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Abstract: We address the problem of entanglement protection against surrounding noise by a
procedure suitably exploiting spatial indistinguishability of identical subsystems. To this purpose,
we take two initially separated and entangled identical qubits interacting with two independent
noisy environments. Three typical models of environments are considered: amplitude damping
channel, phase damping channel and depolarizing channel. After the interaction, we deform the
wave functions of the two qubits to make them spatially overlap before performing spatially localized
operations and classical communication (sSLOCC) and eventually computing the entanglement of the
resulting state. This way, we show that spatial indistinguishability of identical qubits can be utilized
within the sSLOCC operational framework to partially recover the quantum correlations spoiled by
the environment. A general behavior emerges: the higher the spatial indistinguishability achieved
via deformation, the larger the amount of recovered entanglement.

Keywords: entanglement protection; indistinguishable particles; open quantum systems

1. Introduction

It is well known that the environment of an open quantum system produces a detri-
mental noise that has to be dealt with during the implementation of many useful quan-
tum information processing schemes [1,2]. One of the main goals in the development
of fault-tolerant enhanced quantum technologies is to provide a strategy to protect the
entanglement from such degradation. This challenge has been addressed, e.g., by the
seminal works on quantum error corrections [3—6], structured environments with memory
effects [7-17], distillation protocols [18-20], decoherence-free subspaces [21,22], dynamical
decoupling and control techniques [23-32].

It is not unusual to find identical particles (i.e., subsystems such as photons, atoms,
nuclei, electrons or any artificial qubits of the same species) as building blocks of quantum
information processing devices and quantum technologies [33,34]. Nonetheless, the stan-
dard approach to identical particles based on unphysical labels is known to give rise to
formal problems when trying to asses the correlations between constituents with (partially
or completely) overlapping spatial wave functions [35,36]. For this reason, many alterna-
tive approaches have been developed to deal with the formal aspects of the entanglement
of identical particles [36-54]. Among these, the no-label approach [51-53] provides many
advantages: for example, it allows us to address the correlations between identical particles
exploiting the same tools used for nonidentical ones (e.g., the von Neumann entropy of the
reduced density matrix). Furthermore, it provides the known results for distinguishable
particles in the limit of non-overlapping (spatially separated) wave functions. When treat-
ing the global multiparticle state as a whole indivisible object, in the no-label approach
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entanglement strictly depends on both the spatial overlap of the wave functions and on
spatially localized measurements. An entropic measure has been recently introduced [55]
to quantify the degree of indistinguishability of identical particles arising from their spatial
overlap. Furthermore, an operational framework based on spatially localized operations
and classical communication (sLOCC), where the no-label approach finds its natural appli-
cation, has been firstly theorized [53] and later experimentally implemented [56,57] as a
way of activating physical entanglement. Such framework has also been applied to fields
such as the exploitation of the Hanbury Brown-Twiss effect with identical particles [58],
quantum entanglement in one-dimensional systems of anyons [59], entanglement transfer
in a quantum network [60] and quantum metrology [61,62]. Moreover, in a recent pa-
per [55] it has been shown that spatial indistinguishability, even partial, can be exploited to
recover the entanglement spoiled from the preparation noise of a depolarizing channel.

In this work, we aim to extend the results of Reference [55] to the wider scenario
of different paradigmatic noise channels, namely amplitude damping, phase damping
and depolarizing channels, under both Markovian and non-Markovian regimes. To do so,
we introduce spatial deformations, i.e., transformations turning initially spatially separated
(and thus distinguishable) particles into indistinguishable ones by making their wave
functions spatially overlap. We then analyze the entanglement dynamics of two identical
qubits interacting separately with their own environment, with the goal of showing that
the application of the mentioned spatial deformation at a given time of the evolution,
immediately followed by the sSLOCC measurement, constitutes a procedure capable of
recovering quantum correlations.

This paper is organized as follows: in Section 2 we introduce the general framework
of the analyzed dynamics and the main tools used, namely the deformation operation
and the sLOCC protocol. The main results follow in Section 3, where we describe the
considered model and study the scenarios of an amplitude damping channel, a phase
damping channel and a depolarizing channel. Finally, Section 4 summarizes and discusses
the main results.

2. Materials and Methods

In this section we introduce the goal of this paper and the main tools used to achieve it.

Let us consider the following process, illustrated in Figure 1: at the beginning, two
identical qubits in the entangled state pap(0) occupy two different regions of space A and
B, thus being distinguishable and individually addressable. Here, they locally interact
with two spatially separated and independent noisy environments that spoil the initial
correlations. At time £, the two particles become decoupled from the environments and
undergo a deformation, which makes their wave functions spatially overlap into the
state pp(t). Immediately after that, a SLOCC measurement is performed to generate the
entangled state prr(f). In this work, we show that this deformation + sSLOCC procedure
allows for the recovery of the entanglement spoiled by the previously introduced noise
in an amount that depends on the degree of spatial indistinguishability achieved with
the deformation. Three different models of environmental noise shall be considered: an
amplitude damping channel, a phase damping channel and a depolarizing channel.

Notice that here the system—environment interaction occurs when the two particles
are still distinguishable and no finite time interval separates the deformation from the
immediately subsequent sSLOCC operation. It will thus be interesting to compare the
results of this work with those discussed in Reference [63], where the interaction with the
noisy channels happens instead during a finite time interval between the deformation and
the sLOCC operation, that is when the qubits are indistinguishable in the frame of the
localized environments.

The deformation process bringing two particles to spatially overlap shall be now
briefly introduced, followed by a recall of the sSLOCC operational framework.
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Figure 1. State evolution in the considered scenario. (a) The two qubits are initially prepared in

the pure entangled state pap(0). (b) They are left to interact with a noisy environment, whose
detrimental action produces the mixed state pap(t). (¢) At time ¢ a deformation of the two particles
wave functions is performed, immediately followed by a SLOCC measurement.

2.1. Deformations of Identical Particle States

Given a multipartite quantum system, a quantum transformation acting differently
on each subpart changing the relations among them is called a deformation. In this section
we focus on the specific set of continuous deformations that modify the single spatial wave
functions of identical particles. In what follows, the no-label formalism [51] is used.

Let us take a non-entangled state of two identical particles |®) = |¢1, ¢2), where ¢;
(i = 1,2) is identified by the values of a complete set of commuting observables describing
a spatial wave function ¥; and an internal degree of freedom 7;. We suppose that the
two particles are initially spatially separated, e.g., localized in two distinct regions A and
B such that |l[)§0)> = |A), |l[)£0)> = |B) and (A|B) = 0. We want to modify the spatial
wave functions of the two particles in order to make them overlap. Thus, we introduce a
deformation D such that

p1,¢2) = |AT) @ |Br2) 2 |17, $o1a), 1

where ¢, and 1, are now at least partially overlapped. Since the two spatially overlapping
particles are also identical, they are now indistinguishable: their final global state cannot
be written as the tensor product of single particle states anymore and must be considered
as a whole, i.e., |17, PoT2) # |P171) ® |P212) [51,52]. Notice that the expression above,
applied to an elementary pure state of two identical particles, is valid for both bosons
and fermions.

A deformation operator acting on identical particles is not, in general, unitary, and
its normalized action on a state p written in terms of a convex set of density matrices {p;},
p=Y,;pipiwithp; € [0,1] and }; p; = 1, is thus

_ DD iy
Dlp] = T[DDY ] ;PzD[Pz]/ )
where
Tr[DD'p;] Dp; D'

i = ——s i| = - 3
Pi Tr[DD*p] i Te[DD*p;] @)
Each two-particle state p; is, in general, a given combination of elementary basis states and
the post-deformation state D[p] naturally encompasses the selection rules associated to the
bosonic or fermionic statistics.
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2.2. sSLOCC, Spatial Indistinguishability, Concurrence and Fidelity

The natural extension of the standard local operation and classical communication
framework (LOCC) for distinguishable particles to the scenario of indistinguishable (and
thus individually unaddressable) particles is provided by the spatially localized operations
and classical communication (SLOCC) environment [53]. Given a set of indistinguishable
particles, sSLOCC consist in a projective measurement of the global state over distinct
spatially separated regions, followed by a post-selection of the outcomes where only one
particle is found in each location. The result of this operation is an entangled state whose
physical accessibility has been demonstrated in a quantum teleportation experiment [56].

Suppose we are given a state p of two identical and indistinguishable particles, e.g.,
obtained by the application (2) of the deformation (1), and assume they have pseudo-spin
1/2. The whole sLOCC operation (projection and post-selection) amounts to projecting the
two qubits state on the subspace spanned by the basis

Bir ={ILT,R1),ILT,R]),[LLRT), LRI}, 4)
via the projection operator

II;r = Y, |Lo,Rt) (Lo, Rr|. (5)
o=",4

Since the constituents are indistinguishable before the detection, it is impossible to know
exactly which particle will be found in which region. The sSLOCC operation generates the
(normalized) two-particle entangled state

o IR p(t) LR
PLR(t) Ty [ﬁLR P] ’ (®)

with probability
PLR ="Tr [HLR p] . (7)

After the sSLOCC measurement, the two qubits occupy two distinct regions of space and are
thus now distinguishable and individually addressable. Furthermore, since in the no-label
formalism the inner product between two-particle states is given by the rule [51]

(91, Pald1, d2) = (Ph1¢1) (Palda) + 1 (1] d2) (daler), 8)

with # = 1 for bosons and # = —1 for fermions, particle statistics naturally emerges within
the sSLOCC framework and is thus expected to play a role in the dynamics.

The sLOCC scenario also allows for the introduction of an entropic measure of the
particles” indistinguishability after the deformation (1), which depends on the achieved
spatial distribution of their wave functions ¥, ¢, over the two regions L and R where
sLOCC measurement occurs. Given the probability Pxy, of finding the qubit having wave
function ¢; (i = 1,2) in the region X (X = L, R), the spatial indistinguishability measure is
given by [55]

I:

Pry, Pry, Pry, Pry,  Pry,Pry, Pry, Pry,
—_ = 10g2 Z — Zz 10g2 Z ’ (9)

where Z = Pry, Pry, + PLy, Pry, - Notice that (9) ranges from 0 for spatially separated (thus
distinguishable) particles (e.g., when Py, = Pry, = 1) to 1 for maximally indistinguishable
particles (PLy, = PLy,, Pry, = Pry,)- Hereafter, we assume for convenience that the spatial
wave functions of the single indistinguishable particles after the deformation have the form

1) =1|L) +r|R), |p2) =1'"|L) +7'|R), (10)
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where
I=(Llg1), r=(Rlg1), "= (L|), r" = (R|yh) (11)

are complex coefficients such that |I|? + |r|> = |I'|? 4 |'|> = 1. In the following analysis, we
shall conveniently set | = 7’ to assure that the SLOCC probability Py is different from zero.

As previously stated, the state p; g obtained by the sSLOCC measurement is entangled.
Among the existing entanglement quantifiers [35,64—66], we address the quantification of
the quantum correlations characterizing the bipartite quantum state pr g of two distinguish-
able qubits via the Wootters concurrence for convenience, namely [55,67]

Clorr) = max{0, /Ay — v/A3 = VA2 = V13, (12)

where A; are the eigenvalues in decreasing order of the matrix { = prr oLr, wWith prr =
(UyL ® (75) OAB (0’;“ ® 0';) and (7;“, 0';{ being the usual Pauli matrix o localized, respectively,
on the particle in L and in R.

Albeit our main interest relies in the amount of exploitable entanglement recovered

after sSLOCC, we also consider the fidelity [68] F(po, prr) = (Tr \/\/P0 PLR \/pT))Z as a figure

of merit to quantify the closeness between the post-processing state p; g and the initial state
po of the system. Notice that if the initial state is pure, i.e., pg = |0} (o], then the fidelity
takes the simple form

F(po, oLr) = ($oloLr|t0) - (13)

3. Indistinguishability as a Feature for Recovering Entanglement

In this section we report our main results. Each of the two independent environments
is modeled as a bath of harmonic oscillators in the vacuum state except for one mode,
which is coupled to the qubit interacting with it. Considering a qubit-cavity model with
just one excitation overall allows us to treat the reservoir as characterized by a Lorentzian
spectral density [69,70]

_ A
T 27 (w —wp)? + A2’

where wy is the qubit transition frequency, 7 is the microscopic system—environment
coupling constant related to the decay of the excited state of the qubit in the Markovian
limit of a flat spectrum, and A is the spectral width of the coupling quantifying the leakage
of photons through the cavity walls. The relaxation time Tg on which the state of the system
changes is related to the coupling constant by the relation g &~ !, while the reservoir
correlation time T is connected to the spectral width of the coupling by 75 ~ A 1. These
coefficients regulate the behavior of the system: when v < A/2(tg > 2713) the system
is weakly coupled to the environment, the reservoir correlation time is shorter than the
relaxation time and we are in a Markovian regime; when v > A/2 (g < 271p) instead,
we are in the strong coupling scenario, where the relaxation time is shorter than the bath
correlation time and the regime is non-Markovian. The way each qubit interacts with its
own reservoir depends on the type of noise channel taken into account.

The action of the three noisy channels considered in this paper shall be computed
within the usual Kraus operators formalism, or operator-sum representation [71]. The general
expression of the single-qubit evolved density matrix is then given by p(t) = ¥, E;0(0)E],
where the E;’s are the time-dependent Kraus operators corresponding to the specific
channel and depend on the disturbance probability (decoherence function) p(t). Each
channel in fact introduces a time-dependent disturbance on the system with a probability
p(t) =1 —q(t) obtained by solving the differential equation [69,72]

J(w) (14)

10 =~ [ an fle—n)ate), 15
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where the correlation function f(t — t;) is given by the Fourier transform of the spectral
density J(w) of the reservoir, namely

flt=t) = [ dew)e ez, (16)

Solving Equation (15) for the spectral density (14), one obtains the disturbance (or error)

probability [69]
2
p(t)=1—e M {cos<dzt> + ;\sin<dzt)] , (17)

with d = \/29A — A2. Notice that this solution takes into account both Markovian and non-
Markovian regimes, depending on the ratio A /«y. In particular, in the Markovian limit of flat
spectrum, which occurs for y/A < 1, it is straightforward to see that p(t) =1 — e~ 1/2 ag
expected [71]. In general, the error probability (17) is such that p(0) = 0 and tlggo p(t) =1.

3.1. Amplitude Damping Channel

The amplitude damping channel is one of the most used models describing energy
dissipation in quantum systems. This is mainly due to the wide range of physical phenom-
ena that it encompasses, from the spontaneous emission of a photon by an atom [73-75] to
processes involving spin chains [76], the scattering of a photon in cavity QED [71], super-
conducting qubits in circuit QED [77,78] and high temperature spin systems relaxing to
the equilibrium state with their environment [71]. Furthermore, it can be easily simulated
using linear-optics devices [79], thus making it of experimental interest also in the context
of quantum photonics.

The action of the amplitude damping channel on a single qubit in the operator-sum
representation is given by the Kraus operators [71]

Eo = [1) (t|+ /1= p(t) 1) (L] = EL, a8)
Ev=/pt) M) (L, Ef=/p(t) L) (1]

Consider two identical qubits initially prepared in the Bell singlet state

1= 5 (141 BL-1aLED), (19)

with A and B being two distinct spatial regions ((A|B) = 0). Thanks to the fact that the
the two environmental interactions are independent, the state after the noisy interaction is
given by

paB(t) Z(Eé‘@Eg)PAB(O (Eo ®Eo)
—|—<Ef‘®Ef)pAB(O (E“@EB*)
+(Eg @ EF ) pas(0) (E @ EY)
+(Ef @ B )oan(0) (E{* @ EF),

where EX (i = 1,2, X = A, B) denotes the i-th single particle Kraus operator of Equation (18)
acting on the qubit localized in region X, while pap(0) = |1-) o5 (1| 5p is the initial density
matrix. Using Equation (18) in the above equation, one then finds

)

)
(20)

)

)

pap(t) = (1= p(1)) 11-) a5 (1-|ap +P() A 1, B 1) (A1, B 1. @1
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(1=p(O) 11" =y VP21 )k (1-lig + (&) 117 + 7 VP2 |L 1, R 1) (L1, R 1)

We now want to apply the deformation defined in Equation (1) to the state (21) at time ¢.
State |1_) ,p gets mapped to

- 1
|1—>D:ﬁ<|¢l T2 d) =91 4,92 T))/ (22)

which is not a normalized state since (¢1|2) # 0. In order to write it in terms of a
normalized state |1_)y;, we compute

A_[10)p =Cf,  Ci:=/1—yl{pa]g2)]2 (23)

The same is done for the deformation of |A 1, B 1), which gets mapped to

1 T2 Np = Calpn T2 T, Coi= /141 ]92) %, (25)

ittt g =1 (26)

The normalized state resulting from the spatial deformation (2) of the state (21) is thus

and write it as

where

(1= p(5) CHI-)n (- + p(5) CE 1 1,92 T (1 192 Ty
(1-p®)Ct+p(t) G |

pp(t) =

Following the scheme shown in Figure 1, we perform the sSLOCC measurement immediately
after the deformation, applying the projection operator (5) onto the state (27), which
finally gives

(28)
(1 — p(t)) [Ir' =y U'r|2+ p(t) |Ir' +n1'r|?

where [, 7,1’,7' are the wave function coefficients defined in (11).
In order to study the entanglement evolution of the state prr(t) of Equation (28), we
calculate the concurrence defined in Equation (12), which is

I =y 'r[*(1—p(t)
C(or(t)) = ( )

- , (29)
1 =y 172 (1= p())) + |1+ Ve p(2)

where the statistics parameter 77 explicitly appears, as expected. As a first consideration,
we notice that the results about entanglement dynamics for bosons can be obtained from
the ones for fermions (and vice versa) by simply changing sign to one of the coefficients
I, r, ', v (that is, by shifting the phase of one of them by 7). Therefore, in order to fix a
framework to analyze the concurrence, we assume we are dealing with fermions whose
spatial wave functions are distributed over the regions L and R with positive real coeffi-
cients. This reasoning shall hold for the other noisy channels, so that the presented results
are also valid for bosons. With this assumption, we obtain the concurrence as

[(zr')z + (I'r)? +211/rr'} (1 - p(t))
(Ir")2+ (I'r)2 4+ 21U'r" (1 — 2p(t)) .

C(or(t)) = (30)
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We point out that when no deformation is performed and the particles remain distinguish-
able in two distinct regions (Z = 0), the sSLOCC projector (5) is equivalent to the identity
operator. This implies that, when the particles are not brought to spatially overlap, our
procedure gives the same entanglement we would have without performing the sLOCC
operation. For this reason, we take the results for Z = 0 (black dashed lines in the follow-
ing figures) as the term of comparison to quantify the entanglement gained due to the
deformation + sSLOCC procedure, i.e., AC(t) := C(prr(t)) — C(paB(t)). Figure 2 shows the
concurrence (30) for both the Markovian and the non-Markovian regimes, while Figure 3
displays AC(t).

Markovian
C(pwr(t)
1.087
AR
08j \ ““ — =1
Loy 1=0.90
0.6 —
Foy 1=0.75
[ -+ 1=0.50
o4f \ — 0
\
0.2F \ )
[ AN
L ~ - Tl
00 L L L L L L .. I ™ Sl o —— J Yt
0 2 4 6 8 10
Non-Markovian
C(owr(1)
1.0
Il
0.8Fu u t
PR — I=1
[id W 1=0.90
0673k : 1=0.75
-+ 1=0.50

0.47 — 120

0.2} i

00 r ] g (¥ ¢ S Y . vt
0 400 500
Figure 2. Concurrence of two identical qubits (fermions with [,I’,7,7 > 0, bosons with one of
these four coefficients negative) in the initial state |1_) ,p subjected to localized amplitude damping
channels, undergoing an instantaneous deformation + sSLOCC operation at time f for different degrees
of spatial indistinguishability Z (with |I| = |¢'|). Both the Markovian (A = 57) (upper panel) and
non-Markovian (A = 0.01) (lower panel) regimes are reported.

As can be seen in Figure 2, spatial indistinguishability (9) has a direct influence on
the general behavior: when the particles are not perfectly indistinguishable (Z # 1), the
entanglement vanishes with a monotonic decay in the Markovian regime and with a
periodic one in the non-Markovian regime. From Figure 3, we can see that when 7 # 1
the deformation and sLOCC procedure becomes inefficient in recovering the correlations
as time grows. Nonetheless, it is interesting to notice that it provides an initial effective
advantage as a consequence of the fact that the decay rate shown in Figure 2 lowers as
the indistinguishability increases. However, when the particles wave functions maximally
overlap (Z = 1, blue solid line), the entanglement remains stable at its initial maximum
value, thus becoming unaffected by the noise. These results show that, in the scenario
of the amplitude damping channel, we have provided an operational framework where
spatial indistinguishability, even imperfect, of two identical qubits can be exploited as
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a scheme to recover quantum correlations spoiled by a short-time interaction with the
noisy environment.

Markovian
AC(t)
1-0f

0.8f

1 — 1=
1=0.90
1=0.75

-+ 12050

06l

0.4f

02f

00 7" L L L L L L L L Nkl T, | X al - m I
0 2 4 6 8 10

Non-Markovian
AC(t)
1.0j

08}
1 — =1
061 1=0.90
[ 1=0.75

0.4} . 120,50

0.2

B .
Rt TS S WA vt

ol 3 % ¥ %YW
300 400 500

0 100 200

Figure 3. Net gain in the entanglement recovery of two identical qubits (fermions with I, I/, r,7' > 0,
bosons with one of these four coefficients negative) in the initial state |1_) ,g under localized am-
plitude damping channels, thanks to the deformation + sSLOCC operation performed at time t.
Results are reported for different degrees of spatial indistinguishability Z (with |I| = |/]). Both the
Markovian (A = 57) (upper panel) and non-Markovian (A = 0.017) (lower panel) regimes are shown.

Finally, to check whether such procedure would be of any practical interest we have
to analyze its theoretical probability of success. This strictly depends on the probability for
the sSLOCC projection (6) to produce a non-null result, physically representing a state that
is not discarded during the postselection. Such probability is defined in Equation (7) and,
for identical qubits undergoing a local interaction with an amplitude damping channel, it
is equal to

(Ir")? + (I'r)? — 21 ll’rr’(l -2 p(t))
CG(1-p(1) +CGp(t) '

Figure 4 shows the success probability (31) for different degrees of spatial indistinguisha-
bility in both the Markovian and non-Markovian regime in the case of fermions. As can
be seen, when the indistinguishability is not maximum, the probability of success tends
to 1 as time passes in both regimes, thus giving rise to a trade-off with the concurrence.
The trade-off is confirmed by the probability being constant and equal to 1/2 when the
concurrence is maximum, i.e., for Z = 1 (blue solid line). For bosons, the time-dependent
success probability corresponding to Z = 1 (with the constraint | = ' = I’ = —r) and
to the concurrence plotted in Figure 2 is Pr(t) = 1 — p(t) (notice, however, that this
success probability can be improved by differently setting the coefficients of the spatial
wave functions).

Pir(t) =

(31)



Entropy 2021, 23, 708

10 of 25

Markovian
Pr(t)
10 — — — — — — e e——————
0.8
— I=1
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06[...-” 1=0.75
- 1=0.50
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0.2+
0.0 ‘ ‘ ‘ ‘ '
0 2 4 6 8 10
Non-Markovian
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A 1=0.90
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Figure 4. Success probability of obtaining a nonzero outcome from the sSLOCC projection for fermions
(I,U',r,v' > 0 and I = ') interacting with localized amplitude damping channels. Different degrees
of spatial indistinguishability are reported in both the Markovian (A = 5v) (upper panel) and
non-Markovian (A = 0.01) (lower panel) regimes.

We conclude the analysis of the amplitude damping channel by showing the fi-
delity (13) between the state of Equation (28) resulting from the sSLOCC measurement
and the initial state of Equation (19) where locations A and B are assumed to coincide with
L and R, namely pg = |1_); g (1-|;. This is reported for fermions with real and positive
coefficients in Figure 5 as a function of time and for different values of indistinguishability.
Similarly to the concurrence, the fidelity decays to zero with time for Z # 1, with a decay
rate which diminishes with the spatial indistinguishability. When the maximal spatial
indistinguishability is achieved, instead, the fidelity maintain its maximum value F =1
(Z =1, solid blue line). This behavior holds in both the Markovian and non-Markovian
regimes. These plots thus evidence how this procedure also enables state robustness with
respect to the initially prepared state of the system.

3.2. Phase Damping Channel

The phase damping channel is used to model the inherently quantum non-dissipative
physical situation where a system undergoes a loss of coherence without losing energy. In
this scenario, the energy eigenstates of the system are not changed by the dynamics, but
they accumulate a phase that is responsible for the gradual degradation of the interference
terms. Physical systems undergoing this phenomena are, e.g., random telegraph noise
and phase noisy lasers [80-85], photons randomly scattering through waveguides [86] and
superconducting qubits under low-frequency noise [87].
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Figure 5. Fidelity of two identical qubits (fermions with [, !, 7,7 > 0) subjected to localized ampli-
tude damping channels, computed between the initial state |1_); g (1-|;g and the state produced
by an instantaneous deformation + sLOCC operation at time ¢ for different degrees of spatial indis-
tinguishability Z (with |I| = |#/|). Both the Markovian (A = 57) (upper panel) and non-Markovian
(A = 0.017) (lower panel) regimes are reported.

A phase damping channel acting on a single qubit is described by the Kraus operators

Eo = [1) (1) + /1= p(t) [L) (4| = E{,
(32)
Er = /p(t) 1) (4| = ET.

Once again, we consider the Bell state |1_) s of two identical qubits defined in (19) as
our initial state. The evolved state pag(t) after the interaction with the two independent
environments is computed as in Equation (20), which for the phase damping channel
described by the above Kraus operators gives

paB(t) = (1 - p(;)) 1) ap (1-|ap + @ 114)aB (1+]aB- (33)

where |1, ) s is the Bell state defined as
1

1 = —

| +>AB \ﬁ

At time ¢, deformation (1) is applied to the state (33) to make the two particles spatially
overlap. Deformation of [1_) o gives the state (22), while |1.) o5 gets mapped to

(1a1BH+1ALB1)). (34)

1

Todo= 5 (1o bz b+l by 1)), (35)
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(1= 3p(0) 1 =0 1P 1) g (g + PO + 172 1) g (Ll

Once again, state |1 ) is not normalized: it is indeed easy to show that

1+)p = G2 |T4)n, (36)

where (14|14)y = 1and C; is defined in (25). Thus, the global normalized state after the
deformation is

(1= 3 p())C 1T (T In+ 3 P G L)y (Tl
(1-4p(1)Ci+1p(t)

Finally, the sLOCC operation is performed: the action of the projection operator (5) on the
state (37), as defined in Equation (6), gives

pp(t) = (37)

; ] (38)
(1= p()) i =g r2+ § p(o)lir + 12

We now study the entanglement evolution of such a state by the concurrence C(prr(#)),
which is readily found to be

C(or(t)) = max{0, A1 (t) — Ax(t)},

/\1(1') = max{)\A(t), AB(i‘)}, Az(t) = min{AA(t), )\B(t)}, 39)

with
(1 - %p(t)) \Ir — 1y l'r|?
(1= @) =y e+ L p(o)lir g1
3P|l +nl'r?
L= L)) Il =y U'rP + L p(o)lir + e

/\A(t) =

)\B(t) = (

Focusing the analysis once again on fermions with real and positive coefficients I, 7,1, ' to
fix a framework, concurrence (39) is then equal to

_ 72 14)2 eyl
Clonalt) (1=p®) [+ 2] +21 | 0
(Ir')2 + (I'r)2 + (1 - p(t))le’rr’

The time behavior of the concurrence of Equation (40) is plotted in Figure 6 for both the
Markovian and the non-Markovian regime, while the net gain due to the deformation and
sLOCC operation is depicted in Figure 7. Once again, the entanglement recovered is found
to decrease as the interaction time increases where the generated spatial indistinguishability
is not maximum. As in the amplitude damping scenario, such dephasing is monotonic
in the Markovian regime and periodic in the non-Markovian one, with a decay rate that
decreases as particle indistinguishability increases. Nonetheless, differently from that case,
the entanglement now does not vanish. Indeed, for t — oo it reaches a constant value
which, under the above assumptions, is given by

20!

s

(41)
Furthermore, when the indistinguishability is maximum (Z = 1, blue solid line) quantum
correlations after the sSLOCC measurement are completely immune to the action of the noisy
environment and maintain their initial value. Is is important to highlight that the existence
of such a steady value for the entanglement of identical particles is only due to the spatial
indistinguishability of the qubits and to the procedure used to produce the entangled state,
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i.e., the sSLOCC operation. This result clearly shows that spatial indistinguishability of
identical qubits can be exploited to recover quantum correlations spoiled by the detrimental
noise of a phase damping-like environment interacting independently with the constituents,
as shown in Figure 7.
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Figure 6. Concurrence of two identical qubits (fermions with LI',r,¥ > 0, bosons with one of
these four coefficients negative) in the initial state |1_) ,p interacting with localized phase damping
channels, undergoing an instantaneous deformation + sLOCC operation at time ¢ for different degrees
of spatial indistinguishability Z (with |I| = |#/|). Both the Markovian (A = 5) (upper panel) and
non-Markovian (A = 0.01v) (lower panel) regimes are reported.

Finally, the success (SLOCC) probability of obtaining the outcome prr(t) for two
identical qubits undergoing local phase damping channels is

(Ir')2 + (I'r)? — 21 ll’rr’(l - p(t))
(1-3p(0)C2+3p()C

Figure 8 depicts the behavior of the SLOCC probability of success (7) for fermions (with
real and positive coefficients of the spatial wave functions) for different values of Z. Once
again, there is a trade-off between the probability of success and the concurrence, with
P r(t) = 1 when the particles are distinguishable (black dashed line) and Prgr = 1/2 for
perfectly indistinguishable qubits (blue solid line). A similar general behavior is found for
bosons (with the constraint ] = ' = I" = —r), having Pr(t) = 1 — p(t)/2 in the case of
maximal indistinguishability Z = 1.

Prgr(t) = (42)
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Figure 7. Net gain in the entanglement recovery of two identical qubits (fermions with [, I, 7,7 > 0,
bosons with one of these four coefficients negative) in the initial state |1_) o5 under localized phase
damping channels, thanks to the deformation + sLOCC operation performed at time f. Results are
reported for different degrees of spatial indistinguishability Z (with |I| = |/|). Both the Markovian
(A = 57) (upper panel) and non-Markovian (A = 0.01v) (lower panel) regimes are shown.

The same general relation between concurrence and spatial indistinguishability is
found also for the fidelity between the initial state pg = |1_);  (1-|; g and the final one (38),
displayed in Figure 9 for both the Markovian and the non-Markovian regime.

Notice that, differently from the amplitude damping scenario, this time the fidelity
does not vanish but it reaches an asymptotic value that increases with the indistinguishabil-
ity, starting from F = 1 for distinguishable particles (Z = 0, black dashed line) and reaching
the maximum value F = 1 when 7 = oo (solid blue line). An efficient state robustness is
then activated by the proposed procedure for pure dephasing noise.

3.3. Depolarizing Channel

In this section we reconsider and expand the results on entanglement protection at the
preparation stage presented in Reference [55].

The depolarizing channel describes the process where a system undergoes a symmetric
decoherence [71]. This type of noise can occur, for instance, during an isotropic interaction
of a spin-1/2-like particle (qubit) with a bosonic or spin-like environment [88-91]. The
depolarizing process can be encountered in nuclear magnetic resonance setups [92,93] and
Bose-Einstein condensates [94,95], where the decoherence process is typically caused by
a residual fluctuating magnetic field. Traveling photons can also undergo a depolarizing
noise, due to optical scattering when photons become randomly polarized [96-98].
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Figure 8. Probability of obtaining a non-zero outcome from the sLOCC projection for fermions
(with I,I',r,7' > 0 and | = #) interacting with localized phase damping channels. Different degrees
of spatial indistinguishability are reported in both the Markovian (A = 5v) (upper panel) and
non-Markovian (A = 0.01) (lower panel) regimes.

A depolarizing channel acting on a system of two qubits has the effect of leaving it
untouched with probability 1 — p(t) and of introducing a white noise that drives it into
the maximally mixed state with probability p(t). This is, for instance, a typical noise
occurring when quantum states are initialized. Supposing once again that our system of
two identical particles is initially in the Bell state |[1_) 5, it is well known that this kind of
noisy interaction produces the Werner state [71]

paB(t) = Wyg(t) := (1 - P(t)) 1-)r (I-[r + 31 p(t)1, (43)

where 1l is the 4 x 4 identity operator. Hereafter, we work for convenience on the Bell
states basis

Bp = {111)ap, 1-)aB, [24)aB/ [2-) aB},

where |11),5, |1-) sg have been previously defined respectively in (19) and (34), while
|24) op and |2_) o are given by

1
2
20m = 55 (1A 1B 1)~ 1A LB ).

124)ap =

(latB1)+1ALBY) ),

S5

(44)

S5
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We recall that since such basis is orthonormal, the identity operator can be written as

1= Y ljs)ap (sl ap-
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Figure 9. Fidelity of two identical qubits (fermions with [,!’, 7,7 > 0) interacting with localized
phase damping channels, computed between the initial state |1_); g (1-|; g and the state produced
by an instantaneous deformation + sLOCC operation at time ¢ for different degrees of spatial
indistinguishability Z (with |I| = |¢/|). Both the Markovian (A = 5v) (upper panel) and non-
Markovian (A = 0.01) (lower panel) regimes are reported.

At time t we deform the two qubits wave functions. The deformation of states [1,) o
and |1_) g has already been discussed in (35) and (22), while states |2 ) ,g and [2_) 5 are
mapped respectively to

24)p =C22¢)n, 12-)p = C2[2-)n, (45)

where (2121 )y = (2-|2_)y = 1 and C; is defined in (25). The result of the defor-
mation of state (43) is thus the deformed Werner state of two indistinguishable qubits
pp(t) = Wp (t) [55], where

Wy (1= | (1= 3 2(0) CF [n -
+C3 % p() (1T Tl + 24y @l + 1220 <2—|N)} (46)

/[1—77|<1P1|1P2>|2(1_ip(t))}
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To perform the final SLOCC measurement we assume that |¢1), |[¢) have the usual
structure given in Equation (10). Applying the projection operator on the state (46) as
defined in Equation (6) we obtain

3 / /
pre(t) = | (1= 3 p(0)) 16" = n 11 (-
1 !/
+ 2P0 1+ P Lol + 1200 24 + 20w 2ol )| @)
{( )|lr r]l'r|2—|—2p(t) |lr'+ryl’r|2}.

Before computing the concurrence we notice that, as for the phase damping channel, the
state of Equation (47) is real and diagonal on the Bell states basis, thus being invariant
under the localized action of the Pauli matrices a& & af. Therefore, the concurrence is
evaluated in terms of the four eigenvalues of pyr(t), namely

(1=3p) 1 —yur?
(1=3p(0)) 1 = 1r2+ 3 p(8) 1+ 12
P |1+l
(1=3pO) 1 =g rr 4+ 3p) i g1

Aa(t) =

A(t) = Ac(t) = Ap(t) =

Considering once again fermions with real and positive coefficients I,7,1’, 7/, the concur-
rence has the expression

(1 - %p(t)) [(lr’)2 + (l’r)z} +21rr’
(2 + (12 + (1= § p(1)) 2107

C(pr(t)) = maxg 0, (48)

Figure 10 shows the time behavior of entanglement quantified by Equation (48), while
Figure 11 depicts AC(t). First of all, we emphasize that, differently from the amplitude
damping channel and the phase damping channel, a sudden death phenomenon occurs
when no deformation and sLOCC are performed: indeed, when Z = 0 (black dashed
line) the entanglement vanishes at the finite time f such that p(f) = 2/3. However,
when 0 < 7 < 1, the state emerging from the sLOCC procedure recovers an amount
of entanglement which decreases monotonically with ¢ in the Markovian regime and
periodically in the non-Markovian regime. Nonetheless, as in the phase damping case,
such decrease approaches a constant value given by

B B (Ir")2 + (I'r)> —4ll'rr’
Coo = max{O, 2[(I7)2 + (I'r)2 — 1'rr] } )

Furthermore, we notice once again that when the maximum spatial indistinguishability
(Z = 1, blue solid line) is achieved, our procedure allows for a complete entanglement
recovery independently on t.
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Figure 10. Concurrence of two identical qubits (fermions with ,1’, 7,7 > 0, bosons with one of these
four coefficients negative) in the initial state |1_) s subjected to localized depolarizing channels,
undergoing an instantaneous deformation + sLOCC operation at time ¢ for different degrees of spatial
indistinguishability Z (with |I| = ||). Both Markovian (A = 57) (upper panel) and non-Markovian
(A = 0.017) (lower panel) regimes are reported.

As a further quantity of interest we obtain the SLOCC probability of success, defined
in Equation (7), for two identical qubits whose correlations have been spoiled by a local
depolarizing channel, that is

("2 + (I'r)2 =25 1l'rr’ (1 -3 p(t))
1—7 {(ll’)2 + (rr!)? —l—ZZl’rr’} (1 -3 p(t)) '

Pir(t) = (50)

In Figure 12, P r(#) is plotted in the case of two fermions (with real and positive coeffi-
cients and | = ') for different degrees of spatial indistinguishability. Again, as expected, a
trade-off exists between the probability of success and the concurrence, with the higher
probability achieved when the qubits are perfectly distinguishable. Nonetheless, as hap-
pens in the previous channels, such probability reaches a stationary value that decreases as
the indistinguishability increases, with Pi g = 1/2 as the minimum value when Z = 1 (blue
solid line). For bosons, a similar behavior is found (with the constraint [ = ' =1’ = —r),
having Pir(t) =1 —3p(t)/4 whenZ =1 [55].
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Figure 11. Net gain in the entanglement recovery of two identical qubits (fermions with [,I’, 7,7 > 0,
bosons with one of these four coefficients negative) in the initial state |1_) ,p interacting with a
depolarizing channel, thanks to the deformation + sSLOCC operation performed at time ¢. Results are
reported for different degrees of spatial indistinguishability Z (with |I| = |/|). Both the Markovian

(A = 57) (upper panel) and non-Markovian (A = 0.01v) (lower panel) regimes are shown.
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Figure 12. Probability of obtaining a nonzero outcome from the sLOCC projection for fermions with
real and positive coefficients (I = ') under a depolarizing channel. Different degrees of spatial
indistinguishability 7 are reported in both Markovian (A = 5v) (upper panel) and non-Markovian

(A = 0.017) (lower panel) regimes.
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Finally, we show in Figure 13 the fidelity between the initial state pg = |1_);z (1-|;r
and the final one (47), for fermions with real and positive coefficients and different degrees
of spatial indistinguishability.

Once again, spatial indistinguishability is found to be directly influencing the fidelity,
with a general behavior identical to the one emerged for the phase damping channel
(Figure 9). Nonetheless, the asymptotic value reached for distinguishable particles in this
scenario is F = 1/4 (Z = 0, black dashed line), placed in between the two other channels
considered in this work. State robustness is eventually achieved by the proposed procedure.

Markovian
F(t)
1.0
v
0.8 \ ‘ -
\ 1=0.90
0.6r \ e 1=0.75
\ - 1=0.50
0.4+ N — =0
~ ~
0.2+
0.0 : vt
0 2 4 6 8 10
Non-Markovian
F(t)
10§
I: H
0.8F i e
i R A 1=0.90
0.6 v o w N O FPCLL SR B “ -0.75
Y by \ -+ 12050
' Vy !y r — =0
J / / 7 N o, N e e - =
0.2+
0'0 L L L L J Yt
0 100 200 300 400 500

Figure 13. Fidelity of two identical qubits (fermions with I,I,7,#/ > 0) subjected to localized
depolarizing channels, computed between the initial state |1_); (1| g and the state produced
by an instantaneous deformation + sLOCC operation at time t for different degrees of spatial
indistinguishability Z (with |I| = |¢/|). Both the Markovian (A = 5v) (upper panel) and non-
Markovian (A = 0.01) (lower panel) regimes are reported.

4. Discussion

In this paper we have shown that spatially localized operations and classical commu-
nication (sLOCC) provide an operational framework to successfully recover the quantum
correlations between two identical qubits spoiled by the independent interaction with two
noisy environments. The performance of such procedure is found to be strictly dependent
on the degree of spatial indistinguishability reached by the spatial deformation of the parti-
cles wave functions. A general behavior has emerged: the higher is the degree of spatial
indistinguishability, the better is the efficacy of the protocol, quantified by the difference
between the amount of entanglement present at time ¢ with and without the application of
our procedure. In particular, when the two particles are brought to perfectly overlap and
the maximum degree of indistinguishability is achieved, the initial (maximum) amount of
entanglement is completely recovered in all the considered scenarios, independently of
how long the qubits have been interacting with the detrimental environment.
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If the indistinguishability is not maximum, instead, our results show that for an am-
plitude damping channel-like environment the entanglement after the sSLOCC drops to
zero after a short interaction time; nonetheless, the interval of time where the amount
of recovered entanglement is significant increases with the indistinguishability in both
the Markovian and the non-Markovian regimes. When the environment acts as a phase
damping channel, instead, the recovered correlations are always nonzero and our pro-
tocol provides an exploitable resource independently of the interaction time (stationary
entanglement). This behavior also holds in the depolarizing channel scenario, where the
deformation + sLOCC protocol achieves a special usefulness since it allows us to recover
quantum correlations destroyed at finite time by a sudden death phenomena.

Analogous characteristics are found also for the fidelity between the initial pure state
and the post-processing state produced by the deformation + sLOCC protocol: when the
indistinguishability is maximum, such quantity maintains its maximum value constant.
When 7 < 1, instead, it drops to zero faster as the indistinguishability decreases for an
amplitude damping-like environment, while it reaches a constant value that grows with
the indistinguishability when a phase damping channel or a depolarizing channel are
considered. State robustness is therefore achieved.

We point out that the results reported in Figures 2, 6 and 10 show a similar behavior
to the ones discussed in Reference [63] (for a Markovian regime) where, in contrast to
the present analysis, the system—environment interaction occurs between the deformation
bringing the particles to spatially overlap and the final SLOCC measurements. Nonetheless,
the decay rate is much larger in the situation considered here: the sLOCC operational
framework for entanglement recovery performs better when the environment is not able to
distinguish the particle it is interacting with, as happens in Reference [63]. Despite this,
the present protocol deals with a different physical context: indeed, it expressly refers
to the scenario where we are given a two identical particles with entangled states that
were spoiled by the environment in a situation where the particles remain distinguishable.
Furthermore, in a real world application it is likely that the system-environment interaction
will occur both before the (spatial) deformation and between the deformation and the
sLOCC. Therefore, an interesting possible prospect of this work would be to investigate
the general open quantum system framework provided in Reference [63] when applied to
noisy initial states such as those given in Equations (21), (33) and (43).

Our results can apply to all the physical systems made of identical particles undergoing
the noisy interactions discussed in Section 3, e.g., Bose-Einstein condensates, cavity and
circuit QED systems and quantum photonics, once we are experimentally able to implement
the deformation + sLOCC procedure. Among these scenarios, quantum photonics is most
likely the best candidate for a first experimental verification of our results; indeed, in
Reference [56] the authors have managed to experimentally apply the deformation +
sLOCC protocol to a pair of photons in a tunable way using a simple optical setup. It is
expected that such setup may be used as a starting point to validate the results discussed
in this paper, where the implementation of simulated noisy environments is a task that can
be easily achieved using linear optics devices [79].

Our findings ultimately provide further insights about protection techniques of entan-
gled states from the detrimental effects of surrounding environments by suitably manipu-
lating the inherent indistinguishability of identical particle systems.
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