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Abstract: Failure detection and diagnosis are of crucial importance for the reliable and safe operation
of industrial equipment and systems, while gearbox failures are one of the main factors leading
to long-term downtime. Condition-based maintenance addresses this issue using several expert
systems for early failure diagnosis to avoid unplanned shutdowns. In this context, this paper pro-
vides a comparative study of two machine-learning-based approaches for gearbox failure diagnosis.
The first uses linear predictive coefficients for signal processing and long short-term memory for
learning, while the second is based on mel-frequency cepstral coefficients for signal processing, a
convolutional neural network for feature extraction, and long short-term memory for classification.
This comparative study proposes an improved predictive method using the early fusion technique
of multisource sensing data. Using an experimental dataset, the proposals were tested, and their
effectiveness was evaluated considering predictions based on statistical metrics.

Keywords: diagnosis; gearbox failure; linear predictive coefficients; long short-term memory; mel-
frequency cepstral coefficients; convolutional neural network; sensor data fusion

1. Introduction

In recent years, the industry has undergone significant development requiring the use
of increasingly complex rotating machinery [1] that needs to be monitored and maintained
to avoid unplanned shutdowns [2]. Condition-based maintenance (CBM) is, therefore, the
tool of choice for monitoring rotating machines’ state of health [3]. In this context, a CBM
strategy includes failure detection, diagnosis, and prognosis to estimate the remaining
useful life [4].

Rotating-machine diagnosis can be carried out using model- or data-based
approaches [5]. While model-based techniques require the use of accurate models in-
cluding machine parameters, signal-based approaches have the advantage to be driven
by data without any prior knowledge about the monitored system. Signals reflecting the
rotating machine’s state of health need to be acquired, however [6]. Acquired signals are
further processed to extract useful information from noisy signals, which are used for
failure detection and diagnosis [7].

Signal processing is ensured using different types of approaches, such as time-,
frequency-, and time–frequency-domain analyses [8,9]. In this context, time–frequency
is considered to be the analytical approach of choice, particularly for nonstationary sig-
nals, because of its ability to simultaneously capture features from the time and frequency
domains [10]. In this field, signal-processing techniques are often combined with artificial-
intelligence tools [11], to automate the diagnostic process and minimize human involve-
ment [12,13]. In terms of artificial intelligence, machine learning is the solution of choice
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to effectively address major issues faced by data-driven failure detection and diagnosis
approaches [14]. In this machine-learning context, convolutional neural networks (CNNs)
are well-adapted for feature extraction [2], while recurrent neural networks (RNNs), with
their new long short-term memory (LSTM) variant, are better suited for learning and
classifying time series [15,16].

Artificial-intelligence-based diagnosis methodologies are a major focus for Industry 4.0
when based on the concept of the Internet of Things (IoT) [17], which allows for connecting
everything to the Internet, such as machines and sensors [18]. To follow new Industry 4.0
trends, it is therefore necessary to consider designing autonomous expert systems [19],
while benefiting from advantages of multisource data sensing for machine monitoring [20].

Several relevant proposals were recently published to design increasingly reliable
monitoring systems [21] thanks to new signal-processing techniques such as linear predic-
tion coefficients (LPC), mel-frequency cepstral coefficients (MFCC), and machine learning.
Meiying et al.[16] proposed to combine a CNN and LSTM for health assessment and fail-
ure diagnosis. Features are extracted from the time and the frequency domain using the
original signal and the short-time Fourier transform of the original signal, respectively.
This approach was tested on two experimental datasets with a state-of-the-art comparison.
In [22], Abdul et al. combined gamma tone cepstral coefficients and MFCC for feature
extraction, and LSTM for gearbox failure diagnosis. However, combining two feature-
extraction techniques, as shown in [16] and [22], can improve learning quality but at the
price of considerably increasing prediction time, thereby limiting its real-time applications.
Lei et al. [23] carried out failure diagnosis using LSTM without any prior signal processing.
Acquired signals were directly linked to the LSTM input layer for feature extraction and
classification. In this study, comparisons are carried out with other networks, such as
multilayer perceptron (MLP), deep convolutional neural networks with wide first-layer
kernels (WDCNN), and RNN. Signal data fusion was also considered. Yang et al. in [24]
compared neural networks (nonlinear autoregression neural networks, NARNN, RNN,
LSTM, and cross-LSTM) failure-detection performance. Failure diagnosis was performed
using a sliding-window-technique-based LSTM. For rolling-bearing failure monitoring,
Hao et al. [25] proposed a multisensor diagnostic framework using 1D-CNN-LSTM, 1D-
CNN for feature extraction and LSTM for classification. The effectiveness of this approach
was compared to that of support vector machines (SVMs), k-nearest neighbors (KNN),
backpropagation neural networks (BPNNs), and CNNs. In [26], Park et al. proposed to
combine two machine-learning techniques, namely, autoencoder for failure detection and
LSTM for diagnosis. Combining CNN and LSTM to benefit from both advantages was
proposed by An et al. [27]. This combination was effective in predicting the remaining
useful life of cutting tools.

Removing the signal-processing step and extracting features by learning are common.
This is, however, not always obvious according to the monitored system and correspond-
ing failures. This is particularly the case in noisy environments, as in gearboxes where
signals are too noisy, and separation becomes very difficult [28]. Indeed, as shown in
[23,24], it could be more efficient to add convolution layers to benefit from their ability to
extract useful information for diagnosis [25,27] or filter the signals through an autoencoder
network [26], but signal processing remain the step of choice for improving the accuracy
of the failure-detection process. For fault detection and isolation, Ugochukwu et al. [29]
proposed to extract useful features using MFCC. Most discriminant features were then cho-
sen as input for the classification using SVM. MFCC and LPC are widely used techniques,
mainly for acoustic-signal processing. Aankit et al. [30] proposed to merge features from
MFCC and LPC for spoken-language recognition. The obtained features were then used
for classification using SVM, MLP, naïve Bayes, and random forest.

According to the above-discussed literature review, this paper addresses the issue of
gearbox failure diagnosis, and its main contributions are the following:
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• comparative study between two methodologies for gearbox diagnosis based on LPC-
LSTM and MFCC-CNN-LSTM. This study highlights key features of technique suit-
ability in an industrial context, particularly Industry 4.0;

• the use of multisensor data fusion (early fusion) to improve diagnostic reliability of
the above-considered methodologies. In this context, the proposed early fusion-based
fault diagnosis methodology clearly decreases training time and the data amount for
storage, and improves accuracy.

The proposed methodologies were tested using a dataset collected from a specifi-
cally developed test rig, and evaluated by diagnostic metrics to highlight their industrial
application interest.

This paper is organized as follows. Section 2 presents the theoretical background of
the proposed methodologies. Section 3 evaluates the methodologies on the basis of an
experimental dataset. A conclusion and future prospects end the paper.

2. Proposed Failure-Diagnosis Methodologies

The proposed methodologies’ flowcharts are given in Figures 1 and 2, highlighting
their design as expert systems for online failure diagnosis. In particular, these flowcharts
illustrate the signal-acquisition step that requires sensor choice (e.g., accelerometer and mi-
crophone), handling the sensor position issue, and considering their key features (sensitiv-
ity, frequency, range, etc.) and acquisition-card choice (sampling frequency, input-channel
number, etc.) [31].

Raw signals
Acoustic emission

LPC

LSTM network

Raw signals
Acoustic emission

LPC

LSTM network

Signal processing

Learning features

Failure diagnosis

Online Offline

TestTraining

Figure 1. LPC–LSTM failure diagnosis methodology flowchart.
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Figure 2. MFCC–CNN–LSTM failure diagnosis methodology flowchart.

2.1. Linear Prediction Coefficients

As measured rotating-machinery signals are often nonstationary and can be highly
noisy, there is a clear need for increasingly efficient signal-processing techniques to im-
prove failure-diagnosis accuracy [32,33]. In this context, LPC, widely used especially in
speech recognition for signal analysis and feature extraction, is an interesting option for
investigating failure diagnosis signal processing.

LPC is based on the fact that each sample S(n) can be written as a sum of P past-
element s(n− k), weighted with model parameters ak and added to a residual term Gu(n),
as follows [34,35]:

S(n) ≈ a1s(n− 1) + a1s(n− 1) + ... + aps(n− p); (1)

otherwise,

S(n) =
P

∑
k=1

aks(n− k) + Gu(n) (2)

Equation (2) can be reformulated into the frequency domain into a digital filter:

H(z) =
S(z)
U(z)

=
G

1−∑P
k=1 akz−k

(3)

Estimating S(n) can be performed by a linear approximation of the previous p samples:

Ŝ = ∑P
k=1 aks(n− k) (4)
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Prediction-coefficient determination is based on minimizing the error between the original
and approximated signals:

e(n) = S(n)− Ŝ(n) = S(n)−∑P
k=1 aks(n− k) (5)

Obtained coefficients ak are the image of the processed signal that carries discriminating
information among different classes. These coefficients are the inputs of the learning
network.

2.2. Mel-Frequency Cepstral Coefficients

This signal-processing technique first consists of windowing signal into samples to
be as close as possible to a stationary signal. Each sample is then processed by discrete
Fourier transform (DFT). Signals are then filtered to extract each level’s information. The
mel-frequency spectrum uses triangular windowing that allows for calculating the energy
logarithm in each filter, as shown in Figure 3. Applying a discrete cosine transform on
mel-log-power allows for lastly calculating the cepstral coefficients [22].

DFT

sum

sum

sum

x n( )t X k( )t

2

L

(1)tY

(2)tY

Y M( )t

ω
ω

ω

ω

Time domain 
signals 

Spectrum

n = 0, 1, ..., L-1 k = 0, 1, ...,    -1

Figure 3. Mel-frequency cepstral coefficients.

2.3. Convolutional Neural Network

While several algorithms are used for feature extraction, CNNs are effective in many
application domains ranging from medicine to object detection. CNNs are primarily
composed of a succession of convolutional layers using different filter sizes to generate
features and pooling (max and average) layers using a nonlinear downsampler to extract
local features [36].

In this work, a 2D-CNN is proposed for feature extraction from MFCC spectral images
to distinguish between different gearbox failures.

2.4. Long Short-Term Memory

As CNNs are generally unable to learn features from nonstationary signals such as
vibratory measurements, RNNs were introduced [16]. They, however, suffer from gradient
vanishing at the training end. To tackle this issue, LSTM RNNs are the new variant.This
allows for controlling the generated information flow, and solves the gradient-vanishing
issue with dynamic learning features [13].

LSTM gate equations are formulated as follows [16].
Input gate:

it = σ(Wixxt + Wihht−1 + bi) (6)

C̃t = tanh(Wcxxt + Wchht−1 + bc) (7)

Forgetting gate:
ft = σ(W f xxt + W f hht−1 + b f ) (8)



Entropy 2021, 23, 697 6 of 20

Output gate:
Ct = it × C̃t + ft × Ct−1 (9)

ot = σ(Woxxt + Wohht−1 + bo) (10)

Next LSTM state:
ht = ot × tanh(Ct), (11)

where σ and tanh are the sigmoid and hyperbolic tangent activation functions, respec-
tively. Matrices Wix, Wcx, W f x, Wox ∈ RN×M, Wih, Wch, W f h, Woh ∈ RN×N , and vectors
bi, bc, b f , bo,∈ RN are the (input, recurrent, and bias) learnable (input, update, forget, and
output) weights, respectively, where N denote the size of the hidden layer per LSTM cell,
and M is the feature size. xt is the current input, ht−1 and ht are the previous and actual
hidden state, and Ct−1 and Ct are the previous and actual memory cell value. Equations (6)
to (11) manage the flow of information in an LSTM node (Figure 4).

Ct-1

ht-1

xt-1

ht

Ct

ht

oti tft

tanh

tanh

+
+ +

+

σσσ

4

Figure 4. Long short-term memory cell.

2.5. Evaluation and Classification

The proposed methodologies’ last step is failure diagnosis based on the above-
defined networks. Classifications are assessed using two criteria, accuracy and confusion
matrix [37], where accuracy is used for a general evaluation, and the confusion matrix is
used for the detailed evaluation of each fault.

3. Experimental-Dataset-Based Evaluation and Validation
3.1. Experimental Test Bench and Dataset

For validation purposes, a specific test bench, namely, HTM90, including gearbox and
bearing failures, was used (Figure 5). This is dedicated to the emulation of mechanical
faults in rotating machines (gear, rolling, misalignment, etc.). It mainly consists of a motor,
gearbox, and various healthy and faulty components to carry out fault-detection and
-diagnosis tests. To build the dataset, signals were acquired through three prepolarized
piezoelectric 4188-C-001 microphones from Bruël and Kjær (radial-vertical (RV), axial-
horizontal (AH), and radial-horizontal (RH)). Another channel was devoted to a tachometer.
The electrical signal of the microphones was acquired using a Bruël and Kjær 3050-A-060
acquisition board, which has 6 LEMO7-pin channels and a maximal sampling frequency of
50 kHz.

The testing procedure consisted of the following steps: (1) three microphones were
connected to the acquisition board an using 7-pin connector cable (AO-0414); (2) the
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microphones’ technical characteristic specification (sensor type, sensitivity, etc.) was used
in the Bruël and Kjær Pulse Labshop software; (3) lastly, acquisition frequency was set
to 25.6 kHz. The main bench components and specifications were: (1) DC motor (Baldor
AP7422, type 2424P, 0.25HP, 3450 rpm), and (2) speed was set to 1500 rpm (25 Hz) thanks
to a tachometer connected to a digital display (speed control). The motor was connected
to a drive shaft supported by a rolling platform by flexible coupling, and similarly on the
other side of the shaft connected to the gearbox. This gearbox consisted of a single gear
stage supported by four bearings, as shown in Figure 5.

Tests were performed at room temperature (25 °C) with lubrication after each installa-
tion. The used bearings had the following specifications: 1621-RS, 12.7 mm inner diameter,
34.925 mm outer diameter, and 11.112 mm width. Healthy and faulty (inner race failure)
bearings are illustrated by Figure 6. The used spur gears were Boston Gear YD54A (20°
pressure angle, 54 teeth) and YD18-3/4 (20° pressure angle, 18 teeth) for gearbox input
and output, respectively, as shown in Figure 7 (healthy gear); Figure 8 shows the used
faulty gear.

Recording began after microphone installation over a 500 mm radius of the gearbox
for each configuration shown in Table 1, on the three directions, namely, RV, AH, and RH.

Bearing

Motor

Gears

RH
Microphone

RV
Microphone

AH
Microphone

Figure 5. Experimental test bench.

A B

Figure 6. (A) Healthy bearing; (B) faulty bearing.
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Figure 7. Used healthy gears.

Figure 8. Faulty gear.

A 40 s recording was adopted for each failure; each recording was split into 0.5 s
pieces leading to a total of 80 samples for each failure. The test bench allowed for emulating
12 failures by combining four gear states (healthy, broken side, broken tooth, and notched)
with three bearing states (healthy, inner race failure, and rusty bearing), as shown in
Table 1.

Table 1. Simulated failure classes.

Gear States

Healthy Broken Side Broken Tooth Notched

Bearing states

Inner race defect C1 C4 C7 C10

Healthy C2 C5 C8 C11

Rusty C3 C6 C9 C12

Samples of obtained signals from each failure class simulation are shown in Figure 9.
These signals were later processed using MATLAB (from Matworks, licenced to Ecole
Militaire Polytechnique, Algiers, Algeria).
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Figure 9. Samples of obtained signals from each failure class.
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This framework is acoustical fault diagnosis, which has several advantages over other
monitoring techniques, such as vibration and current. Among these advantages are the
following: (1) noncontact measuring, which can be useful in harsh and severe environments
(e.g., high temperatures and corrosion) [38,39]; (2) cheap and practical technique to deploy
compared to vibration- or current-based monitoring [39,40]; (3) machine diagnosis is often
preceded by fault-source location by a microphone array. It is then easier to use a few
microphones for diagnostic purposes [41].

3.2. LPC–LSTM-Based Failure-Diagnosis Methodology

All the above-mentioned samples were processed by LPC to estimate the first 15 signal
coefficients for the 12 considered failures, as shown in Figure 10. Afterwards, the obtained
coefficients fed the LSTM network for learning. This step allowed for identifying common
features between samples of the same class and feature-discriminating classes.

Figure 10. Linear predictive coefficients of first-class samples.

LSTM failure learning and classification are illustrated by Figure 11. The considered
network consisted of four layers: the first for input data, a 100-node LSTM layer, a 10-node
fully connected layer, and a softmax layer for classification. Regarding training, the used
options were: max epochs, 100; minibatch size, 27; and initial learning rate of 0.001 with a
drop factor of 0.6 every 30 epochs with the Adam solver.
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Figure 11. Proposed LSTM network architecture.

3.3. LPC–LSTM Methodology Results and Evaluation

Specific data issued for the experimental dataset were used for testing. In this case,
the three microphones’ prediction assessments are illustrated in Figures 12–14 in terms of
confusion matrix, and in Table 2 in terms of accuracy.

Table 2. LPC–LSTM methodology accuracy evaluation.

1st Microphone 2nd Microphone 3rd Microphone

Accuracy 89.58% 90.28% 88.89%
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Figure 12. LPC–LSTM methodology confusion matrix (1st microphone).
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Figure 13. LPC–LSTM methodology confusion matrix (2nd microphone).
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Figure 14. LPC–LSTM methodology confusion matrix (3rd microphone).

The achieved results showed quite interesting performance, with around 90% accuracy.
When analyzing the confusion matrices, two misclassification types were found. The first
concerned misclassified classes in one microphone, but perfectly classified in the two others.
The case of the 6th failure that was perfectly classified in the first and third microphones,
and misclassified 6/24 samples in the second microphone. The same applied to the 9th
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failure, giving 24/24 for the first and second microphones, and missing 6/24 samples for
the third microphone. This led to the important conclusion that misclassifications by one
microphone can be perfectly retrieved by the others.

The second misclassification type concerned failed samples in each class. For example,
in the 8th class, there were 4/24 failed samples in the first microphone, of which 3/24 were
in the 2nd class, while 1/24 in the 11th class. On the other hand, the third microphone
failed 4/24, of which 2/24 were in the 9th class, while 2/24 others were in the 11th class.
Another example concerned the 12th class, where the second microphone missed 1/24 in
the 3rd class, 1/24 in the 7th class, and 1/24 in the 2nd class. On the other hand, the third
microphone missed 1/24 in the 5th class, and 5/24 in the 11th class. This second type of
misclassification allowed for us to highlight that samples missed in a microphone are not
necessarily those missed in another.

These two types of analysis allow for concluding that classification performance could
be improved by merging data from different microphones.

3.4. MFCC–CNN–LSTM-Based Failure-Diagnosis Methodology

MFCC is proposed for investigation, as it is specifically efficient for processing acoustic
signals, which was the case of the used gearbox-failure dataset.

In this context, with a sampling frequency of 25.6 kHz, MFCC 2D spectral image
outputs, illustrated in Figure 15, were used as CNN inputs for feature extraction. The
used convolutional network consisted of a succession of layers, as shown in Figure 16,
with a 14× 48 sized 2D input layer, and a convolutional layer with stride and padding
equal to 2 and 1, respectively. To enhance learning, a batch-standardization layer was used
to ensure that the characteristics are in the same range. A ReLU layer was then used to
cancel values below zero and obtain an output between 0 and 1. Before learning began, a
flattened layer was used to align the resulting image in vector form. On this level, a specific
architecture is proposed to enhance failure-diagnosis results. Convolutional operations
of the above-mentioned step results are proposed. The proposed network architecture
consisted of 3 layers: LSTM with 10 nodes superimposed on a fully connected layer of 12
nodes, and a softmax layer. Regarding training, the used options were an Adam optimizer,
learning rate of 0.001, and minibatch size set at 27, computed on a CPU with a learning-rate
drop factor of 0.6 every 30 epochs.

Figure 15. MFCC of samples from first microphone.
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Figure 16. CNN–LSTM network architecture.

3.5. MFCC–CNN–LSTM Methodology Results and Evaluation

The achieved accuracy results given in Table 3 highlight the improvement brought
by MFCC (about 7%) compared to that of the LPC-LSTM methodology. Confusion-matrix
analysis in Figures 17–19 confirmed the better classification tendency of the failure majority
because of MFCC spectrum representation providing more time and frequency details
from nonlinear and nonstationary signals [29], in addition to CNNs, which are known for
their strong ability to extract useful features.

Table 3. MFCC–CNN–LSTM methodology accuracy evaluation.

1st Microphone 2nd Microphone 3rd Microphone

Accuracy 97.9% 98.3% 100%
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Figure 17. Confusion matrix (1st microphone).
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Figure 19. Confusion matrix (3rd microphone).

Despite the improvement in accuracy, this approach deals with computational-burden
issues related to the convolutional layers’ slow training [42] due to successive convolutional
operations during training (convolution, pooling, etc). This drawback limits convolutional
networks’ usefulness for real-time diagnosis. In addition, the amount of data to be man-
aged by a CNN is very important. It typically consists of 14× 48 elements for spectral
MFCC images against the 15 coefficients obtained by LPC, in addition to multiplying the
number of images generated at each convolutional layer using different filters. This large
amount of data can lead to memory saturation and thereby block the monitoring process,
especially when monitoring several systems at the same time. Therefore, and according
to confusion-matrix analysis (Figures 12–14) and the disadvantages of the MFCC–CNN–
LSTM approach, multisensor data fusion was adopted to improve the obtained results
using the LPC–LSTM approach.

3.6. LPC–LSTM Early Fusion-Based Failure Diagnosis

A machine-learning literature review for classification or regression highlights penal-
izing a technique over another for accuracy enhancement. Analysis of other metrics such
as the confusion matrix helps in improving the prediction results, with simple methods
such as multichannel data fusion [20,43].

The main objective of this study was to show the effectiveness of early fusion for
failure-diagnosis performance enhancement. In this context, signal merging allows for
extracting discriminant features between different obtained classes from different sensors.
This leads to better prediction results than those by separately using each signal. Early
fusion is a machine-learning solution where fusion is ensured when training a learning
network. This allows for collecting a set of features related to each class from input signals
while leading to better efficiency and a higher confidence.

In this context, the three microphones’ signals are processed by LPC, as shown in
Section 3.2, and the 45 obtained coefficients from the three signals (15 from each signal)
are input to the learning network as shown in Figure 20. Learning then allows for the
discriminating selection of the features of each class (each microphone). The obtained
confusion matrix after fault diagnosis is shown in Figure 21, which clearly highlights the
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benefit of using early fusion, as 100% failure-diagnosis accuracy is achieved, compared to
less than 90% for the same signals used separately, as shown in Table 4.

Microphone 1 Microphone 3Microphone 2

Figure 20. Early fusion of 3 microphones.
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Figure 21. Confusion matrix (three channels’ fusion).
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Table 4. LPC–LSTM early fusion methodology accuracy evaluation.

1st Microphone 2nd Microphone 3rd Microphone Fusion

Accuracy 89.58% 90.28% 88.89% 100%

The achieved results clearly show the value of multisensor data fusion compared
to that of a monosensor approach. This is mainly due to the difficulty of determining
the monomicrophone optimal position to capture the maximal amount of information,
especially without prior knowledge of the likely fault source. In addition, for complex
machines, there may be interferences from multiple faults. These interferences influence
microphones in different ways depending on the orientation and the distance from the
sources of interfering faults [38,44].

The data-fusion technique based on LPC–LSTM led to encouraging results compared
to those of other techniques. This is due to the small amount of postprocessing data
(15 coefficients) compared to the original signal size or a transform giving a signal of
significant length, such as the spectrum used for fusion in [45]. In addition, convolutional
steps suffering from slow training speed [42] are not required, such as in the case of the
MFCC–CNN–LSTM approach and image fusion in [46].

4. Conclusions

This paper provided a comparative study of two machine-learning-based approaches
for gearbox failure diagnosis. The first used linear predictive coefficients for signal process-
ing and long short-term memory for learning, while the second was based on mel-frequency
cepstral coefficients for signal processing, a convolutional neural network for feature ex-
traction, and long short-term memory for classification. In this context, the objective
was to clearly highlight the importance of signal processing before learning. In addition
to highlighting the advantage of using mel-frequency cepstral coefficients to enhance
failure-diagnosis accuracy, there is room to further improve accuracy using multisensor
data fusion. Indeed, this allows for reducing the interpretation time of each result of
microphone diagnosis, in addition to improving diagnostic reliability and accuracy.

The proposed gearbox failure diagnosis methodologies were evaluated using an
experimental dataset built from a specific test bench with gearbox and bearing failures.

Future investigations will focus on the optimization of learning-network hyperparam-
eters to decrease training time and increase the number of diagnosed failures.
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