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Abstract: Information plane analysis, describing the mutual information between the input and
a hidden layer and between a hidden layer and the target over time, has recently been proposed
to analyze the training of neural networks. Since the activations of a hidden layer are typically
continuous-valued, this mutual information cannot be computed analytically and must thus be
estimated, resulting in apparently inconsistent or even contradicting results in the literature. The
goal of this paper is to demonstrate how information plane analysis can still be a valuable tool for
analyzing neural network training. To this end, we complement the prevailing binning estimator for
mutual information with a geometric interpretation. With this geometric interpretation in mind, we
evaluate the impact of regularization and interpret phenomena such as underfitting and overfitting.
In addition, we investigate neural network learning in the presence of noisy data and noisy labels.

Keywords: information plane analysis; image classification; neural networks; adaptive and fixed
binning

1. Introduction

Deep Learning (e.g., [1–4]) has shown promising performance for many applications
including image analysis, speech analysis, or robotics. This progress, however, is mainly
the result of more and more sophisticated neural network (NN) architectures with ever-
increasing complexity. This makes it increasingly difficult to understand how such NNs
work and to interpret or explain their predictions correctly, in particular, if the number of
parameters or training data increase. Thus, neither a simple validation of the input–output
mapping nor focusing on salient features rather than all possible parameters [5–13] are
sufficient in practice.

Thus, research has focused on understanding the inner workings of NNs and in-
vestigating, for instance, the learning behavior over time. One prominent example is
information plane (IP) analysis [14], which is based on the information bottleneck princi-
ple [15]. The key idea is to analyze the plane described by the mutual information I(X; T)
between the input X and the activation values of a hidden layer T and by the mutual
information I(Y; T) between T and the target variable Y, and how these values change
from epoch to epoch. Illustrative examples showing the trajectory of mutual information
values over time are shown in Figure 1. Even though IPs appear to be an appealing way to
analyze learning behaviors of NNs, we face the problem that the literature on IP analysis
reports conflicting results, cf. [14,16,17].

This apparent conflict results from the fact that the mutual information can often not
be computed analytically. Thus, contradicting results stem from different ways to estimate
the mutual information terms I(X; T) and I(Y; T). For instance, mutual information has
been approximated via binning, i.e., via discretizing the continuous activation values; the
authors have proposed fixed uniform binning [14,18,19], adaptive uniform binning [16],
and adaptive nonuniform binning [20]. However, more elaborate estimation schemes have
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also been used, such as kernel density estimation [16,21], neural estimators based on the
Donsker–Varadhan representation of mutual information [22], estimators based on hash
functions [23], and kernel-based estimators [24].

This diversity of estimators is unproblematic as they should all converge to the same
estimates, e.g., Î(X; T) ≈ I(X; T) if the following conditions hold: (a) the required mutual
information terms I(X; T) and I(Y; T) are finite, (b) sufficient data are available for their
estimation, and (c) the estimators Î(·; ·) are adequately parametrized. However, in [25], it
was shown that I(X; T) is indeed infinite for deterministic neural networks, concluding
that the (finite) estimates Î(X; T) depend more on the exact estimation procedure than on
the true values. Therefore, the IPs do not exactly depict mutual information, causing the
abovementioned ambiguities.

The goal of this paper is to demonstrate that IPs can still be a valuable tool for analyz-
ing NN training if the estimates are interpreted correctly. In particular, similar to recent
findings [17,18], we demonstrate that IPs represent geometric rather than information-
theoretic phenomena. To this end, we create an IP from the plugin estimates for mutual
information between the uniformly discretized activation value T̂ and the network input
X or class label Y, respectively. Introducing both fixed and adaptive binning schemes for
obtaining T̂, we argue that the correct interpretation of Î(X; T̂) yields an insight into the
geometric compression of the activation T, both in absolute (e.g., describing the diameter
of the set of all activations of a dataset) and relative (e.g., clustering of activations of a
dataset) terms. To allow for a more intuitive interpretation, we additionally show a 2D
visualization of latent space.

In summary, the main contributions of the paper are the following:

1. We introduce an interpretation for the estimates of mutual information from a ge-
ometric perspective, for both fixed and adaptive uniform binning. We support the
interpretation by visualizing the data distribution in the latent space.

2. We show that the effects of regularization and phenomena such as overfitting and
underfitting can be well described and interpreted via an IP analysis based on this
geometric perspective.

3. Based on the geometric interpretation of IP analyses, we investigate robust classifier
learning, in particular, being able to provide an interpretation of the learning behavior
in the presence of noisy data and noisy labels.

The rest of the paper is organized as follows: First, in Section 2, we review and discuss
the main ideas of IP analysis and introduce and discuss our approach. Then, in Section 3,
we apply these findings to provide a thorough evaluation of deep NN learning for image
classification tasks. Finally, in Section 4 we summarize and conclude our work.

2. Information Planes and Their Geometric Interpretation

Given a labeled training setD = {(x1, y1), . . . , (xN , yN)}, where xi are data points and
yi are the corresponding class labels, the goal is to train a deep fully connected feed-forward
NN with L layers. Assuming that D contains independent samples of a joint distribution
PX,Y, the data points xi and the class labels yi can be interpreted in the following as random
variables X and Y, respectively.

Let t`,i denote the vector of activation values of the `th layer for a data point xi. During
training, the activation values change from epoch to epoch even for the same data point,
i.e., t`,i(n) is a function of the epoch index n. In the following, we suppress this index
for the sake of readability. Since the NNs we consider are deterministic, there exists a
function f` for mapping a feature to this activation vector: t`,i = f`(xi). The activation
vectors {t`,1, . . . , t`,N} can be assumed to be independent realizations of a random variable
T` = f`(X). For the sake of readability, we write T instead of T`, as the layer index is clear
from the context.
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In the following, we first discuss the estimation of mutual information for NNs via
binning, which is a common approach to construct the IP. Second, we show that binning
inherently introduces a geometric perspective that helps to interpret the IP correctly.

2.1. Mutual Information Estimation for Neural Network Training

For a pair of discrete random variables, U and V with joint probability mass function
pU,V , the mutual information can be readily computed via ([26], Equation (2.28))

I(U; V) = ∑
u,v

pU,V(u, v) log
pU,V(u, v)

pU(u)pV(v)
, (1)

where pU and pV are the marginal distributions of U and V, respectively. In general, we can
compute the mutual information if U and V are both continuous and if the joint probability
density function (PDF) fU,V exists and is known ([26], Equation (9.47)).

For NNs, the distributions of the data points X and activations T are often assumed to
be continuous, but the PDFs are not readily available. Thus, even assuming that the joint
PDF exists, we require estimators for mutual information that are based on the dataset D,
such as kernel density estimators [16] or binning estimators [14,18–20]. If the joint PDF
exists and if the true value of I(X; T) is finite, then there exist estimators Î(X; T) that can
be parameterized such that Î(X; T) ≈ I(X; T); at least if D is sufficiently large. However,
in [25], it was shown that the joint PDF of X and T does not exist for deterministic NNs.
Indeed, since T = f`(X), we have I(X; T) = ∞ for continuous input distributions and
many practically relevant activation functions ([25], Theorem 1). The estimates of I(X; T)
based on a finite dataset are thus inadequate.

To circumvent this problem, we rather focus on the mutual information between X or
Y and a discretized version T̂ of the activation T. This discretization, which we obtain via
binning, ensures that the mutual information terms are finite and, thus, can be estimated
reliably. Specifically, rather than estimating I(X; T) and I(Y; T) directly, we estimate I(X; T̂)
and I(Y; T̂), where T̂ is obtained by uniformly quantizing (binning) T:

T̂ =

⌈
T
b

⌉
, (2)

where b is the size of the bin and d·e is the ceiling operator applied to each element of
the scaled activation vector. Specifically, we introduce two binning schemes: (a) binning
with a fixed bin size of b = 0.5 and (b) binning with an adaptive bin size, where for each
coordinate of T, b is one-tenth of the range of activation values of this coordinate over the
dataset. In other words, if t(j)

`,i (n) is the activation value of the jth neuron in the `th layer
for data point i at epoch n, then

b(j)(n) =
maxi t(j)

`,i (n)−mini′ t
(j)
`,i′(n)

10
(3)

and T(j)(n) = dT(j)(n)/b(j)(n)e and T(n) = (T(1)(n), T(2)(n), . . . ).
Since T (and thus T̂) is a deterministic function of X, we have I(X; T̂) = H(T̂) ([26],

Equations (2.41) and (2.167)). Moreover, both Y and T̂ are discrete random variables, and
both H(T̂) and I(Y; T̂) can be estimated using the plugin estimators for entropy and mutual
information. Specifically, with t̂i = bti/bc, we have

Ĥ(T̂) = −∑
t

|{i: t̂i = t}|
N

log
|{i: t̂i = t}|

N
(4a)

Î(Y; T̂) = ∑
t,y

|{i: t̂i = t, yi = y}|
N

log
N|{i: t̂i = t, yi = y}|
|{i: t̂i = t}||{i: yi = y}|. (4b)
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These estimators are reasonable if the number of data points for each combination
of t and y in the sums is sufficiently large. However, for many applications, this is rarely
the case. Indeed, it has been observed that, especially in convolutional NNs, the vector of
activations T is so large that Ĥ(T̂) ≈ log |D|, i.e., every data point in D falls into a different
bin, even if the bin size is large (see, for example, Figure 7 in [18]).

2.2. Information Plane Analysis

Assuming that the data allows us to estimate information-theoretic quantities in-
volving the random variables over images, class labels, and activation functions, we can
calculate the quantities defined in Equation (4). The authors of [14] proposed to plot
these values in a Cartesian coordinate system, yielding the so-called information plane (IP)
and to analyze how they change throughout training. This is illustrated in Figure 1 for
two examples.
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(a) Expansion and compression.
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(b) Fitting only.
Figure 1. IP for epochs 1–4000: (a) fitting occurring simultaneously with an initial expansion phase
and a later compression phase; (b) only a fitting phase. In contrast to the prevailing literature, we
label the axes with Ĥ(T̂) and Î(Y; T̂) to make the dependence on the estimator more explicit. (See
the text for details.) The first epoch is highlighted by a dark color and the size of the last epoch is
larger than others.

From Figure 1a, two phases can been observed, cf. [14]: first, a phase in which
both Ĥ(T̂) (expansion) and Î(Y; T̂) (fitting) increase and, second, a compression phase
during which Ĥ(T̂) decreases ( Î(Y; T̂) increases only slightly). The compression phase was
interpreted as the hidden layer T discarding irrelevant information about the input X and
was causally connected to generalization. In contrast, Figure 1b shows only fitting as an
increase in Î(Y; T̂).

2.3. Interpretation of IPs Based on Binning Estimators

In Section 2.1, we showed that I(X; T) is infinite in deterministic NNs with continuous
inputs and thus escapes estimation. To show that IP analyses as introduced in Section 2.2
are still useful, we build on the observation that the horizontal axis, labeled with Ĥ(T̂) in
our case, does not describe an information-theoretic compression in the sense of a reduction
of I(X; T). Such a reduction would indicate that irrelevant features of X are discarded when
creating the latent representation of a hidden layer with activations T; T would become
conceptually close to a minimal sufficient statistic. Rather, the current consensus is that
Ĥ(T̂) is a measure of geometric size and that, thus, compression observed in the IP using
such estimators is geometric [17,18]: the quantity Ĥ(T̂) is small if the image of the datasetD
under the NN function f` occupies only a few bins or many bins but with a heavily skewed
distribution. In such cases, f`(D) has either a small diameter (relative to a fixed bin size) or
is strongly clustered (if the bin size is adapted to the range of activation values.

To improve the intuitive understanding, we consider three cases: (1) All data points
are mapped to a small region in feature space that is covered by a single bin. Then, T̂ is
constant over D and Ĥ(T̂) = 0 (see Figure 6a). (2) All data points are clustered, i.e., data
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points belonging to one class are mapped to a small region in the feature space, and regions
corresponding to different classes are far apart. Furthermore, data points belonging to
one class all fall within the same bin, but different classes occupy different bins. Then,
Ĥ(T̂) is related to the logarithm of the number of classes. (3) The data points are spread
over the feature space so that every bin contains at most one data point. Then, we have
Ĥ(T̂) = log |D|. This can occur either if the latent space is very high-dimensional as in
convolutional NNs or if the bin size b chosen is too small.

In all three cases, Ĥ(T̂) is a measure of the geometric “size” of the image f`(D) in the
latent space, where “size” has to be interpreted probabilistically and is measured relative
to the bin size b: f`(D) is “small” in this sense if some majority of its elements are covered
by only few bins. While fixed binning measures the geometric size with an absolute scale,
adaptive binning measures the geometric size with a scale relative to the image of the
dataset D under f , i.e., relative to the absolute scale of the latent space. Thus, a simple
scaling of T, for instance by scaling all weights in a NN with ReLU activation functions,
affects Ĥ(T̂) when T̂ is obtained by fixed binning but not for adaptive binning.

3. Analyzing NN Training via Information Plane Analysis

The goal of our experiments is to demonstrate that IP analysis—if interpreted
correctly—can be a useful tool to analyze and interpret NN learning. To this end, we
address different problems and tasks: (a) illustrating the impact of regularization; (b)
analyzing phenomena such as overfitting and underfitting; and (c) demonstrating the
generality of the approach, by applying it to analyze robust learning. For the first two tasks,
we run experiments on the well-known MNIST dataset [27]. For the third task, we run
experiments on two different benchmark datasets, namely Brightness MNIST [28] (noisy
data) and Noisy MNIST (noisy labels) [29].

For our analysis, we show the mutual information trajectories for both binning ap-
proaches, fixed binning (FB) and adaptive binning (AB). For this purpose, after each
training epoch, the activation values of the hidden layers evaluated on the test set are saved
and the mutual information is computed. For training, we applied an Adam optimizer and
used ReLU as an activation function, unless noted otherwise. To reduce the influence of
random initialization and the inherent randomness of the Adam optimizer, all experiments
were run three times for 4000 epochs, respectively.

To visually validate the claim that the IP displays geometric effects, we decided to use a
bottleneck architecture with a two-dimensional layer. This allows us to visualize the data set
in latent space without having to resort to projection or dimensionality reduction methods
such as t-SNE. Even though we show the IP trajectories for all layers, our discussion
mainly focuses on the trajectory corresponding to this two-dimensional layer. The findings,
however, are more general and hold for different layer sizes and architectures.

3.1. Impact of Regularization

First, we analyze the impact of regularization when training a NN. For this purpose,
we trained a bottleneck network (100-100-2-100) with and without l2 regularization (λ =
0.0003, found by grid search). The thus obtained results for both binning approaches are
shown in Figure 2. To make the temporal character of the trajectories more apparent, the
first and the last epoch are highlighted by a black point and a large circle, respectively.

Using adaptive binning (see Figure 2b), we recognize a fitting phase, i.e., Î(Y; T̂)
increases over time, indicating a growth in the class separability. In addition, using fixed
binning (see Figure 2a), we can recognize a geometric compression with an absolute
scale for Ĥ(T̂) from the first to the last epoch for the last two layers. Indeed, using an l2
regularization (weight decay) reduces the overfitting tendency by keeping the values of
the weights small. Consequently, the small weights reduce the absolute scale of the data
in latent space. Indeed, as can be seen in Figure 3a,b, where we plot the two-dimensional
latent space, the absolute scale reduces from approximately 47× 69 to approximately 7× 7
during training.
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Figure 2. IPs for MNIST (bottleneck model): (a) fixed and (b) adaptive binning with regularization; (c)
fixed and (d) adaptive binning without regularization.

(a) First epoch (with regularization). (b) Last epoch (with regularization).

(c) First epoch (without regularization). (d) Last epoch (without regularization).

Figure 3. Two-dimensional visualization for MNIST (bottleneck model, first and last epoch): (a,b) with
and (c,d) without regularization.

In contrast, as we show in Figure 2c,d, these effects appear not be present without
l2 regularization. Moreover, in this case, the picture conveyed by the IP is slightly less
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consistent. For instance, Run 1 and Run 2 show neither a compression nor a fitting phase
for fixed binning, as can be seen in Figure 2c. Rather, the latent representation seems
to expand throughout training, which is caused by increasing NN weights. This is also
illustrated in Figure 3c,d, from which we can see that the absolute scale increases from
approximately 45× 36 to approximately 88× 116. In contrast, for Run 3, we can see mainly
an upward trend (only fitting) for Î(Y; T̂).

We additionally run the same experiment using a convolutional NN (CNN). The CNN
consists of four convolutional, two max-pooling, and four fully connected (100-100-2-100)
layers. The results for the IP analysis on the fully connected layers are shown in Figure 4.
In Figure 4a,c, we can see an expansion phase in fixed binning both with and without
regularization. Moreover, the regularization results in a consistent fitting phase and slightly
larger values of Î(Y; T̂) for adaptive binning at the last epoch, cf. Figure 4b. This can
be traced back to better class separability, as seen in Figure 5b. Due to the simplicity
of the task, the effect of overfitting on classification accuracy is mild: the full connected
NN achieves 96.62% with and 96.42% without regularization, while the CNN achieves
98.90% with and 98.60% without regularization. The corresponding IPs, however, display
a qualitatively different behavior, indicating that similar accuracies were achieved along
different training paths.
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Figure 4. IPs for MNIST (CNN model): (a) fixed and (b) adaptive binning with regularization; (c)
fixed and (d) adaptive binning without regularization.
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(a) First epoch (with regularization). (b) Last epoch (with regularization).

(c) First epoch (without regularization). (d) Last epoch (without regularization).

Figure 5. Two-dimensional visualization for MNIST (CNN model, first and last epoch): (a,b) with and
(c,d) without regularization.

3.2. Underfitting Models

The next scenario we consider is underfitting, preventing the model from learning
sufficient information from the training data. In this section, we induce underfitting by
using (a) too strong regularization (λ = 0.2) and (b) a suboptimal network architecture
(two layers with three hidden neurons each). The resulting IPs are displayed in Figure 6.
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Figure 6. IPs for underfitting model for MNIST: (a) fixed and (b) adaptive binning for too strong
regularization rate (λ) for bottleneck model; (c,d) fixed and adaptive binning for the narrow model.
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In the first case, using strong regularization, we achieve an accuracy of approximately
11%. Here, all data points are mapped to a small region in feature space that is covered by
a single bin. In this case, for fixed binning, T̂ is constant over D and Ĥ(T̂) = 0, which is
reflected in the IP (see Figure 6a). In addition, the adaptive binning in Figure 6b also shows
the same behavior for the last two hidden layers, i.e., Ĥ(T̂) = 0. In the second case, using a
too narrow model, we finally obtain an accuracy of approximately 62%, resulting from a
slightly different learning behavior. As can be seen from Figure 6c, Ĥ(T̂) is small, especially
for Layer 1, which means that few bins are overpopulated, whereas others are empty.

Indeed, in both cases, the NN cannot extract relevant and required information from
the input to fit the target outputs (Y). Therefore, we have Î(Y; T̂) ≤ 2 (see Figure 6), which is
lower than log(10) ≈ 3.32 (if all ten classes from MNIST fall into different bins), indicating
a weak class separability.

3.3. Overfitting Models

The next scenario we consider is overfitting, which can be described as learning a
model that fits the training data very well but that does not generalize to unseen data. To
demonstrate this in terms of IP analysis, we train a network on MNIST with two hidden
layers with 10 units in each layer; in this case, using tanh as an activation function. To
encourage overfitting, we did not use any regularization.

In contrast to underfitting, which affects the entire IP, overfitting on clean labels can
mainly be seen on the vertical axis of the IP. In fact, for an overfitting model, Î(Y; T̂)
increases at the beginning of the training but decreases again later on. This can be seen in
Figure 7.
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Figure 7. IPs for overfitting model for MNIST: (a) fixed and (b) adaptive binning.

To further illustrate this effect, in Figure 8a, we plot Î(Y; T̂) for Layer 2 over time for
fixed binning, first increasing to 3.26 and then decreasing to 3.14 (averaged over three
runs). Indeed, this trend (having a peak around epoch 75) is directly related to the learning
behavior and the accuracy of the model. To make this more apparent, we compare the
plot of Î(Y; T̂) to the mean test loss and the mean test accuracy in Figure 8b and Figure 8c
respectively. It can be seen that the mean accuracy initially increases up to 93% and then
drops (starting around epoch 75) to 90% at the end of the training. The same trend, an
initial reduction and subsequent growth, can also be recognized from the loss curve. This
indicates that the information covered by IP analysis is directly related to well-known
learning characteristics.
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Figure 8. Overfitting model for MNIST: (a) the value of Î(Y; T̂) over time is related to (b) the loss and (c) the accuracy.

3.4. Learning from Noisy Data

We next investigate the effect of corrupted input data on the IP. To this end, we run
experiments on the Brightness MNIST dataset [28], a modified version of MNIST, where the
illumination of the images increased. In this way, the contrast of the images decreased and,
thus, the classes are pushed closer together in the image space. For evaluation purposes,
we train both a 100-100-2-100 bottleneck model and a convolutional model as described before
and analyze the learning behavior by using both binning approaches.

Indeed, we finally obtain an accuracy of 95.25% and 98.51% for the bottleneck model
and the convolution model, respectively, which is comparable to the results on MNIST
using same models. However, the IP analysis shown in Figures 9 and 10 reveal that the
learning behavior is different. As can be seen from Figures 11a and 12a, due to reduced
contrast in the images, the classes are mapped to highly overlapping regions; this is not the
case for the original MNIST dataset (cf. Figures 3c and 5c).

To learn successfully, during NN training, the data points in the latent space have to
be pushed apart according to their class label. In this way, we can recognize a fitting phase
(increasing Î(Y; T̂)) for adaptive binning (see Figures 9b and 10b) and an expansion phase
for fixed binning (see Figures 9a and 10a). Simultaneously, the data points are pushed
apart and occupy a larger volume in latent space (increased from 10× 8 to 31× 27 and
from 30× 28 to 769× 434), as can be seen in Figures 11 and 12.

For the bottleneck model, after epoch 30 (transition point, see Figure 11b), a compres-
sion phase emerges for fixed binning, and the clusters are tightened and separated from
each other. For adaptive binning (see Figures 9b and 10b), both models share the same
trend: a fitting phase along with a compression phase for the bottleneck layer. Moreover,
for the last layer (Layer 4), an expansion phase and subsequently a compression phase can
be recognized. Since the IPs for MNIST show a slightly different qualitative behavior, this
indicates that the IP displays effects both caused by architectural choices and the selected
data set.
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Figure 9. IPs for Brightness MNIST (bottleneck model): (a) fixed and (b) adaptive binning.
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(a) Fixed binning.
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Ĥ(T̂ )

Î
(Y

;T̂
)

Run1
Run2
Run3

Layer1 Layer2 Layer3 Layer4

(b) Adaptive binning.

Figure 10. IPs for Brightness MNIST (CNN model): (a) fixed and (b) adaptive binning.

(a) First epoch. (b) Epoch 30. (c) Last epoch.

Figure 11. Two-dimensional visualization for Brightness MNIST (bottleneck model): (a) first and (c)
last epoch, and (b) Epoch 30, describing a transition point.

(a) First epoch. (b) Last epoch.

Figure 12. Two-dimensional visualization for Brightness MNIST (CNN model): (a) first and (b)
last epoch.

3.5. Learning from Noisy Labels

For many practical applications, we face the problem of noisy and ambiguous labels
in the training data (see, e.g., [30]). Thus, there has been a huge interest in studying the
dynamics of NN learning from noisy labels [31–36], reaching the consensus that NNs first
learn the training data for clean labels and subsequently memorize data for the noisy labels.

We investigate this scenario in the IP using a 100-100-2-100 bottleneck model. In addition,
we evaluate rectifier family activation functions, namely ReLU and Leaky ReLU (with two
different slopes: α = 0.01 and α = 0.3) and double saturated activation functions, e.g.,
Tanh for noisy labels. For that purpose, similar to [29,37], we apply the idea of symmetric
label noise and replace the true label with a label from other classes for 40% of the training
samples of MNIST. The thus obtained results for clean and noisy labels are summarized
in Table 1.
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Table 1. Mean accuracy for MNIST with noisy and clean labels. The best result is in boldface, the
runner up in italic.

Dataset Tanh ReLU
Leaky ReLU

(α = 0.01)
Leaky ReLU

(α = 0.3)

MNIST (Noisy label) 60.95% 62.47% 62.52% 62.78%

MNIST (Clean label) 96.47% 96.42% 95.81% 96.93%

At the beginning of the training process, the weights are randomly initialized close to
zero. Therefore, the activation values of the rectified activation functions are small. When
training starts, they deviate from the small value and start to increase. Thus, functions of
the rectified unit family show an expansion in fixed binning in which Ĥ(T̂) increases over
time, which can be seen from Figures 13a and 14a,c.
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Ĥ(T̂ )

Î
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Figure 13. IPs for Noisy MNIST using ReLU: (a) fixed binning and (b) adaptive binning.
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(b) Adaptive binning (α = 0.01).
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Ĥ(T̂ )

Î
(Y

;T̂
)

Run1
Run2
Run3

Layer1 Layer2 Layer3 Layer4

(c) Fixed binning (α = 0.3).
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Figure 14. IPs for Noisy MNIST using Leaky ReLU: (a) fixed binning and (b) adaptive binning with
α = 0.01; (c) fixed binning and (d) adaptive binning with α = 0.3.

In contrast, the saturation regions of double saturated activation functions restrict the
activation values, and we cannot see an expansion using fixed binning (see Figure 15a).
This behavior is also reflected in the 2D visualization of the bottleneck layer for rectifying
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activation functions (see Figures 16c and 17c) by increasing the absolute scale. However,
the absolute scale is bounded in the range [−1, 1] for Tanh (see Figure 18).
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Figure 15. IPs for Noisy MNIST using Tanh: (a) fixed binning and (b) adaptive binning.

(a) First epoch. (b) Epoch 16. (c) Last epoch.

Figure 16. Two-dimensional visualization for Noisy MNIST using ReLU: (a) first epoch, (b) Epoch 16,
and (c) last epoch.

(a) First epoch. (b) Epoch 13. (c) Last epoch.
Figure 17. Two-dimensional visualization of Noisy MNIST using Leaky ReLU with α = 0.3: (a) first
epoch, (b) Epoch 13, and (c) last epoch.

(a) First epoch. (b) Epoch 16. (c) Last epoch.
Figure 18. Two-dimensional visualization of Noisy MNIST using Tanh: (a) first epoch, (b) Epoch 16,
and (c) last epoch.

In general, when training from noisy labels, the model is first fit to the clean labels and
then starts to memorize noisy labels (overfitting). In the fitting phase, Î(Y; T̂) increases,
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which can be seen in the adaptive binning illustrated in Figures 13b, 14b,d and 15b).
However, in the memorization phase, Î(Y; T̂) decreases. At the same time, the accuracy
also decreases and loss increases, as can be seen in Figure 19a and Figure 19b respectively.
These two phases indicate first a growth (see Figures 16b, 17b and 18b) and then a reduction
of class separability in the 2D visualization (see Figures 16c, 17c and 18c).
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Figure 19. Mean accuracy (a) and mean loss (b) over time for Noisy MNIST training for all activation
functions (averaged over three runs).

In particular, for Epoch 13 (see Figure 17b) and Epoch 16 (see Figures 16b and 18b),
we can see the transition between fitting clean labels and fitting noisy ones [29]. This seems
to be independent of the activation function used. On the other hand, since ReLU maps all
negative activation values to zero, we can see a geometric compression (tighter clustering)
in this case, especially for the last layer along with decrease in Î(X; T̂) in adaptive binning.

4. Discussion and Conclusions

The main idea of IP analysis is to analyze the plane described by the mutual informa-
tion I(X; T) between the input X and the activation values of a hidden layer T and by the
mutual information I(Y; T) between T and the output variable Y over time. However, as
the mutual information cannot be computed analytically, different estimation approaches
are used, which leads to inconsistent results and contradicting interpretations of the IPs.

To overcome these issues, as first contribution, we demonstrated that the IP represents
geometric rather than information-theoretic effects. To this end, we take advantage of
two different binning estimators based on fixed and adaptive binning, requiring different
geometric interpretations and thus giving us different views on the geometric compression
of the activation T. For our experimental results, we used a bottleneck architecture (a
two-dimensional layer), which allows us to directly relate the information covered by IPs
to the geometric structure of the latent space. Additionally, showing the two-dimensional
latent space supports our findings; however, the application of IP analysis is not limited to
this type of architecture. To this end, we also showed results using different architectures,
demonstrating that—if interpreted correctly—IP analysis can be a valuable tool to analyze
neural network training.

Based on these findings, as a second contribution, we analyzed different scenarios
for NN training. First, we evaluated and interpreted the impact of regularization and
phenomena such as underfitting and overfitting using the well-known MNIST dataset.
We showed that the effects of l2 regularization, which aims to minimize the magnitude of
weights, can be seen both in the IP and the two-dimensional visualization of the latent space.
Furthermore, we were able to visualize and interpret over- and underfitting problems for
specific setups using IPs. In addition, we also considered practical relevant problems,
namely learning from noisy samples and noisy labels. For the first problem, we could show
that, despite achieving similar classification performance, the learning behavior is different.
For the second problem, we evaluated different activation functions and provided evidence
that rectifying activations show an expansion phase corresponding to the memorization of
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noisy labels. Such an expansion phase is missing for double saturated activation functions,
despite them memorizing the noisy labels as well.

In this way, we demonstrated that IPs can be a valuable tool to analyze NN training.
However, the mutual information estimators must be adequately designed and their
estimates must be interpreted correctly. In particular, we showed that such an interpretation
must—at least for binning estimators—take into account geometric aspects. Building on
these findings, we will further investigate learning from noisy data and noisy labels. In
particular, we are interested in the impact of using different non-linearities for this type of
application scenario. Thus, the goal would be to improve the architectural design of deep
neural networks when dealing with ambiguous or unreliable data.
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