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Abstract: Quantum metrology overcomes standard precision limits and has the potential to play a
key role in quantum sensing. Quantum mechanics, through the Heisenberg uncertainty principle,
imposes limits on the precision of measurements. Conventional bounds to the measurement precision
such as the shot noise limit are not as fundamental as the Heisenberg limits, and can be beaten with
quantum strategies that employ ‘quantum tricks’ such as squeezing and entanglement. Bipartite
entangled quantum states with a positive partial transpose (PPT), i.e., PPT entangled states, are
usually considered to be too weakly entangled for applications. Since no pure entanglement can be
distilled from them, they are also called bound entangled states. We provide strategies, using which
multipartite quantum states that have a positive partial transpose with respect to all bi-partitions of
the particles can still outperform separable states in linear interferometers.

Keywords: PPT; quantum metrology; entanglement

1. Introduction to Quantum Estimation Theory

Measurements underline all physical processes [1–3]. Yet, like all quantum processes,
they is dictated by the laws of physics: Heisenberg-limited sensitivity. In optical interfer-
ometry, one such resource is the deployment of N maximally entangled probes in a NOON
state [4–6].

Typically there are many quantities we cannot measure directly. A protocol for such
measurements is typically indirect where we use an additional probe system to interact
with the one under investigation. Due to interaction, the probe gains adequate information
about the parameter we want to measure. We then inspect the probe arising from the
measurement, and on the basis of the obtained data, we estimate the desired parameter. In
order to obtain the highest possible accuracy for the estimation, we perform the experiment
repeatedly a multiple of times or, equivalently, make a multipartite probe to interact with
the system.

For a classical probe that contains n particles (we can also consider it a measurement
performed n times) accuracy scales as 1√

n , which is the so-called shot-noise limit (SNL).
However, if the system is in a particular entangled state, then accuracy can be improved up
to a precision of 1

n . This limit, called the Heisenberg limit (HL), provides the best accuracy
allowed by quantum mechanics. Both of these bounds can be derived from the quantum
Cramer-Rao bound with quantum Fisher information (QFI).

Quantum entanglement [7,8] has been an extremely useful resource for numerous
applications. Reference [3] reviews quantum metrology using many well known examples
of entangled states such as the GHZ state, Dicke state and singlet state and alo describe
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the highest achievable precision using these states. The Peres-Horodecki theorem [9,10]
provides a criterion for determining the entanglement of quantum states. If the partial
transpose of a mixed state has negative eigenvalues, then the state is entangled. However,
in general, we cannot say anything about the entanglement of a state if it does not have
negative eigenvalues. It turns out that it is possible in d × d′ (d, d′ ≥ 3) dimension for
the quantum state to be entangled even if the eigenvalues of the partial transpose are all
positive. Moreover, these states cannot be distilled to a singlet form and they are also
known as bound entangled or positive partial transpose (PPT) states. However, bound or
PPT states cannot be distilled to singlets, so these states are not suitable as a resource for
quantum communications. Yet, these states can be pumped into Werner state (an admixture
of singlet and maximally mixed state) to increase its singlet fractions [11]. Moreover, PPT
states can enhance the ability for teleportation of other states [12] and they are found to
be useful for quantum metrology [13,14]. The paper [14] shows that there are PPT states
that are not directly useful for metrology. However, their metrological usefulness can be
activated by using two or more copies of these states for the activation. In [15] the authors
provided an inequality based on QFI which must be satisfied by separable states and
violation of that inequality can immediately detect bound entangled or freely entangled
states, e.g., states found in [13] will violate that inequality. In [16] the authors found another
class of PPT states with a high Schmidt number for general d× d dimension states with
d ≥ 4, the metrological usefulness of such states are yet to be found.

In Section 2, we briefly describe Quantum Fisher Information (QFI) along with some
useful properties. Section 3 compares classical and quantum strategies for metrology where
the quantum strategies take advantage of entanglement by employing the use of entangled
probes for improving QFI. In Section 4 we discuss at length the effect of using sequential
strategies in improving QFI for the PPT states found in reference [13]. Next, in Section 5
we apply the sequential ancilla assisted strategy to a family of even dimensional PPT
states from [17] and draw some inferences based on the improvement obtained in QFI.
In Section 6 we apply the sequential approach to both entanglement and ancilla assisted
strategies for the case of 3× 3 and 4× 4 PPT states and find that this approach gives an
improved QFI for the cases considered. Finally, we discuss some implications of our results
in Section 7.

2. Quantum Fisher Information

Fisher information was originally introduced for statistical estimation purposes. The
classic Cramér-Rao inequality places an upper bound on the precision of the estimation
in terms of Fisher information. Alternatively, this may be interpreted as that Fisher in-
formation has a lower bound in terms of the precision (variance) of any measurement.
Fisher information has been generalized to quantum situation, and there is also a quantum
analogue of the Cramér-Rao inequality [18–20].

(∆θ)2 ≥ 1
FQ(ρ, Â)

(1)

where FQ(ρ, Â) is the Quantum Fisher information (QFI). The quantum Fisher information,
a central quantity in quantum metrology, is defined by the formula

FQ[ρ, Â] = 2 ∑
k,l

|〈k|∂θρθ |l〉|2
(λk + λl)

(2)

Equation (2) can also be written in the form below using Baker–Campbell–Hausdorff
formula

ρ(θ) = U(θ)ρ(0)U(θ)† = ρin − iθ[A, ρin] (3)
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So, Equation (2) becomes

FQ[ρ, Â] = 2 ∑
k,l

(λk − λl)
2

(λk + λl)
|〈k|A|l〉|2 (4)

where, A = ∑N
n=1 a(n) and a(n) is the single particle operator acting on the nth particle of

the probe system also known as the unbiased estimator. λk and |k〉 are the respective
eigenvalues and eigen vectors of the density matrix ρ, that is used as a probe state for
estimating θ .

For qubits, the a(n)’s operators are just the spin operators in the z-direction, σz/2 so
that A = ∑N

n=1 σ
(n)
z /2 but for d > 2, i.e., qudits A = ∑N

n=1 D(n), where σ
(n)
z ’s are traditional

Pauli operators and D = Diagonal [1,1,...,−1,−1], for even ’d’ there will be d/2 (+1)’s and
d/2 (−1)’s and for odd ‘d’ there are d+1

2 (+1)’s and d−1
2 (−1)’s, e.g., for a bipartite(3× 3)

qutrit state
A = D⊗ I + I ⊗ D = A1 + A2, (5)

where I = Identity matrix of dimension d× d, and A1 and A2 are called local Hamiltonians.
For separable multi-qubit states, the quantum Fisher information, characterizing the

maximal precision achievable by a quantum state, is bounded as

FQ[ρ, Â] ≤ N (6)

where N is the number of subsystems.
For separable multi-qudit (d > 2) states, the maximum quantum Fisher information is

bounded as

FQ[ρ, Â] ≤
N

∑
n=1

[λmax(a(n))− λmin(a(n))]2 (7)

where λmax and λmin are the maximum and minimum eigenvalues of a(n).
Quantum Fisher information possesses some interesting mathematical properties [18].

Indeed, it has been shown that, amongst all generalized analogues of quantum Fisher infor-
mation, the quantum Fisher information is the largest for rank-2 density matrices and for
operators that have zero diagonal elements in the eigenbasis of the density matrix [21,22].
Here, we list some of the properties below [23,24]:

• For pure state ρ the QFI is given by FQ[ρ, Jl ] = 4(∆Jl)
2
ρ.

• FQ[ρ, Jl ] is convex in the state ρ, i.e., FQ[p1ρ1 + p2ρ2, Jl ] ≤ p1FQ[ρ1, Jl ] + p2FQ[ρ2, Jl ].
• FQ[ρ, Â⊗ I, I ⊗ B̂] = FQ[ρ, Â] + FQ[ρ, B̂].
• For N-qubit separable states, the values of FQ[ρ, Jl ] for l = x, y, z are bounded as

∑
l=x,y,z

FQ[ρ, Jl ] ≤ 2N (8)

in Equation (3) the range is given for one of the l’s among x, y, z.
• For Greenberger-Horne-Zeilinger states (GHZ states) (maximally entangled states),

the quantum Fisher information is bounded by

∑
l=x,y,z

FQ[ρ, Jl ] ≤ N(N + 2) (9)

• For N-qubit k-producible states states, the quantum Fisher information is bounded by

FQ[ρ, Jl ] ≤ nk2 + (N − k)2 (10)
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3. Classical vs. Quantum strategy

As shown in Figure 1, conventional measurement schemes (upper panel) prepare
and detect N independent physical subsystems separately. The final result comes from a
statistical average of the N outcomes. In quantum enhanced measurement schemes (lower
panel), the physical system is prepared in a highly correlated state (i.e., an entangled or
a squeezed state, here we have used PPT correlated) of N physical subsystems, and we
measure collectively with a single non-local measurement that includes all the subsystems.

Figure 1. Classical (A) vs. Quantum strategy(Entangled assisted strategy) (B).

4. Sequential Strategies

In this section, we study the usefulness of the PPT two-qudit states introduced in
reference [13] for quantum metrology. These states were shown to be useful for quantum
metrology through a semidefinite program, which is essentially a convex optimization
algorithm where the constraints are ρ ≥ 0 and ρTk ≥ 0 for all k and Tr(ρ) = 0. We
first discuss the case in which both the qudits in the input PPT states undergoes a phase
transformation so that the qudits in state are imprinted with a phase, and then we subject
the state to two specific cases: (A) and (B) in Figure 2. Cases (A) and (B) have also
been studied in reference [13] for maximally entangled states. In case (B), the authors in
reference [13] studied a noisy state of the form

εAB[ρ(θ)] = ρ(θ, p) = (1− p)ρ + p
I
d

, (11)

where εAB is the total depolarizing noise acting on both the subsystems of Figure 2B. If the
same noisy channel acts repeatedly m times to the intermediate output state ρout before the
measurement then the final output state becomes

ε⊗m
AB [ρout] = ρout(O(pm), θ). (12)

where ρ is the d× d PPT state and p is the strength of noise. It has been shown that as the
dimension d increases, the Fisher information increases (even though the Fisher information
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for a separable state remains at 8, and also that the noise resistance increases, i.e., the critical
p, when the Fisher information falls below 8, increases as shown in Table 1 [13].

Figure 2. Two different strategies in which a state is imprinted with phase θ for each qudit and
undergoes (A) no noise, and (B) “global” noise.

In Figure 3, we present a change in the strategy from the left one (entangled assisted
strategy) to the right (sequential ancilla assisted strategy)) where we show that it is possible
to increase the advantage by using sequential strategy. We also present the Table 1 where
we apply the sequential strategy to the 3× 3 to 12× 12 PPT states in reference [13] and
compute Fisher information for each of the states corresponding to both of the cases of
Figure 3.

Figure 3. Change of strategy from entangled assisted strategy to sequential ancilla assisted strategy
where the second qudit acts as an ancilla. However the right one has two iterations and thus two
phases are imprinted on the state, just as in the left one. The sequential strategy (with just two
iterations) in the ancilla assisted case (right) gives a better QFI compared to the entangled assisted
strategy with one iteration (left), the amount of resources being the same in the two strategies.

Here, the phase is imprinted using the unitary evolution on each of the qudits
U(θ) = e−iDθ where D = diagonal[1, 1, ...,−1,−1] where for even dimensions, there
are an equal number of −1 and 1 but for odd dimensions, the number of 1 is exactly one
more than the number of −1. It is very important to notice that all U(θ)’s are local unitary
operations acting on each of the subsystems independently, i.e., in the left figure on both
the subsystems the local unitary operator acts as U(θ)⊗ I (for the upper subsystem) and
I ⊗U(θ) (for the second one) respectively.

In the right figure, the total operator in Equation (5) is changed to

A = D⊗ I + D⊗ I = A1 + A2 = Ai + Ai (13)

where A1 and A2 are now same (Ai) in this case.
For experimentally implementing the sequential strategy using the operator (13),

the unknown phase parameter (θ) can be pictured as being applied twice to just one of
the two subsystems of the input probe through local unitary U(θ) ⊗ I, unlike the case
of Equation (5), where the parameter (locally) is inserted at both the subsystems of the
input probe. The operator ‘A’ can be broken as A1 and A2 being applied separately to each
probe as in Equation (5) or being applied to the same probe as in Equation (13). This is
mathematically equivalent to two local unitary operations U(θ)⊗ I and I ⊗U(θ) acting on
the input probe in the left figure of Figure 3 and two consecutive local unitary operations
U(θ)⊗ I and U(θ)⊗ I acting on the input probe in the right figure of Figure 3.

In the figures below, we show that we can apply our sequential strategy to both the
left and right cases of Figure 2.

Figure 4A,B shows a sequential process of phase imprinting without (A) and with
noise (B) performed repeatedly for m iterations.
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Figure 4. Two different strategies in which a state is imprinted with phase θ in both the qudits and
undergoes the two cases as in Figure 2 but now the output state at one stage is fed into the input for
m iterations. The subfigure (A) shows iterations without noise while subfigure (B) involves noise
after each iteration.

Figure 5 shows the ancilla assisted strategy in which the phase is imprinted once (A)
and m times (B) on the state before measurement. The Fisher information in Figure 5A in
which the phase is encoded just on one of the qudit is a lot less than the Fisher information
for a separable state. However, we can perform the sequential strategy to boost the quantum
Fisher information as in Figure 3.

Figure 5. Two different strategies in which one qudit of a state is imprinted with phase θ and
undergoes the iterated cases as in Figure 4. The (A) part is useless but the (B) with m = 2 is equivalent
to Figure 4A (m = 1) thus we only have advantage from m = 2 ∼ Figure 4A (m = 1).

To see why, we find the QFI in which the phase is encoded m times. If we denote the
Fisher information for just one iteration, FQ[ρ, Â], as F1, then the Fisher information after
the second iteration is F2 = 4F1. In this way, if we iterate the same process m times then the
Fisher information after the mth iteration becomes

Fm = m2F1 (14)

Suppose we can now introduce noise in the system. If the noise acts just one subsystem
in a bipartite qudit (d > 3) system, it turns out that the noise model is not so trivial. This
is not the case for d = 2. The one-qubit Pauli channel for a bipartite qubit system can be
written as

εA[ρ] = (1− 3p/4)ρ + p/4((σx ⊗ I2)ρ(σ
†
x ⊗ I2)

+ (σy ⊗ I2)ρ(σ
†
y ⊗ I2) + (σz ⊗ I2)ρ(σ

†
z ⊗ I2)) (15)

When the dimension of the system increases beyond d ≥ 3, the number of generators
for SU(d) increases as d2 − 1. In particular, for d = 3, there are a total of 8 spin observables.
For d > 3, the channel can be extremely complex and it is no longer trivial to describe the
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channel in tersm of suitable Kraus’ operators. The detailed calculations about the noisy
quantum channel is given in Appendix A.

In all the plots below, in Figure 6 we are basically using both Equations (12) and (14)
combined with m = 3 in each case and depolarizing noise in Equation (11) and the
highlighted region inside the plots are the intersections of the three iterations. Finally we
study how FQ varies with the noise parameter.

ρ̂output(O(pm, θ), Â) = ε⊗m
AB [Um(θ)Um−1....U1(ρinput)U†

1 ...U†
m−1U†

m] (16)

With m = 3. Now the noise strength is of the order O(pm) in ρoutput as the noise along
with the phase is iterating m times. It can be realized analytically. In Equation (16) the
ρoutput takes that particular form because the noisy channel in Equation (11) and the unitary
transformation Um = exp (−iDθ) commutes so the order between them doesn’t matter.

(a) 3 × 3 two-qudit state from [13] (b) 4 × 4 two-qudit state from [13]

(c) 5 × 5 two-qudit state from [13] (d) 6 × 6 two-qudit state from [13]

(e) 7 × 7 two-qudit state from [13] (f) 8 × 8 two-qudit state from [13]

Figure 6. Cont.
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(g) 9 × 9 two-qudit state from [13] (h) 10 × 10 two-qudit state from [13]

(i) 11 × 11 two-qudit state from [13] (j) 12 × 12 two-qudit state from [13]

Figure 6. Quantum Fisher Information Vs Noise (P) plots (In each case blue, green and red are the
1st, 2nd and 3rd iterations respectively).

In the table below we compare our results (in 4th column) with the results(in 3rd
column) from reference [13] with the same optimal states taken from reference [13].

Table 1. Comparison of the two strategies in Figure 3 for all PPT states from reference [13]. The third
column has been taken directly from [13] and the fourth column represents the QFI obtained using
the sequential ancilla assisted strategy.

Without Decoherence

Dimension (d)
of the System

FC[ρ, Â] the
Corresponding Classical
Fisher Information

FQ[ρ, Â] for Figure 4
(A) (m = 1)

FQ[ρ, Â] for Figure 5
(B) (m = 2)

3 8 8.0085 8.27623
4 8 9.3726 16.
5 8 9.3764 12.0935
6 8 10.1436 10.1436
7 8 10.1455 13.6191
8 8 10.6667 10.6667
9 8 10.6675 13.2849
10 8 11.0557 11.0557
11 8 11.0563 13.9923
12 8 11.3616 11.3616

From the Table 1 it is clear that not all PPT states from reference [13] give a higher
QFI for the sequential assisted strategy as compared to the entangled assisted strategy
(see column 3 and 4), however it can be seen that odd dimensional PPT states (along with
the case of d = 4) give higher QFI. Another thing to notice is that the classical Fisher
information remains the same in each case. This observation is visually depicted in the bar
plot Figure 7 below.



Entropy 2021, 23, 685 9 of 15

Figure 7. This figure shows the comparison between the two strategies of Figure 3. Dimension is
varying along x-axis and QFI along y-axis. The Red bars correspond to the left strategy of Figure 3
and the blue ones correspond to the right one. Notice that the even dimensional states don’t provide
any advantage of using sequential ancilla assisted strategy with two iterations instead of entangled
assisted one with one iteration except 4× 4 dimensional optimal state (for m = 2).

5. A Family of Even Dimensional PPT States Having a Higher Fisher Information for
Sequential Ancilla Assisted Strategy Compared to Entanglement Assisted Strategy

In this section we highlight the advantage of using the sequential ancilla assisted
strategy by showing that the family of bipartite even dimensional states recently introduced
in reference [17] shows an improvement in the Fisher information as compared to the
entanglement assisted strategy. The family of 2d× 2d dimensional states is given as:

ρF1 =
p1

2d2

d−1

∑
i,j=0

(|00ij〉〈00ij|+ |11ij〉〈11ij|)

+
p1

2d
√

d

d−1

∑
i,j=0

(uij|00ij〉〈11ji|+ u∗ij|11ji〉〈00ij|)

+
p2

2d

d−1

∑
i=0

(|01ii〉〈01ii|+ |10ii〉〈10ii|)

+
p2

2d

d−1

∑
i,j=0

(uij|01ii〉〈10jj|+ u∗ij|10jj〉〈01ii|)

(17)

with p1 =
√

d/(1 +
√

d), p2 = 1 − p1 and uij being the matrix elements of a unitary
operator acting on a d dimensional space such that |uij| = 1/

√
d. The authors, in [17], also

noted that only the 4× 4 PPT state used in [13] is related to the family of states ρF1 (for
d = 2) through a local unitary transformation. For this family ρF1, there are d2 eigenvectors
for the eigenvalue Λv = p1/d2 given by;

|vij〉 =
1√
2
(|00ij〉+

√
du∗ij|11ji〉). (18)

There are d eigenvectors for the eigenvalue Λw = p2/d given by;

|wi〉 =
1√
2
(|01ii〉+

d−1

∑
j=0

u∗ij|10jj〉). (19)
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All other eigenvectors are associated with the zero eigenvalue and they are orthogonal
to the ones mentioned above. These set of eigenvectors comprises of vectors having a
similar form as |vij〉 and |wi〉 but with a sign difference, given by;

|v−ij 〉 =
1√
2
(|00ij〉 −

√
du∗ij|11ji〉) (20)

and

|w−i 〉 =
1√
2
(|01ii〉 −

d−1

∑
j=0

u∗ij|10jj〉). (21)

According to their statement if we consider A = D ⊗ I + I ⊗ D = σz ⊗ I2 ⊗ Id×d +
I2 ⊗ σz ⊗ Id×d as the optimal operator for the family of states ρF2 then we will have Fisher
information 16d2λv, which is the maximum we can get.

However, it is easy to see that the sequential ancilla assisted operator A = D ⊗
I + D ⊗ I (for two successive iterations) gives the quantum Fisher information exactly
FQ(A, ρF1) = 16 for the family ρF1 for all d, which clearly shows the advantage of using
sequential ancilla assisted scheme. This observation matches the findings in Table 1 where
we obtain a QFI of 16 for the 4× 4 state; however, we do not find any improvement in Fisher
information for other even dimensional PPT states of Table 1 which suggests that those
even dimensional states are not related to the family ρF1 by any local unitary operation.

6. Applying Iteration to Both Entangled Assisted Strategy and Ancilla Assisted Strategy

As we stated earlier, the resources used in both the parts of Figure 3 are equivalent
thus the next iteration of both these cases should also be equivalent as shown in Figure 8,

Figure 8. One more iteration applied to both the cases of Figure 3.

In Figure 8 note that the total number of phase imprinting should be the same in both
schemes, which is this case is four. So, m phase iterations in entangled assisted strategy is
equivalent to 2m phase iterations acting on one qudit in sequential ancilla assisted strategy
in Figures 3 and 8. If F0

E is the Fisher information for 1st iteration in ENT assisted strategy
then after m iterations, we have

Fm
E = m2F0

E (22)

If F0
A is the Fisher information for 1st iteration (see Figure 5) in ancilla assisted strategy

then after m iteration,we get

Fm
A = (2m)2F0

A = 4m2F0
A (23)

Equations (22) and (23) must be used when dealing with both the strategies of Figure 3
with multiple iterations and comparing the two cases after certain number of iterations.
Next, we show two examples of the advantage of using iteration in both the entangled
and ancilla assisted strategies of Figure 3 for 3× 3 and 4× 4 dimensional PPT states of
reference [13].
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6.1. 3 × 3 PPT State

The sequential entangled assisted scheme provides a substantial increase in QFI
(>200 within 5th iteration) in both the cases. Thus, without increasing the number of
subsystems (here it is two) and dimensions (d = 3) we can still boost the Fisher information
by sequentially iterating in both strategies as shown in Figure 3.

In Figure 9 for d = 3 system, we compute the Fisher information for both the schemes
with m ≥ 1 iterations with F0

E = 8.0085 and F0
A = 2.0691 and these strategies correspond to

Figure 4A for m = 1 and Figure 5A.

Figure 9. Comparison of two schemes in Figure 3 with multiple iterations for 3× 3 the PPT state
using Equations (22) and (23) combined as they are considered to be equivalent.

6.2. 4 × 4 PPT State

Here in Figure 10 we consider F0
E = 9.3726 and F0

A = 4 and these values correspond to
Figure 4A for m = 1 and Figure 5A.

Figure 10. Comparison of two schemes in Figure 3 with multiple iterations for 4× 4 the PPT state
using Equations (22) and (23) combined as they are considered to be equivalent.

So, comparing the two schemes with the help of Figure 3, Figure 8 and so on, we
finally conclude that the equivalent ancilla assisted scheme to the entanglement assisted
scheme provides better precision when we add iteration to the picture and even though
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the advantage is not huge (for all the states) but still can provide better precision than the
schemes provided in the past [13].

6.3. General Dimension

We note that this advantage varies with dimensions and it can increase more or remain
same which completely depends on the dimension of the input PPT state. From the Table 1
it is observed that for PPT states with even dimension, except 4× 4, i.e., 6× 6, 8× 8, 10× 10
and 12× 12, there is no advantage even if we increase the number of iterations.

7. Discussion and Conclusions

In this paper, we identified the advantages of iteration for improving the Quantum
Fisher Information (QFI) in entanglement and ancilla assisted strategies for PPT entangled
states. We implemented such sequential strategies for PPT states for various dimensions
and found that QFI increases quadratically with number of iterations in the noiseless case
as shown in Figure 9. In the Section 4, we show the effect of iterations in the noisy cases for
1, 2 and 3 iterations for the entangled assisted strategies.

Further, we reiterate the fact that sequential strategies are completely distinct from
a repetition of the experiments through multiple times. Repeating the same experiment
say n times gives the effective Quantum Fisher Information FQ

n = nFQ
1 , where FQ

1 is
the Fisher information for the experiment performed at first time while the sequential
strategies shown here give an effective QFI FQ

m = m2FQ
1 after m iterations, where FQ

1 is the
Fisher information at first iteration (if we consider the circuit in Figure 2 as 1st iteration).
This highlights the fact that iterating strategies give an advantage over repetition of the
experiment. However, we can always combine the repetition and iteration simultaneously,
in such case the total Fisher information after m sequence of unitaries and n repetition of
the experiment FQ

Total = nm2FQ
1 .

So far we have discussed only PPT states that are useful for metrology, but still there
are PPT states that have no use in precision measurement. One such example is Equation (4),
known as the Horodecki state of [11], in reference [11] and parametrized as

ρα =
2
7
|ψ+〉〈ψ+|+

α

7
σ+ +

5− α

7
σ− (24)

where ψ+ is given by

ψ+ =
1

2s + 1

2s

∑
i=0
|i〉|i〉 (25)

s = spin of the system = 3 and the σ+, σ− are given as

σ+ =
1
3
(|1〉|0〉〈1|〈0|+ |2〉|1〉〈2|〈1|+ |0〉|2〉〈0|〈2|) (26)

σ− =
1
3
(|0〉|1〉〈0|〈1|+ |1〉|2〉〈1|〈2|+ |2〉|0〉〈2|〈0|) (27)

ρα =


Separable 2 ≤ α ≤ 3,
Bound entangled 3 < α ≤ 4
Free entangled 4 < α ≤ 5

The state in Equation (24) gives maximum Fisher information in the Bound entangled
region (3 < α ≤ 4) for the operator in Equation (5), of F(ρ, A) ' 4.05, which is less than
that of separable state FSEP = 8. Even if we use sequential operator in Equation (13), the
max F(ρ, A) ' 5 and remains less than the seperable one.
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Appendix A. Noisy Channels in Quantum Theory

In reality, noise is always present in any experimental setup. The noisy channel takes
on different descriptions depending on the way we model the noise and the dimension of
the subsystems. One way to describe a noisy channel relies on the formulation of a set of
Kraus operators such that the evolution of a density matrix of a system, ρ, is given by

ρ′ = ∑
i

KiρK†
i (A1)

where Ki’s are the Kraus operators satisfying the following criterion

∑
i

K†
i Ki = I, (A2)

with I being the identity matrix. An input state ρin on going through the noisy channel
gives the output state ρout as,

ε[ρin] = ρout = ∑
i

KiρinK†
i (A3)

The noisy channel ε(.) acts on the input state as a CPTP map, i.e., a completely positive
trace preserving map, under this channel operation the output state ρout remains a density
matrix, thus retaining all the properties of a density matrix.

Examples of Noisy Channels

The noisy channel for qubits is known as the Pauli noisy channel which is described by

ε[ρ] = (1− p1 − p2 − p3)ρ + p1(σxρσ†
x ) + p2(σyρσ†

y ) + p3(σzρσ†
z ) (A4)

where σx, σy and σz are Pauli matrices. There are different kind of Pauli channels in nature
depending on the values p1, p2 and p3. It can be seen that the Pauli noisy channel is
a Kraus channel with K1 = (

√
1− p1 − p2 − p3)I, K2 = (

√
p1)σx, K3 = (

√
p2)σy and

K4 = (
√

p3)σz which clearly satisfy the Equation (A2). Note that ε[ρ] in Equation (A3) is a
proper density matrix, i.e., its trace is unity and it is a positive semi-definite matrix. For the
case of a single qubit, there are different types of noisy channels based on p1, p2 and p3
such as:

Dephasing noisy channel: This channel is described as

ε[ρ] = (1− p)ρ + p(σzρσ†
z ) (A5)

Pauli X-Y noise: This channel has the form

ε[ρ] = (1− p)ρ + p/2(σxρσ†
x + σyρσ†

y ) (A6)
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Pauli depolarizing noisy channel: This channel could be considered as the worst case
scenario that includes the environmental noise and is described by

ε[ρ] = (1− 3p/4)ρ + p/4(σxρσ†
x + σyρσ†

y + σzρσ†
z ). (A7)

This channel can also be written as

ε[ρ] = (1− p)ρ + p
I
d

(A8)

where d is the dimension of the system. Here, d = 2 for single qubit system and I is the
identity matrix of the same dimension as ρ. This channel can be extended to any higher
dimensional system but it is not so straightforward to apply it to a particular subsystem as
Equation (A7).

There are other noisy channels, e.g., amplitude damping channel, phase damping
channel, etc., but most of these channels are not easily described in higher dimensions [25].
Yet, for the completely depolarizing channel above, one could in principle extend it to any
higher dimension with Equation (A8).
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