.500221

(0.000546) (0.001001) (0.000554) (0.001011) (0.000132) (0.000309)
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Table 2. Empirical means and mean squared errors (in parentheses) of the estimates of the parameters
for some values of α and θ of the BL-INAR(1) model.

T α̂CLS θ̂CLS α̂YW θ̂YW α̂CML θ̂CML

(α, θ) = (0.25, 1.5)
100 0.230059 1.508538 0.227601 1.510489 0.252786 1.492707

(0.010409) (0.007500) (0.010294) (0.007323) (0.004877) (0.004375)
250 0.243290 1.503077 0.242313 1.503896 0.250278 1.498450

(0.003994) (0.002928) (0.003976) (0.002898) (0.001810) (0.001660)
500 0.244804 1.503143 0.244310 1.503531 0.249992 1.499429

(0.001917) (0.001459) (0.001914) (0.001451) (0.000913) (0.000829)
1000 0.248715 1.500420 0.248470 1.500628 0.251744 1.498222

(0.000984) (0.000745) (0.000983) (0.000745) (0.000477) (0.000422)

(α, θ) = (0.5, 1.5)
100 0.472192 1.522593 0.467254 1.528069 0.497401 1.497773

(0.008714) (0.011950) (0.008913) (0.011884) (0.002653) (0.004999)
250 0.489125 1.509054 0.487244 1.511225 0.499745 1.498361
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Figure 1. The Q–Q plots of the CLS, YW, and CML estimates for the BL-INAR(1) model with sample
size T = 1000.

5. Real Data Examples

In this section, we present two applications of the BL-INAR(1) model to real datasets,
and compare it with the P-INAR(1), G-INAR(1), PL-INAR(1), NB-INAR(1), ZIP-INAR(1),
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DP-INAR(1), and GP-INAR(1) models. Results of the comparison are discussed here
as well.

5.1. Disconduct Data

The first dataset is a monthly count of disconduct in the first census tract in Rochester,
which can be obtained from Available online: http://www.forecastingprinciples.com
(accessed on 8 May 2012). The data comprise 132 observations (T = 132) starting from
January 1991 and ending in December 2001.

The time plot, histogram, autocorrelation function (ACF), and partial autocorrelation
function (PACF) are provided in Figure 2. We applied the Ljung–Box test (Ljung and Box
(1978) [31]) to check whether this time series dataset has any autocorrelation. The p-value
of the Ljung–Box test is 1.317× 10−5, which is less than 0.05. This means that the time
series data have some autocorrelation, and according to the PACF diagram, the data are
first-order autocorrelated, which shows that the AR(1)-type process is appropriate for
modeling this dataset.

The sample mean and variance of the data are X̄ = 1.6288 and S2
X = 2.4455, re-

spectively. Thus, we got the dispersion index Îx = S2
X/X̄ = 1.5014. According to the

overdispersion test of Schweer and Weiß (2014) [11], the critical value of the data is 1.1994.
The dispersion index Îx exceeds the critical value, which means that the equidispersed
P-INAR(1) model is not a good choice for the data.
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Figure 2. The time plot, histogram, ACF, and PACF of disconduct data.

For comparison, we calculated the CML estimates of parameters, and the AIC, BIC,
CAIC, HQIC, fitted mean, and fitted variance of the BL-INAR(1) model, the P-INAR(1)
model, the G-INAR (1) model, the PL-INAR(1) model, the ZIP-INAR(1) model, the NB-
INAR(1) model, the DP-INAR(1) model, and the GP-INAR(1) model. Among the eight
models, the first four are two-parameter models and the last four are three-parameter
models. The results are presented in Table 3. We found that the AIC, BIC, CAIC, and HQIC
of the BL-INAR(1) model were smaller than those of others. We also found that the fitted
means of all eight models were near to the sample mean, and the fitted mean of the PL-
INAR(1) model was the closest to the sample mean. In terms of fitted variance, Table 3
shows that the fitted variance of the BL-INAR(1) model performed better than those of the
other seven models.

http://www.forecastingprinciples.com
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Table 3. CML estimates, AIC, BIC, CAIC, HQIC, fitted mean, fitted variance, and RMSE for eight INAR(1) models of
disconduct data.

Model Parameters AIC BIC CAIC HQIC Mean Variance RMSE

BL-INAR α̂ = 0.1882 441.7380 1 447.5036 1 449.5036 1 444.0809 1 1.6201 2.5361 2 3.2205
θ̂ = 0.6718

P-INAR α̂ = 0.1496 456.4653 462.2309 464.2309 458.8082 1.6197 2.1512 3.2497
λ̂ = 1.3773

G-INAR α̂ = 0.2405 446.1416 451.9072 453.9072 448.4845 1.6207 3.2290 3.1803 1

π̂ = 0.4482
PL-INAR α̂ = 0.2197 444.3542 450.1198 452.1198 446.6971 1.6254 2 0.2928 3.1929

θ̂ = 1.1545
NB-INAR α̂ = 0.1845 445.4351 454.0835 457.0835 448.9494 1.6201 2.5542 3.2233

n̂ = 1.9345
π̂ = 0.5942

ZIP-INAR α̂ = 0.1992 442.7224 451.3708 454.3708 446.2367 1.6202 2.3903 3.2121
λ̂ = 1.8674
ρ̂ = 0.3052

DP-INAR α̂ = 0.1865 443.7622 452.4106 455.4106 447.2765 1.4900 2.6859 3.3155
µ̂ = 1.2121
φ̂ = 0.5122

GP-INAR α̂ = 0.1820 445.8156 454.4640 457.4640 449.3300 1.6200 2.5386 3.2252
µ̂ = 1.0254
φ̂ = 0.2262

1 Bold text means the smallest value in the column. 2 Bold text means that this value is the closest in the column to the sample value
described in the text.

For the prediction, we used the first 126 observations to estimate the parameters,
and then predicted the last six observations. The predicted values of the disconduct

data could be given by E(Xt+k | Xt) = αkXt + µε
1− αk

1− α
. For a further comparison of

models, we calculated the root mean square values of the prediction errors (RMSEs) for the

last 6 months of the data, and the RMSE is defined as RMSE =

√
1
6 ∑6

k=1(Xt+k − X̂t+k)2.

We present the RMSE results of eight models in the last column of Table 3. From the
table, we can see that the RMSE of the G-INAR(1) model was best. The RMSE of the
BL-INAR(1) model is smaller than those of the P-INAR(1) model, the NB-INAR(1) model,
the DP-INAR(1) model, and the GP-INAR(1) model; and a little larger than those of the
G-INAR(1) model, the PL-INAR(1) model, and the ZIP-INAR(1) model. Although the
fitted mean and RMSE of the BL-INAR(1) model are not the best, it is the best choice under
the other five criteria. Further, we analyze the Pearson residuals, and Figure 3 plots the
ACF, PACF, and Q–Q plots of residuals. The ACF and PACF graphs show no correlation
between residuals, which is supported by the result of the Ljung–Box test with a p-value of
0.05251 > 0.05. The Q–Q plots appear to be roughly normally distributed, as we expected.
Hence, we can conclude that the BL-INAR(1) model is the most suitable among those
available for this dataset.
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Figure 3. The ACF, PACF, and Q–Q plots of the Pearson residual for disconduct data using the
BL-INAR(1) model.

5.2. Strikes Data

The second dataset, which was analyzed by Weiß (2010) [32], is the monthly number
of work stoppages (strikes and lock-outs) of 1000 or more workers for the period 1994–2002.
It was published by the US Bureau of Labor Statistics and can be obtained by online at the
address Available online: http://www.bls.gov/wsp/ (accessed on 8 May 2012). The data
contain 108 observations, and the time plot, histogram, ACF, and PACF are provided in
Figure 4. As with the previous example, the Ljung–Box test was used to check whether the
strike data have any autocorrelation. The p-value of the Ljung–Box test was 2.372× 10−8,
which shows that the time series data have some autocorrelation, and according to the
PACF diagram, it is also first-order autocorrelated, so an AR(1)-type process is appropriate
for modeling this dataset.

The sample mean, variance, and dispersion index were calculated to be 4.9444, 7.8488,
and 1.5874, respectively. According to the overdispersion test, the critical value of the data
is 1.2808, and we observe that it was inappropriate to use the P-INAR(1) model to fit the
data. The CML estimates, AIC, BIC, CAIC, HQIC, fitted mean, and fitted variance for the
BL-INAR(1), P-INAR(1), G-INAR(1), PL-INAR(1), NB-INAR(1), ZIP-INAR(1), DP-INAR(1),
and GP-INAR(1) models were obtained and are shown in Table 4. We see that the AIC,
BIC, CAIC, and HQIC of the BL-INAR(1) model are smaller than those of others, and the
fitted mean of the BL-INAR(1) model is not much different from those of the other seven
models. Further, we can see that the BL-INAR(1) model performed better than others when
calculating the fitted variance. Similarly to the previous example, the first 102 observations
were used to estimate the parameters and predict the last six observations. The RMSE of
the predictions is also presented in Table 4. We can observe that the RMSE of the G-INAR(1)
model is the smallest; however, it is only 0.05 less than the RMSE of the BL-INAR(1) model.
As in the previous example, although the BL-INAR(1) model was not the best under the
fitted mean and RMSE criteria, it performed best under the other five criteria. Additionally,
we show the Pearson residuals analysis. Figure 5 gives the ACF, PACF, and Q–Q plots of
the residuals. We found that there is no evidence of any significant correlation within the
residuals, a finding also supported by the Ljung–Box test with a p-value of 0.9522, which
is greater than 0.05. The Q–Q plot also appears to be roughly normally distributed. Thus,

http://www.bls.gov/wsp/
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according to above discussions and its simplicity, we can conclude that the BL-INAR(1)
model was the most appropriate.
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Figure 4. The time plot, histogram, ACF, and PACF of data on strikes.

Table 4. CML estimates, AIC, BIC, CAIC, HQIC, fitted mean, fitted variance, and RMSE from eight INAR(1) models of
strike data.

Model Parameters AIC BIC CAIC HQIC Mean Variance RMSE

BL-INAR α̂ = 0.5789 468.1557 1 473.5199 1 475.5199 1 470.3307 1 4.9813 7.7408 2 2.2659
θ̂ = 0.8747

P-INAR α̂ = 0.5061 473.0936 478.4578 480.4578 475.2686 4.9813 9.8110 2.3331
λ̂ = 2.4603

G-INAR α̂ = 0.6235 475.3209 480.6852 482.6852 477.4960 4.9813 10.7361 2.2121 1

π̂ = 0.3478
PL-INAR α̂ = 0.6062 471.9345 477.2987 479.2987 474.1095 5.0016 1.8876 2.2489

θ̂ = 0.7911
NB-INAR α̂ = 0.5483 469.6850 477.7314 480.7314 472.9476 4.9813 6.8573 2.2969

n̂ = 3.8582
π̂ = 0.6317

ZIP-INAR α̂ = 0.5785 470.9985 479.0449 482.0449 474.2610 4.9813 6.6692 2.2663
λ̂ = 2.6343
ρ̂ = 0.2030

DP-INAR α̂ = 0.5617 469.5585 477.6048 480.6048 472.8210 4.9576 2 7.1420 2.2659
µ̂ = 2.1727
φ̂ = 0.5924

GP-INAR α̂ = 0.5464 469.7467 477.7930 480.7930 473.0092 4.9813 6.8335 2.2986
µ̂ = 1.8003
φ̂ = 0.2032

1 Bold means the smallest value in the column. 2 Bold means that this value is the closest in the column to the sample value described in
the text.

Combined with the above two examples and the advantages of the Bell distribution
with one parameter and a simple form, the BL-INAR(1) model is competitive with the
other seven models.
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Figure 5. The ACF, PACF, and Q–Q plots of the Pearson residual for strike data using the BL-
INAR(1) model.

6. Conclusions

A new INAR(1) model with Bell innovations based on the binomial thinning operator
was introduced in this paper. Based on the overdispersed property of the Bell distribution,
we found that the BL-INAR(1) model is suitable for overdispersed data. Some basic
properties of the model were obtained, such as transition probabilities, conditional mean,
conditional variance, mean, variance, covariance, autocorrelation function, and k-step
ahead conditional mean and variance. For unknown parameters, CLS, YW, and CML
methods are used to estimate them. The Q–Q plots showed that the estimates of the
parameters are normally distributed. The simulated results revealed that the CML estimates
of parameters of the BL-INAR(1) model were better than the CLS and YW estimates. Finally,
by comparing the AIC values, BIC values, CAIC values, HQIC values, fitted means, fitted
variances, and RMSE values of the predictions among eight INAR(1) models, two real
datasets both showed that the BL-INAR(1) model fits better than other INAR(1) models.
The analysis of residuals also shows that the BL-INAR(1) model provided adequate fits to
those datasets.

Although there are many overdispersed INAR(1) models, some interesting proper-
ties of the Bell distribution, such as having one parameter, infinitely divisibility, having
a simple probability mass function, belonging to the one-parameter exponential family
of distributions, and for a parameter with a small value, having the Bell distribution ap-
proach the Poisson distribution, make the BL-INAR(1) model competitive. Some extended
distributions of the Bell distribution, such as the zero-inflated Bell distribution and the
Bell–Touchard distribution, provide ideas for us to study related INAR models in the future.
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Appendix A

Appendix A.1. Proof of Theorem 2

To prove this theorem, we need to show that the conditions given in Theorems 3.1 and
3.2 of Tjøstheim (1986) [28] are satisfied.

Define φ = (α, µ), and the true value of the unknown parameter φ0 = (α0, µ0).
According to Lemma 1, we know that E[X2

t ] < ∞ and that E[Xt|Xt−1] is almost surely three
times differentiable in an open set Φ containing φ0.

Condition 1:

E

{∣∣∣∣∂E(Xt | Xt−1)

∂φi
(φ0)

∣∣∣∣2
}

< ∞ and E


∣∣∣∣∣∂2E(Xt | Xt−1)

∂φi∂φj
(φ0)

∣∣∣∣∣
2
 < ∞, for i, j = 1, 2.

According to E(Xt | Xt−1) = αXt−1 + (1− α)µ, we have

E

{∣∣∣∣∂E(Xt | Xt−1)

∂α
(φ0)

∣∣∣∣2
}

= E
{
|Xt−1 − µ0|2

}
= Var(Xt−1) < ∞ and

E

{∣∣∣∣∂E(Xt | Xt−1)

∂µ
(φ0)

∣∣∣∣2
}

= E
{
|1− α0|2

}
= (1− α0)

2 < ∞.

For the second derivative of E(Xt | Xt−1), we have

E

{∣∣∣∣∂2E(Xt | Xt−1)

∂α2 (φ0)

∣∣∣∣2
}

=E

{∣∣∣∣∂2E(Xt | Xt−1)

∂µ2 (φ0)

∣∣∣∣2
}

= 0 < ∞ and

E

{∣∣∣∣∂2E(Xt | Xt−1)

∂α∂µ
(φ0)

∣∣∣∣2
}

= 1 < ∞.

Condition 2:
The vectors ∂E(Xt | Xt−1)(θ0)/∂φi, i, j = 1, 2 are linearly independent in the sense

that if a1 and a2 are arbitrary real numbers such that

E


∣∣∣∣∣ 2

∑
i=1

ai
∂E(Xt | Xt−1)

∂φi
(φ0)

∣∣∣∣∣
2
 = 0,

then a1 = a2 = 0. Note that

E

{∣∣∣∣a1
∂E(Xt | Xt−1)

∂α
(φ0) + a2

∂E(Xt | Xt−1)

∂µ
(φ0)

∣∣∣∣2
}

= 0⇒

E
{
|a1(Xt−1 − µ0) + a2(1− α0)|2

}
= 0⇒

a2
1 Var(Xt−1)︸ ︷︷ ︸

≥0

+ a2
2(1− α0)

2︸ ︷︷ ︸
≥0

= 0⇒

a2
1 Var(Xt−1)︸ ︷︷ ︸

>0

= 0 and a2
2 (1− α0)

2︸ ︷︷ ︸
>0

= 0⇒

a2
1 = 0 and a2

2 = 0.

http://www.forecastingprinciples.com
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http://www.bls.gov/wsp/
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Then a1 = a2 = 0.
Condition 3:
For φ ∈ Φ, there exist functions Gijk

t−1(X1, . . . , Xt−1) and Hijk
t (X1, . . . , Xt) for i, j = 1, 2

such that

Mijk
t−1(φ) =

∣∣∣∣∣∂E(Xt | Xt−1)

∂φi
(φ)

∂2E(Xt | Xt−1)

∂φj∂φk
(φ)

∣∣∣∣∣ ≤ Gijk
t−1, E

(
Gijk

t−1

)
< ∞,

Nijk
t (φ) =

∣∣∣∣∣{Xt − E(Xt | Xt−1)(φ)}∂3E(Xt | Xt−1)

∂φi∂φj∂φk
(φ)

∣∣∣∣∣ ≤ Hijk
t , E

(
Hijk

t

)
< ∞.

Note that M111
t−1(φ) = M122

t−1(φ) = M211
t−1(φ) = M222

t−1(φ) = 0 and

M112
t−1(φ) = M121

t−1(φ) = |Xt−1 − µ|,
M212

t−1(φ) = M221
t−1(φ) = |α− 1| < 1;

then we can choose Gijk
t−1(φ) = (Xt−1 − µ)2 + 1, ∀i, j, k = 1, 2, which guarantees that

Mijk
t−1(φ) < Gijk

t−1(φ) and E(Gijk
t−1) = Var(Xt−1 + 1) < ∞.

For Nijk
t (φ), it is easy to know that Nijk

t (φ) = 0, ∀i, j, k = 1, 2. So we choose Hijk
t (φ) = 0,

∀i, j, k = 1, 2 to satisfy Nijk
t (φ) < Hijk

t (φ) and E(Hijk
t ) = 0 < ∞.

The above three conditions ensure that (α̂CLS, µ̂CLS) is a strongly consistent estimator
for (α, µ). According to Theorem 3.2 in Tjøstheim (1986) [28], the asymptotic distribution
of (α̂CLS, µ̂CLS) is √

T(α̂CLS − α, µ̂CLS − µ)′
d−→ N(0, Σ),

where Σ = U−1RU−1,

U = E

{
∂E(Xt | Xt−1)

T

∂φ
(φ) · ∂E(Xt | Xt−1)

∂φ
(φ)

}
,

R = E

{
∂E(Xt | Xt−1)

T

∂φ
(φ) ft|t−1(φ)

∂E(Xt | Xt−1)

∂φ
(φ)

}
,

and
ft|t−1(φ) = E

{
(Xt − E(Xt | Xt−1))(Xt − E(Xt | Xt−1))

T | Xt−1

}
.

We can then find that

Σ =


α(1 + α)µ + σ2

ε

(1− α)2
ασ2

µ(1 + µ)
ασ2

µ(1 + µ)

α(1− α)(µ3 − 2µσ2 − µ3) + σ2
ε σ2

µ2(1 + µ)2

,

where µ3 = E(X3
t ) =

(1− α3)µ3 + (1 + 2α2 − 3α3)µσ2 + α2(1− α)σ2

1− α3 , which follows from

the following derivation:

µ3 =E[X3
t ] = E[X2

t (α ◦ Xt−1 + εt)] = E[E[X2
t (α ◦ Xt−1 + εt)|Xt−1]]

=E[αXt−1E[X2
t |Xt−1] + µεE[X2

t |Xt−1]]

=E[αXt−1E[X2
t |Xt−1]] + µεE[X2

t ],
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according to Lemma 1,

E[X2
t |Xt−1] =Var[Xt|Xt−1] + (E[Xt|Xt−1])

2

=α2X2
t + (α(1− α) + 2αµε)Xt + µ2

ε + σ2
ε ;

then, we have

µ3 =E[αXt−1E[X2
t |Xt−1]] + µεE[X2

t ]

=α3E[X3
t−1] + α2(1− α)E[X2

t−1] + 2α2µεE[X2
t−1] + αµ(µ2

ε + σ2
ε ) + µεE[X2

t ]

(where µε = (1− α)µ and σ2
ε = (1− α2)σ2 − α(1− α)µ)

=α3µ3 + (1− α3)µ3 + (1 + 2α2 − 3α3)µσ2 + α2(1− α)σ2.

Thus, we obtain that

µ3 =
(1− α3)µ3 + (1 + 2α2 − 3α3)µσ2 + α2(1− α)σ2

1− α3 .

Appendix A.2. Proof of Theorem 3

The proof is similar to that of Theorem 4.2 in Cunha et al. (2021) [15]. For estimator α̂,
we have

√
T(α̂YW − α̂CLS) =

(DCLS − DYW)

DCLSDYW
· ∑T

t=2 XtXt−1√
T

−

(
DCLS ∑T

t=2
Xt
T − DYW ∑T

t=2
Xt

T−1

)
DCLSDYW

· ∑T
t=1 Xt√

T

− DYW

DCLSDYW
·

T

∑
t=2

Xt

T − 1
XT√

T
+

DCLS

DCLSDYW
· X̄ (XT − X̄)√

T

=op(1)Op(1)− op(1)Op(1)−Op(1)Op(1)op(1) + Op(1)Op(1)op(1)

=op(1),

where DCLS =
1
T

[
∑T

t=2 X2
t−1 −

1
T − 1

(
∑T

t=2 Xt−1

)2
]

and DYW =
1
T ∑T

t=1(Xt − X̄)
2 =

1
T ∑T

t=1 X2
t − X̄2. For estimator θ̂, we only need to prove

√
T − 1(µ̂ε,CLS − µ̂ε,YW) is op(1).

√
T − 1(µ̂ε, CLS − µ̂ε,YW)

=
√

T − 1

(
∑T

t=2 Xt − α̂CLS ∑T
t=2 Xt−1

T − 1
− X̄(1− α̂YW)

)

=
1√

T − 1

(
T

∑
t=2

Xt − α̂CLS

T

∑
t=2

Xt−1 − TX̄(1− α̂YW) + X̄(1− α̂YW)

)

=
α̂CLSXT − X1√

T − 1
−
√

T
T − 1

·
√

T(α̂CLS − α̂YW) X̄ +
X̄√

T − 1
(1− α̂YW)

=op(1)− op(1) + op(1) = op(1).
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6. Ristić, M.M.; Bakouch, H.S.; Nastić, A.S. A new geometric first-order integer-valued autoregressive (NGINAR(1)) process. J. Stat.

Plan. Inference 2009, 139, 2218–2226. [CrossRef]
7. Liu, Z.; Zhu, F. A new extension of thinning-based integer-valued autoregressive models for count data. Entropy 2021, 23, 62.

[CrossRef] [PubMed]
8. Jung, R.C.; Ronning, G.; Tremayne, A.R. Estimation in conditional first order autoregression with discrete support. Stat. Pap.

2005, 46, 195–224. [CrossRef]
9. Jazi, M.A.; Jones, G.; Lai, C.-D. First-order integer valued AR processes with zero inflated Poisson innovations. J. Time Ser. Anal.

2012, 33, 954–963. [CrossRef]
10. Jazi, M.A.; Jones, G.; Lai, C.-D. Integer valued AR(1) with geometric innovations. J. Iran. Stat. Soc. 2012, 11, 173–190.
11. Schweer, S.; Weiß, C.H. Compound Poisson INAR(1) processes: Stochastic properties and testing for overdispersion. Comput. Stat.

Data Anal. 2014, 77, 267–284. [CrossRef]
12. Livio, T.; Mamode Khan, N.; Bourgignon, M.; Bakouch, H.S. An INAR(1) model with Poisson–Lindley innovations. Econ. Bull.

2018, 38, 1505–1513.
13. Bourguignon, M.; Rodrigues, J.; Santos-Neto, M. Extended Poisson INAR(1) processes with equidispersion, underdispersion and

overdispersion. J. Appl. Stat. 2019, 46, 101–118. [CrossRef]
14. Qi, X.; Li, Q.; Zhu, F. Modeling time series of count with excess zeros and ones based on INAR(1) model with zero-and-one

inflated Poisson innovations. J. Comput. Appl. Math. 2019, 346, 572–590. [CrossRef]
15. Cunha, E.T.D.; Bourguignon, M.; Vasconcellos, K.L.P. On shifted integer-valued autoregressive model for count time series

showing equidispersion, underdispersion or overdispersion. Commun. Stat.-Theory Methods 2021. [CrossRef]
16. Castellares, F.; Ferrari, S.L.P.; Lemonte, A.J. On the Bell distribution and its associated regression model for count data. Appl.

Math. Model. 2018, 56, 172–185. [CrossRef]
17. Akaike, H. Information theory as an extension of the maximum likelihood principle. In Proceedings of the Second International

Symposium on Information Theory; Petrov, B.N., Csaki, F., Eds.; Akadémiai Kiado: Budapest, Hungary, 1973; pp. 267–281.
18. Schwarz G. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. [CrossRef]
19. Bozdogan, H. Model selection and Akaike’s Information Criterion (AIC): The general theory and its analytical extensions.

Psychometrika 1978, 52, 345–370. [CrossRef]
20. Hannan, E.J.; Quinn, B.G. The Determination of the Order of an Autoregression. J. R. Stat. Soc. Ser. B 1979, 41, 190–195. [CrossRef]
21. Bell, E.T. Exponential polynomials. Ann. Math. 1934, 35, 258–277. [CrossRef]
22. Batsidis, A.; Jiménez-Gamero, M.D.; Lemonte, A.J. On goodness-of-fit tests for the Bell distribution. Metrika 2020, 83, 297–319.

[CrossRef]
23. Castellares, F.; Lemonte, A.J.; Moreno–Arenas, G. On the two-parameter Bell–Touchard discrete distribution. Commun. Stat.-Theory

Methods 2020, 49, 4834–4852. [CrossRef]
24. Lemonte, A.J.; Moreno-Arenas, G.; Castellares, F. Zero-inflated Bell regression models for count data. J. Appl. Stat. 2020, 47,

265–286. [CrossRef]
25. Muhammad, A.; Muhammad, N.A.; Abdul, M. On the estimation of Bell regression model using ridge estimator. Commun.

Stat.-Simul. Comput. 2021. [CrossRef]
26. Du, J.G.; Li, Y. The integer valued autoregressive (INAR(p)) model. J. Times Ser. Anal. 1991, 12, 129–142.
27. Fisher, R.A. The significance of deviations from expectation in a Poisson series. Biometrics 1950, 6, 17–24. [CrossRef]
28. Tjøstheim, D. Estimation in nonlinear time series models. Stoch. Process. Their Appl. 1986, 21, 251–273. [CrossRef]
29. Freeland, R.K.; McCabe, B. Asymptotic properties of CLS estimates in the Poisson AR(1) model. Stat. Probab. Lett. 2005, 73,

147–153. [CrossRef]
30. Franke, J.; Seligmann, T. Conditional maximum likelihood estimates for INAR(1) processes and their application to modelling

epileptic seizure counts. In Developments in Time Series Analysis; Rao, T.S., Ed.; Chapman and Hall/CRC: Boca Raton, FL, USA,
1993; pp. 310–330.

31. Ljung, G.M.; Box, G.E.P. On a measure of lack of fit in time series models. Biometrika 1978, 65, 297–303. [CrossRef]
32. Weiß, C.H. The INARCH(1) model for overdispersed time series of Counts. Commun. Stat.-Simul. Comput. 2010, 39, 1269–1291.

[CrossRef]

http://dx.doi.org/10.1016/j.jspi.2008.10.007
http://dx.doi.org/10.3390/e23010062
http://www.ncbi.nlm.nih.gov/pubmed/33396549
http://dx.doi.org/10.1007/BF02762968
http://dx.doi.org/10.1111/j.1467-9892.2012.00809.x
http://dx.doi.org/10.1016/j.csda.2014.03.005
http://dx.doi.org/10.1080/02664763.2018.1458216
http://dx.doi.org/10.1016/j.cam.2018.07.043
http://dx.doi.org/10.1080/03610926.2020.1725822
http://dx.doi.org/10.1016/j.apm.2017.12.014
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1007/BF02294361
http://dx.doi.org/10.1111/j.2517-6161.1979.tb01072.x
http://dx.doi.org/10.2307/1968431
http://dx.doi.org/10.1007/s00184-019-00733-6
http://dx.doi.org/10.1080/03610926.2019.1609515
http://dx.doi.org/10.1080/02664763.2019.1636940
http://dx.doi.org/10.1080/03610918.2020.1870694
http://dx.doi.org/10.2307/3001420
http://dx.doi.org/10.1016/0304-4149(86)90099-2
http://dx.doi.org/10.1016/j.spl.2005.03.006
http://dx.doi.org/10.1093/biomet/65.2.297
http://dx.doi.org/10.1080/03610918.2010.490317

	Introduction
	The BL-INAR(1) Model
	The Bell Distribution
	Definition and Properties of the BL-INAR(1) Process

	Estimation of Parameters
	Conditional Least Squares Estimation
	Yule–Walker Estimation
	Conditional Maximum Likelihood Estimation

	Simulation
	Real Data Examples
	Disconduct Data
	Strikes Data

	Conclusions
	
	References

