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Abstract: In this work we present the statistical and criticality analysis of the very low frequency
(VLF) sub-ionospheric propagation data recorded by a VLF/LF radio receiver which has recently been
established at the University of West Attica in Athens (Greece). We investigate a very recent, strong
(M6.9), and shallow earthquake (EQ) that occurred on 30 October 2020, very close to the northern
coast of the island of Samos (Greece). We focus on the reception data from two VLF transmitters,
located in Turkey and Israel, on the basis that the EQ’s epicenter was located within or very close to
the 5th Fresnel zone, respectively, of the corresponding sub-ionospheric propagation path. Firstly, we
employed in our study the conventional analyses known as the nighttime fluctuation method (NFM)
and the terminator time method (TTM), aiming to reveal any statistical anomalies prior to the EQ’s
occurrence. These analyses revealed statistical anomalies in the studied sub-ionospheric propagation
paths within ~2 weeks and a few days before the EQ’s occurrence. Secondly, we performed criticality
analysis using two well-established complex systems’ time series analysis methods—the natural time
(NT) analysis method, and the method of critical fluctuations (MCF). The NT analysis method was
applied to the VLF propagation quantities of the NFM, revealing criticality indications over a period
of ~2 weeks prior to the Samos EQ, whereas MCF was applied to the raw receiver amplitude data,
uncovering the time excerpts of the analyzed time series that present criticality which were closest
before the Samos EQ. Interestingly, power-law indications were also found shortly after the EQ’s
occurrence. However, it is shown that these do not correspond to criticality related to EQ preparation
processes. Finally, it is noted that no other complex space-sourced or geophysical phenomenon
that could disturb the lower ionosphere did occur during the studied time period or close after,
corroborating the view that our results prior to the Samos EQ are likely related to this mainshock.

Keywords: 2020 Samos earthquake; seismo-electromagnetics; VLF sub-ionospheric propagation; night-
time fluctuation method; terminator time method; natural time analysis; method of critical fluctuations

1. Introduction

It is widely accepted that different kinds of electromagnetic (EM) phenomena which
are possibly associated with lithospheric processes have been found prior to earthquakes
(EQs), while their behavior and their possible interconnection have been investigated by the
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scientific community for decades [1–10]. Moreover, it is also known that the ionosphere is
sensitive to EQ preparation processes, and constitutes a very promising means of short-term
EQ prediction [1]. Different techniques and methods have been used to reveal any kinds
of statistical anomalies or any indication of specific physical meaning, by analyzing the
observables related to EQ preparation processes, not only in phenomena directly related to
the lithosphere, but also with phenomena in the atmosphere and the ionosphere [2,11,12].
A few hypotheses for lithosphere–atmosphere–ionosphere coupling (LAIC) have been
introduced in order to clarify the involved physical mechanisms, but LAIC is still poorly
understood at the moment [2,13].

Among the time series analysis methods that have been employed in seismo-EMs, two
methods that can unveil the approach to criticality are the method of critical fluctuations
(MCF) [14–16] and natural time (NT) analysis [10]. These methods have successfully been
applied to pre-EQ seismic electric signals (SES), foreshock seismicity, and EM disturbances
recorded by ground stations, such as ULF magnetic field data, MHz fracto-EM emissions
and, VLF sub-ionospheric propagation data [9,17–32].

In this work, we investigate a very recent, strong, and shallow EQ (MW = 6.9, focal
depth = 12 km) that occurred in Greece on 30 October 2020, with its epicenter located in the
Aegean Sea, off the coast north of the island of Samos (Greece), close to the Greece–Turkey
border, hereafter referred to as the “2020 Samos EQ”. A new VLF/LF (10–47.5 kHz) radio
receiver has recently been established at the University of West Attica (call sign UWA)
in Athens (Greece), and has been operating in trial mode since April 2020, monitoring
the lower ionosphere mainly for EQ-related anomalies. In this work we analyze the
receiver data of two specific sub-ionospheric propagation paths between UWA and two
VLF transmitters located in different Eastern Mediterranean countries. The first transmitter,
with call sign TBB, is located in Denizköy (Turkey), and the location of the Samos EQ’s
epicenter is within the 5th Fresnel zone of the corresponding propagation path, whereas
the second transmitter, with call sign ISR, is located in the Negev (Israel), and the location
of the Samos EQ’s epicenter is close to the border of the ISR–UWA 5th Fresnel zone, so that
considering the magnitude of the specific EQ, the corresponding propagation path could
possibly be disturbed [33,34], but not by much.

The amplitude data from these transmitters that were recorded by the UWA receiver
were analyzed in two ways: Firstly, the amplitude data were analyzed using two statistical
methods—namely, the nighttime fluctuation method (NFM), and the terminator time
method (TTM) [11,35–40]. Secondly, we performed criticality analysis by means of NT
analysis and the MCF. Specifically, the time series of the VLF propagation quantities
resulting from the NFM analysis were analyzed using the NT analysis method in order to
find any evidence of critical dynamics, following the methodology that has already been
successfully applied in previous VLF sub-ionospheric propagation analysis studies [9,25].
Moreover, the unprocessed (raw) amplitude data of the receiver were analyzed using the
MCF, following the methodology that has already been successfully applied to similar VLF
data [9,24,30].

The analysis results obtained by means of both statistical and criticality methods
revealed clear precursors over a period of approximately 2 weeks prior to the main-
shock. Notably, in the application of the NT analysis method, it was found that, for some
thresholds, criticality conditions continued to be satisfied even after the EQ’s occurrence
(criticality starting a few days before the mainshock and continuing for a few days after).
By means of the MCF, it is shown that this is a result of critical dynamics “locally surviving”
soon after the mainshock. This is a result of post-EQ power laws, not accompanied by a
long-range correlation, as proven by means of the autocorrelation function.

The remainder of the article is organized as follows: Section 2 provides informa-
tion about the VLF/LF transmitters worldwide that are recorded by the newly installed
UWA receiver, and gives some details about receiver’s operation. Section 3 presents in-
formation about the 2020 Samos EQ, and describes the analyzed data from both of the
transmitters (TBB and ISR) that are used in this study. Section 4 comprises four subsections
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presenting brief overviews of the statistical and criticality analysis methods employed.
Section 5 comprises five subsections presenting the analysis results obtained by means of
the corresponding analysis methods. Finally, Section 6 presents conclusions.

2. The Newly Installed UWA VLF/LF Receiver

A new VLF/LF radio receiver for the study of ionospheric disturbances possibly
related to EQs, as well as to other space-sourced and geophysical phenomena, has recently
been installed in Athens, in the Department of Electrical and Electronics Engineering of the
University of West Attica at the “Ancient Olive Grove” campus (geographic coordinates:
37.977◦ N, 23.673◦ E), and has been operating in trial mode since April 2020. We will refer
to this receiver with the call sign “UWA”. The radio receiver, designed by the Hayakawa
Institute of Seismo-Electromagnetics, uses a simple vertical electrical rod (monopole)
antenna. The VLF sub-ionospheric propagation data (amplitude and phase) for all of the
monitored paths, between UWA and multiple transmitters worldwide (see Table 1) are
recorded with a sampling period of 1 s, synchronized by a GPS receiver, and finally stored
to a personal computer in the form of text files with timestamps, using the UltraMSK
software. Note that the choice of a 1 s sampling period enables us to detect disturbances of
the lower ionosphere possibly related to EQs, which excludes fast changes (duration < 1 s)
in the signal that are attributed to phenomena out of the scope of our research, such as
lightning discharges [1].

Table 1. List of VLF/LF transmitters monitored by the UWA receiver.

No Label Country Frequency (Hz) Latitude Longitude

1 DHO Germany 23,400 53.0819◦ N 7.6163◦ E

2 GBZ United
Kingdom 19,580 54.9112◦ N 3.2813◦ W

3 JXN Norway 16,400 66.9827◦ N 13.8731◦ E
4 FTA France 20,900 48.5401◦ N 2.5502◦ E
5 HWU France 21,750 46.7130◦ N 1.2444◦ E
6 ICV Italy 20,270 40.9231◦ N 9.7310◦ E
7 NSY Italy 45,900 37.1256◦ N 14.4363◦ E
8 TBB Turkey 26,700 37.4094◦ N 27.3252◦ E
9 ISR Israel 29,700 30.9756◦ N 35.0986◦ E
10 VTX India 18,200 8.3870◦ N 77.7527◦ E
11 NWC Australia 19,800 21.8161◦ S 114.1652◦ E
12 JJI Japan 22,200 32.0453◦ N 130.8107◦ E
13 NRK Iceland 37,500 63.8503◦ N 22.4664◦ W
14 NAA United States 24,000 44.6463◦ N 67.2810◦ W

The UWA radio receiver records signals from several VLF transmitters worldwide,
most of them located in Europe, whereas some of them are located in Asia, Australia, and
North America (see Table 1 and Figure 1). It is noted that some of these VLF transmitters,
which are mainly located in Europe, are also monitored by the INFREP (International
Network for Frontier Research on Earthquake Precursors) network of VLF/LF receivers,
also focusing on pre-seismic disturbances in the VLF/LF recordings [41,42].



Entropy 2021, 23, 676 4 of 26

Figure 1. Map showing the locations along with the call signs of all of the transmitters worldwide that are recorded by the
UWA receiver. The red circle denotes the location of the UWA receiver, whereas the blue circles indicate the locations of the
monitored transmitters.

It is worth mentioning that most of these monitored transmitters are operated for
military purposes. Thus, there is little information about their technical characteristics,
while their operation schedule is unknown. Consequently, it is difficult to anticipate their
behavior, for the reason that they often change their operations suddenly without any
notice. One of the problems in efficiently operating a VLF receiver is that the frequency
of some transmitters is shifted regarding the last known value. In some cases, the shift is
< 1 Hz, even of the order of mHz, leading to phase drifting with time. Hence, in such cases,
one must proceed to transmitter frequency adjustment (fine tuning) by trial and error, until
the observed diurnal variation of the phase is stabilized. Currently, we are still performing
optimization tasks to our receiver concerning the monitoring of the transmitters of Table 1
(see also: Figure 1), and still evaluating the reception. Thus, UWA is still operating in trial
mode, and the monitored transmitters may change in the future.

3. Earthquake and VLF Sub-Ionospheric Propagation Data

As already mentioned in Section 1, in this article we investigate the 2020 Samos EQ,
a very recent, strong, and shallow EQ (MW = 6.9, focal depth = 12 km) that occurred on
30 October 2020 (time of occurrence 11:51:57 UTC) in Greece, with its epicenter located
(geographic coordinates: 37.900◦ N, 26.816◦ E) in the Aegean Sea, off the coast of the island
of Samos, close to the Greece–Turkey border (see Figure 2).
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Figure 2. Map of the wider area of the Eastern Mediterranean. The transmitters TBB and ISR are indicated as red and
blue rectangles, respectively, whereas the receiver UWA is indicated as a black triangle. The 5th Fresnel zones of the
ISR–UWA and TBB–UWA VLF propagation paths are also shown on the map. The 2020 Samos EQ’s epicenter is indicated
as a magenta star.

It has been statistically found that the lower ionosphere is sensitive to strong (M ≥ 5.5)
EQs when the epicenter of the EQ of interest is within or close to the 5th Fresnel zone of the
considered propagation path [1,6,34]. It thus follows, among the VLF sub-ionospheric paths
monitored by UWA receiver, that the TBB–UWA and ISR–UWA paths (see Figure 2 and
Section 2) would be expected to have been influenced by the EQ preparation processes that
resulted in the 2020 Samos EQ. Specifically, as shown in Figure 2, the epicenter of the 2020
Samos EQ is within the 5th Fresnel zone of the TBB–UWA sub-ionospheric propagation
path, and close to the border of the 5th Fresnel zone of the ISR–UWA path. Taking into
account the magnitude of the specific EQ, we consider that the ISR–UWA propagation path
could possibly be disturbed, although the EQ epicenter is not within the corresponding 5th
Fresnel zone.

In this study we analyze the VLF data of the above-mentioned paths for the time
period from 1 October 2020 to 8 November 2020, i.e., from 1 month before to ~1 week after
the 2020 Samos EQ. It has to be mentioned that no other EQs of M ≥ 5.5 occurred within
or close to the 5th Fresnel zones of the considered paths during this specific time period,
also taking into account the aftershock sequence of the 2020 Samos EQ (see also: Section 3).

At this point, it has to be mentioned that the ionosphere is known to be sensitive not
only to EQ preparation processes, but also to a variety of different phenomena such as
solar flares, magnetic storms, volcanic eruptions, tsunamis, and typhoons [33,34,43]. We
verified that there were not any other ionosphere-influencing phenomena or EQs during
the analyzed time period in the wider area of interest, and for this reason our results are
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considered to be related to the 2020 Samos EQ alone. Specifically, we checked the EQ
catalogues provided by the U.S. Geological Survey (https://earthquake.usgs.gov, accessed
on 25 May 2021), the European–Mediterranean Seismological Centre (https://www.emsc-
csem.org/Earthquake/, accessed on 25 May 2021), and the Institute of Geodynamics of the
National Observatory of Athens (http://www.gein.noa.gr/en/seismicity/maps, accessed
on 25 May 2021) for the time period 1 October 2020–30 November 2020, and no EQ with
magnitude > 5.5 occurred within or close to the 5th Fresnel zones of the ISR–UWA and
TBB–UWA VLF propagation paths. Moreover, we checked the disturbance storm time (Dst)
index provided by the Data Analysis Center for Geomagnetism and Space Magnetism of
Kyoto University (http://wdc.kugi.kyoto-u.ac.jp, accessed on 25 May 2021), and found
that for the time period 1 October 2020–30 November 2020, all Dst index values were
>−50 nT, indicating that no magnetic storms took place during the specific time period.
Additionally, no solar flares of the M or X class occurred during the aforementioned
time period, as evident from the catalogue provided by the Hinode Science Center at
Nagoya (https://hinode.isee.nagoya-u.ac.jp/flare_catalogue/index.html, accessed on 25
May 2021). Finally, no volcanic eruptions happened in the area and time period according
to the Global Volcanism Program of the Smithsonian Institution (https://volcano.si.edu,
accessed on 25 May 2021), while no tsunami or typhoon was recorded before the 2020
Samos EQ.

In our investigation for any pre-seismic signatures in the lower ionosphere prior to
the 2020 Samos EQ, we used only the amplitude data of the two aforementioned paths
(TBB–UWA and ISR–UWA), because the phase data were not adequately stable during
the studied time period. It is also noted that the first transmitter, with the call sign TBB,
is located in Denizköy (Turkey), which is very close (~328 km) to our receiver; thus, the
ground wave is considered to be stronger than the sky wave. The other transmitter, with
the call sign ISR, is located in the Negev (Israel), which is close (~1304 km) to our receiver,
and thus the ISR–UWA propagation path is characterized as a relatively short one.

4. Statistical and Criticality Analysis Methods

In this section we briefly present key information about both the statistical and the
criticality time series analysis methods used for the analysis of the VLF data of the two con-
sidered sub-ionospheric propagation paths (TBB–UWA and ISR–UWA) in regard to the 2020
Samos EQ. Specifically, in Section 4.1 we present the nighttime fluctuation method (NFM),
in Section 4.2 we present the terminator time method (TTM), while in Sections 4.3 and 4.4
we present the natural time (NT) analysis method and the method of critical fluctuations
(MCF), respectively.

4.1. Nighttime Fluctuation Method (NFM)

One of the most widespread statistical methods for the analysis of VLF data is the
NFM [35], which can be summarized in three main steps. Firstly, we use the raw amplitude
data (in dB) and calculate the residual (nighttime) amplitude signal dA(t), by subtracting
the average nighttime amplitude A(t) of 31 days (±15 days around the day of interest
plus the day of interest) from the nighttime amplitude A(t), i.e., dA(t) = A(t) − A(t).
We must mention here that in this paper we use a specific nighttime interval: 18:00–02:00
UT (20:00–04:00 LT Greece). Secondly, we calculate daily values (one value per day) for
three VLF propagation quantities TR (“trend”), DP (“dispersion”), and NF (“nighttime
fluctuation”), as:

TR =
∑Ne

Ns
dA(t)

Ne − Ns
(1)

https://earthquake.usgs.gov
https://www.emsc-csem.org/Earthquake/
https://www.emsc-csem.org/Earthquake/
http://www.gein.noa.gr/en/seismicity/maps
http://wdc.kugi.kyoto-u.ac.jp
https://hinode.isee.nagoya-u.ac.jp/flare_catalogue/index.html
https://volcano.si.edu
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where TR represents the mean value of dA(t), and Ne, Ns are the ends of the chosen
nighttime interval (starting and ending time points);

DP =

√√√√ 1
Ne − Ns

Ne

∑
Ns

(dA(t)− TR)2 (2)

where the DP is actually the standard deviation of dA(t), and:

NF =
Ne

∑
Ns

(dA(t))2 (3)

i.e., the NF denotes the power of dA(t).
Thirdly, at this point, after the construction of the daily valued time series of the three

above-defined VLF propagation quantities, normalization is applied for each of them by
calculating the new daily valued time series TR∗, DP∗, and NF∗ as X∗ = (X− X±15)/σ±15,
where X±15 and σ±15 are the mean value and the standard deviation of ±15 days around
the day of interest, respectively. Any statistical anomaly in these normalized time series
exceeding ±2σ is investigated as possibly being EQ-related. We should also note that
the trend and dispersion VLF propagation quantities are generally independent of one
another (trend as the primary importance), while the nighttime fluctuation quantity is
the combination of the other two quantities (trend and dispersion). Finally, we have to
clarify that the above-presented means of applying the NFM, using a running window
of ±15 days around the day of interest, is the standard means of applying the NFM for a
posteriori statistical analysis that appears in the literature, e.g., [11,25,35,38]. This method
of application clearly uses “future” information in the calculation of statistical quantities.
Thus, if one is to apply the NFM in real time, or within the frame of an EQ forecasting
system, 30 days before the day of interest plus the day of interest should be used for the
calculation of statistical quantities.

4.2. Terminator Time Method (TTM)

The TTM is a very popular statistical method for the analysis of VLF data, and has
been applied to several studies in the past [34,35,38,44,45]. This method emphasizes the
occurrence time of the minima of the VLF signals (amplitude and phase) that appear
close to the local (planetary) sunrise time and sunset time. These minima are referred to
as sunrise terminators (SRTs) and sunset terminators (SSTs), respectively, or generally as
terminator times (TTs), and are created from the interference of different propagation waves
(modes of propagation) of the VLF signal—that is, the ground wave and the sky wave [37].
A significant shift in the SRTs or SSTs, as compared with neighboring days, is considered to
be an anomaly before an EQ, when the lower ionospheric height is normally decreased [46].
In other words, an earlier appearance of an SRT or a late appearance of an SST, which
means an anomalous increase of the duration of the “VLF day” (“VLF daylength”, DVLF)
as compared with the previous days, is considered to be an EQ precursor [37].

The TTM was initially applied to the strong Kobe EQ (M7.1) that occurred in Japan
on 17 January 1995, for which significant shifts in the TTs appeared before the EQ’s
occurrence [37,39]. Additionally, studies by Indian scientists have also reported shifts in
TTs, and consequent increases in DVLF, before an impending EQ [47–50]. Many other
statistical studies have also reported correlations between EQs and TT anomalies, with
maximal shifts occurring 0–4 days prior to the main EQ event [47,51–58]. Furthermore,
some studies based on numerical simulation of the diurnal variation of the amplitude of
the VLF signal, taking into consideration the characteristics of the VLF propagation path,
the transmitter, and the receiver, are applied for the determination of TTs [50,59].

In applying the TTM, we initially find the time of appearance of two minima in the
diurnal variation of the signal (amplitude or phase), which are close in time with the
planetary sunrise and sunset time of each day, respectively. Using these time locations,
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which are the morning and evening TTs, we form two TT time series—one for the morning
minima, denoted as tm, and one for the evening minima, denoted as te. Subsequently, we
use ±2 days around the day of interest window (5 days width) to calculate the running
mean for each of the aforementioned time series, forming 2 new time series designated
as tm and te, for the morning and evening TTs, respectively. Finally, the running mean
time series are subtracted from the respective TT time series to form the residual TT time
series dtm = tm − tm and dte = te − te, respectively [37,39]. Moreover, we calculate the
“VLF daylength” as DVLF = te − tm, and similarly to the TT time series, we consecutively
calculate the running mean time series DVLF and the residual “VLF daylength” time series
dDVLF = DVLF − DVLF. Any statistical anomaly in the residual TTs or the residual “VLF
daylength” exceeding ±2σ of the whole considered time period is investigated as possibly
being EQ-related. We must note that the specific procedure uses the running mean values
in order to reveal the shift of the TTs or of the DVLF prior to an impending EQ by removing
their seasonal variability.

4.3. Natural Time (NT) Analysis Method

The NT time series analysis method has initially been applied to ultra-low-frequency
(≤1 Hz) seismic electric signals (SES) [60–62], and has been shown to be optimal for
enhancing the signals in the time–frequency space [63]. The application of NT analysis
to various seismo-EM signals, including VLF sub-ionospheric propagation data, has been
presented in detail in [9]. In the following section we will briefly present the key notions of
this method.

Initially, for a number of N events, we determine the NT of the occurrence of the
k-th event as xk = k/N. Next, we determine the “energy” of each event in NT, which is
symbolized as Qk for the k-th event. At this point, we must mention that Qk corresponds
to different kinds of quantities, depending on the time series under analysis. For example,
in the case of seismic events, Qk is the seismic energy released (seismic moment), while for
dichotomous SES signals, Qk corresponds to the SES pulse duration [61]. However, in the
case of fracto-EM emission signals in the MHz band, which are non-dichotomous signals,
Qk denotes the energy of each event by using consecutive amplitude values above a noise
threshold, as described in [21].

Next, we study the evolution of the pair of (χk, Qk). The approach of a dynamical system to
criticality is identified by means of the variance κ1 = 〈x2〉− 〈x〉2 of NT weighed with pk, where

pk =
Qk

∑N
n=1 Qn

is the normalized energy released during the k-th event and 〈 f (x)〉 =
N
∑

n=1
pk f (xk).

Hence, the quantity κ1 can be written as κ1 = ∑N+1
k=1 pkχ

2
k −

(
∑N+1

k=1 pkχκ

)2
. Moreover, the

entropy (Snt) in NT is defined as Snt = ∑N
k=1 pkχk lnχk −

(
∑N

k=1 pkχκ

)
ln
(

∑N
k=1 pkχk

)
, which

corresponds to the value for q = 1 of the derivative of the fluctuation function with respect
to q, fl(q) (while κ1 corresponds to fl(2)) [10,64]. The entropy in NT is a dynamic entropy,
depending on the order of the events [64]. Moreover, Snt−, the entropy under time reversal(
Tpm = pN−m+1

)
, is also studied [64].

In many studies on dynamical systems, it has been found that the value of κ1 is a
measure to quantify the extent of the organization of the system at the onset of the critical
stage [10]. The criticality is reached when (a) κ1 takes the value κ1 = 0.07, and (b) both the
entropy in NT and the entropy under time reversal simultaneously satisfy the condition
Snt, Snt− < Su = (ln 2/2)− 1/4 [10,65], where Su is the entropy of the uniform distribution
in NT [10,64].

In the special case of NT analysis of foreshock seismicity [61–64,66], we study the
evolution of the quantities κ1, Snt, Snt−, and 〈D〉 over time, where 〈D〉 is the “average”

distance between the normalized power spectra Π
(∼
ω
)
=
∣∣∣∑N

k=1 pkexp
(

j
∼
ωχκ

)∣∣∣2, (
∼
ω stands

for the angular frequency in NT) of the evolving seismicity, and the theoretical estimation of

Π
(∼
ω
)

for κ1 = 0.07, Πcritical

(∼
ω
)
≈ 1− κ1

∼
ω

2
. Moreover, an “event” for the NT analysis
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of seismicity is considered to be any data point (EQ) of the original seismicity time series
that surpasses a magnitude threshold, MThres.

The analysis starts with an appropriate low threshold, and taking into account only an
adequate number of events, which are first in the order of occurrence. Next, the subsequent
events, in their original order, are one-by-one taken into account. For each additional event
that is taken into account, the quantity χk is rescaled within the interval (0,1], while the
normalized energy pk and the values κ1, Snt, Snt−, and 〈D〉 are all re-calculated. In this
way, a temporal evolution of these quantities is obtained, taking into account the current
event and all preceding events. The described procedure is repeated for several, increasing,
values of MThres for each studied geographic area, and everything is repeated for different
overlapping areas.

The seismicity is considered to be in a true critical state, and a “true coincidence” is
achieved, as soon as (a) κ1 takes the value κ1 = 0.07, (b) both the entropy in NT and the
entropy under time reversal simultaneously satisfy the condition Snt, Snt− < Su, and three
additional conditions are satisfied: (c) The “average” distance 〈D〉 should be smaller than
10−2, i.e., 〈D〉 = 〈|Π(ω̃)−Πcritical(ω̃)|〉 < 10−2 (this is a practical criterion for signaling
the achievement of spectral coincidence) [10]; (d) the parameter κ1 should approach the
value κ1 = 0.070 “by descending from above”, i.e., before the main event the parameter
κ1 should gradually decrease until it reaches the critical value 0.070 (this rule was found
empirically) [10,62]; and (e) the above-mentioned conditions (a–d) should continue to be
satisfied even if the considered MThres or the area within which the seismicity is studied
are changed (within reasonable limits).

The use of the magnitude threshold excludes some of the weaker EQ events (those
events whose magnitude is < MThres) from the NT analysis. However, the usage of the mag-
nitude threshold is valid for the reason that some recorded magnitudes are not considered
reliable due to the seismographic network. On the other hand, the application of various
MThres values is useful in determining the time range within which criticality is reached.
This is because, in some cases, it is found that multiple time points may satisfy the rest of
the NT critical state conditions (a–d), and criterion (e) is the one that finally reveals the true
time of criticality.

For the application of NT analysis to VLF data, we follow the paradigm of the NT
analysis of seismicity, by using the non-normalized VLF propagation quantities (defined in
Section 4.1) to define the “energy” Qk and the necessary threshold values as in [25] (see
Section 5.3).

4.4. Method of Critical Fluctuations (MCF)

It has been proposed that EQ-related phenomena can be studied from the point of
view of phase transition phenomena [67], characterized by the transition between two
phases (states) in which a system could exist. That is, as the Earth’s crust system evolves
towards a specific main EQ event, it experiences different states [29,68–70]. The MCF is a
time series analysis method that is able to monitor the dynamics of the order parameter
fluctuations; namely, the critical dynamics, and the departure from the critical state, either
by the emergence of tricritical dynamics or by appearance of the so-called “spontaneous
symmetry breaking” (SSB) phenomenon [9,70,71]. The MCF has been applied to a variety
of time series which correspond to different observables of complex systems in many
scientific fields, including the geophysical, biological, economic, thermal, and electronic
sciences [17–20,22–24,27,28,72–77]. The application of the MCF to various seismo-EM
signals, including VLF sub-ionospheric propagation data, has been presented in detail
in [9]. In the case of VLF sub-ionospheric propagation data, the MCF is applied to the raw
linear amplitude data (restored from the originally recorded dB values). In the following
section we will briefly present the key notions of this method.

It has been shown that the dynamics of the fluctuations of the order parameter at the
critical state can be modeled by the one-dimensional nonlinear intermittent map [14,16]:

φn+1 = φn + uφz
n + εn (4)
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where φn is the n-th sample of the scaled order parameter, z is a characteristic exponent,
and u > 0 is a coupling parameter. The shift parameter εn represents the non-universal
uncorrelated noise. Moreover, it is mentioned that the exponent z for a thermal system is
associated with the isothermal critical exponent δ as z = δ+ 1.

In the critical state, the plateau region of the invariant density P(φ) corresponds to
the laminar region of the critical map, where fully correlated dynamics take place. The
start of the laminar region is the fixed point (f.p.) φ0, determined by the edge of the most
“abrupt” side of P(φ), while the end of the laminar region φL is not exactly defined [9].
Consequently, the parameter φL should be used as a varying parameter in the application
of the MCF.

An important observation in the application of the MCF is the fact that the distribution
P(L) of the laminar lengths L (i.e., of the time intervals for which φ stays within the
considered laminar region) of a time series produced by the map of Equation (4) in the
limit εn → 0 is given by the power-law relation [78]:

P(L) ∼ L−pL (5)

Thus, the exponent pL is pL = z
(z−1) , and is connected to the isothermal exponent δ

by pL = 1 +
(

1
δ

)
. This power-law relation is related to the aforementioned plateau of the

invariant density P(φ), and is a signature of the underlying correlated dynamics related to
critical behavior [18].

In detecting the critical state, the MCF is focused on revealing such power laws and
estimating the exponent pL. For this purpose, a truncated power-law function f(L) is used
to model the P(L) resulting from each considered φL:

f(L) = p1 L−p2 e−Lp3 . (6)

If p3 = 0 is zero, then p2 is equal to the exponent pL of Equation (5). Since, according
to the theory of critical phenomena, the isothermal critical exponent δ is higher than
1 [79], and, as already mentioned, z = δ+ 1, pL = z

(z−1) for the critical state holds that
1 < pL ( = p2) < 2. Therefore, the critical state calls for the satisfaction of the conditions
p2 > 1 and p3 ≈ 0.

As already mentioned, the departure from the critical state is signified either by the
emergence of tricritical dynamics or by appearance of SSB. However, by means of the
study of fracture-induced EM emissions in the MHz band in analogy to thermal systems, it
has most recently been found that post-SSB (and post-EQ) power laws can be identified
without being related to the preparation of a second main EQ [71]. Specifically, in a possible
identification of post-SSB power laws immediately after a very strong EQ, if the values
of the autocorrelation function of the examined time series collapse immediately after
the EQ and remain low, then no new strong EQ is expected, but if the autocorrelation
function values return to high values, then a new strong EQ may be expected soon [71].
In the first case, the post-EQ power laws in the distribution of laminar lengths, which are
not accompanied by long memory in the corresponding autocorrelation function, are not
related to mainshock preparation processes, but are attributed to local fractures in course of
the aftershock sequence, which are not able to organize the system towards the preparation
of a new mainshock [71].

5. Analysis of the Lower Ionosphere Prior to the Samos EQ

In this section we present the analysis results of the UWA VLF/LF receiver amplitude
data for a wide time period, from 1 October 2020 to 8 November 2020, including almost
1 week after the date of the EQ, for the sub-ionospheric propagation paths TBB–UWA and
ISR–UWA, by means of statistical and criticality analysis methods (see Section 4). This
section comprises five subsections. Specifically, in Section 5.1 we present the results of the
conventional NFM analysis (see Section 4.1); in Section 5.2 we present sequential plots of
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the daily variation of the raw amplitude data, where anomalies in the evolution of TTs
are identified by inspection of the diurnal variation, while we also present the shift of TTs
by applying the TTM analysis (see Section 4.2); in Section 5.3 we present the results of
the NT analysis (see Section 4.3) as applied to the time series of the three non-normalized
VLF propagation quantities (TR, DP, and NF) of the NFM; in Section 5.4 we present the
results of the MCF analysis (see Section 4.4) as applied to the raw linear amplitude data; in
Section 5.5 we summarize and discuss all of our findings.

5.1. NFM Analysis Results

In Figure 3, we present the results of the temporal evolution of the three normalized
VLF propagation quantities TR∗ (“normalized trend”), DP∗ (“normalized dispersion”),
and NF∗ (“normalized nighttime fluctuation”) (see Section 4.1), respectively, during the
time period 1 October 2020–8 November 2020, for the propagation path TBB–UWA (see
Figure 2). The standard deviation, σ, of each analyzed time series has been calculated for
the whole studied period. The corresponding −2σ or +2σ level, indicating the considered
threshold for an anomaly, is also indicated in each panel. It should be mentioned that, in
applying the NFM to TBB–UWA, on the dates 28 October 2020 and 29 October 2020 we have
excluded two excerpts of sudden artificial disturbances from the nighttime fluctuations of
the amplitude, when the TBB transmitter was out of order, maintaining only the natural
fluctuations of the amplitude. In Figure 3 it is observed that on 14 October 2020, 16 days
before the 2020 Samos EQ, a very clear depletion of TR∗, greatly exceeding the −2σ limit, is
found, and correspondingly an enhancement of NF∗, exceeding the +2σ limit, is observed
on the same day. On 12 October 2020, 18 days prior to the 2020 Samos EQ, a marginal
enhancement of DP∗, as well as a clear enhancement of NF∗, were found. On the other
hand, an enhancement of DP∗, exceeding the +2σ limit, can be seen on 26 October 2020,
very close to the EQ, 4 days before the mainshock, while in parallel an enhancement of
NF∗, above the +2σ limit, is also observed. Summarizing, two out of the three examined
normalized VLF propagation quantities present anomalies for each of the dates 12 October
2020, 14 October 2020, and 26 October 2020. Therefore, for all three dates it is considered
that the corresponding lower ionospheric anomalies were possible precursors to the 2020
Samos EQ, even though the anomalies of the dates 12 October 2020 and 14 October 2020
appeared more than 2 weeks before the EQ, which is the longest time distance of such
anomalies from the EQ occurrence, based on results from similar studies concerning EQs
in Japan [1].

In Figure 4 we present the results of the three normalized VLF propagation quantities
of NFM for the propagation path ISR–UWA for the same examined period (1 October 2020–8
November 2020). Firstly, we observe a depletion of TR∗ on 14 October 2020. Interestingly, as
already mentioned, on the same date, simultaneous anomalies of TR∗ and NF∗ were already
found for the propagation path TBB–UWA (Figure 3). The simultaneous appearance of
these anomalies on 14 October 2020, almost 2 weeks prior to the 2020 Samos EQ, in both of
the examined propagation paths is highly unlikely to be accidental, and is considered to be
a significant precursor signature. On the other hand, on 14 October 2020 we do not observe
any anomaly for DP∗ and NF∗ in Figure 4. Another anomaly is identified in Figure 4 on
6 October 2020 as an increase of DP∗ above the +2σ limit without any significant depletion
in trend. This specific anomaly is not considered to be related to the 2020 Samos EQ, for the
reason that only one normalized VLF propagation quantity presents the anomaly, and in
addition the date of the anomaly is very far from the EQ’s occurrence. On the other hand,
almost 1 week prior to the 2020 Samos EQ, on 22 October 2020, anomalies exceeding the
corresponding −2σ/ + 2σ limits are simultaneously identified in Figure 4 for all three VLF
propagation quantities (TR∗, DP∗, and NF∗), which are considered valid precursors to the
EQ of interest.
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5.2. Diurnal Variation and TTM Analysis Results

In Figure 5, we present the sequential plot of the diurnal variation of the filtered (by a
Gaussian low pass filter) amplitude data for the propagation path TBB–UWA. The time
axis shows the local time (LT) at the location of the UWA receiver (EET = UT + 2 h), and the
presented time period is 15 October 2020–2 November 2020. Note that the amplitude level
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(see level of the 15 October 2020 signal) received at UWA from the TBB transmitter during
the considered time period was adequately high (>40 dB above noise level). The minima of
the amplitude signal close to the local (planetary) sunrise and sunset times are identified as
the morning TTs, tm, and the evening TTs, te, respectively. We indicate these minima as
red circles in Figure 5, while the dates are shown in the middle of each of diurnal variation
of the signal, and the EQ day is marked with magenta color. The observed anomalous
shifts in time of those minima, for different days prior to the 2020 Samos EQ, are marked
with black ellipses, including the previous and the next normal days around the anomaly.
It is noted that for a clearer presentation of the specific sequential plot, we intentionally
removed specific excerpts of the signal for some days (see data gaps in Figure 5), because
these corresponded to artificial disturbances due to transmitter operation disruptions and
would “hide” some of the minima.

Figure 5. Diurnal variation of the amplitude of the VLF signal for the propagation path TBB−UWA for the time period 15
October 2020–2 November 2020. Each signal is vertically shifted by +10 dB in regards to the signal of the previous day. Red
circles indicate the minima identified as the morning TTs tm (closest to the sunrise time), and the evening TTs te (closest
to sunset time), respectively. The EQ day is marked with magenta color. The anomalous shifts in TTs are marked with
black ellipses.

As regards the tm, a significant reduction (shift towards the night) appears on
28 October 2020, 2 days prior to the 2020 Samos EQ, while a gradual increase of te (towards
the night) starts 4 days before the date of the EQ, maximizing on 29 October 2020, almost
1 day prior to the EQ. Moreover, te presents another obvious anomaly on 25 October 2020.
Note that the lead time of TT anomalies has been observed to be ~1 week prior to the
EQ [37,39]. Therefore, the aforementioned anomalous shifts of the TTs could be considered
to be possible precursors to the EQ. However, one anomalous shift of tm is identified on 21
October 2020, and one more is identified on 17 October 2020 for te; both of these anomalies
exceed the lead time of ~1 week prior to the EQ.

In Figure 6, we present the TTM analysis results for the TBB–UWA propagation path.
In this figure we show the shift of the morning and evening TTsdtm and dte, respectively—
as well as the shift of the “VLF daylength”, dDVLF, as described in Section 4.2. The standard
deviation, σ, of each analyzed time series has been calculated for the whole studied period.
The corresponding −2σ or +2σ level, indicating the considered threshold for an anomaly,
is also indicated in each panel.

Firstly, it is observed that on 28 October 2020 an anomalous shift of tm (decrease by
−25.7 min), exceeding the −2σ limit, appears, while on the same date, DVLF also presents
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an anomalous increase by 29.9 min, exceeding the +2σ limit. Recall that an anomalous
shift of the TTs has already been noticed on the specific date from the inspection of the
sequential plot of the diurnal variation of the amplitude data (Figure 5). Thus, these TT
anomalies could be characterized as a precursor to the studied EQ.
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From Figure 6, one can also identify two more anomalies in the dte time series, on
17 October 2020 (increase of te by 15.79 min) and on 25 October 2020 (increase of te by
15.48 min). These two TT anomalies are not considered to be clear precursors to the 2020
Samos EQ, for the reason that no corresponding anomalous increase of DVLF is observed
on these dates. A decrease (by −26.78 min) of te, as well as an increase (by 37.32 min) of
DVLF, both exceeding the +2σ level, appear after the occurrence of the EQ (on 6 November
2020); however, these cannot be linked with any phenomenon.

Following the format of Figure 5, we present in Figure 7 the sequential plot of the
diurnal variation of the filtered amplitude data for the propagation path ISR–UWA. As
we can see from the Figure 7, the transmitter had a few interruptions in its operation
during the time period presented. However, these interruptions do not influence the
application of the TTM. Additionally, we observe that two sets of minima exist on the
morning side; we chose to analyze both of them. The closest to the planetary sunrise time
set of minima are designated as tm1 (marked with red circles in Figure 7), whereas the set of
minima appearing approximately 1 h earlier are denoted as tm2 (marked with black circles
in Figure 7). The evening TTs, te, appear also in Figure 7, as minima at the evening side,
marked with red circles.

The observed TT shifts, indicated in Figure 7 as black ellipses that include the previous
and the next normal days around the anomaly, appear at different days for each one of the
three studied TTs. Specifically, one observes that three sequential tm1 values are shifted
towards the night on 26 October 2020, 27 October 2020, and 28 October 2020, close to the
date of the EQ, while at the same time, on 27 October 2020, tm2 is also shifted towards
the night. These are considered to be significant anomalies, possibly related to the 2020
Samos EQ. Another two tm2 anomalies are found in the morning side on 16 October 2020
and 20 October 2020, while for the evening TTs, te, we observe three distinct anomalies
on 16 October 2020, 21 October 2020, and 23 October 2020. Note that these last anomalies
appear more than 1 week prior to the 2020 Samos EQ.
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In Figure 8, following the format of Figure 6, we present the TTM analysis results for
the ISR–UWA propagation path. The only difference is that in Figure 8 we present the
results for two morning TTs, tm1 and tm2, instead of one. It is also noted that, for the ISR–
UWA path, we calculated the “VLF daylength” as DVLF = te − tm1. Otherwise, the TTM
has been applied to the ISR–UWA path exactly as it was applied to the TBB–UWA path.
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From the results presented in Figure 8, we observe two anomalies of tm1 close to
the EQ occurrence, on 26 October 2020 (tm1 shifted by −15.67 min) and on 27 October
2020 (tm1 shifted by −16.63 min), as well as one anomaly of the dDVLF time series on
26 October 2020 and one marginal exceed of the −2σ limit appearing for the dtm2 time
series on 27 October 2020. Recall that anomalous shifts of the tm1 and tm2 TTs have already
been noticed on these specific dates by inspection of the sequential plot of the diurnal
variation of the corresponding amplitude data (Figure 7). Thus, one could suggest that
TTs indicate precursory behavior during the specific dates. Moreover, the dte time series
indicates an anomalous shift of te on 23 October 2020, which also appears in Figure 7.
Finally, on 16 October 2020, simultaneous anomalies of tm2 (shifted by −26.96 min), te
(shifted by 26.86 min), and DVLF (shifted by 32.77 min) are found in Figure 8. Note that
corresponding anomalous shifts of tm2 and te were already noticeable in Figure 7. Therefore,
these anomalies are also considered to be significant precursors to the 2020 Samos EQ,
although they appeared more than 1 week prior to the EQ.

5.3. NT Analysis Results

In this section we will give the results of the application of the NT method (see
Section 4.3) to the time series produced by the NFM (see Section 4.3) by analyzing the
non-normalized VLF propagation quantities TR, DP, and NF. We applied the NT method
to these non-normalized VLF propagation quantities, as first appeared in [25]. Specifically,
we consider all of the daily values of each one of the aforementioned VLF quantities that
are higher than a certain threshold to be “events” to be taken into account during the NT
analysis. The “energy” Qk of the k-th event is considered to be equal to the corresponding
daily value of the analyzed VLF quantity, provided that this is above a certain threshold.
Then, the NT analysis is applied to the time series of the events of each VLF quantity, as in
the case of the pre-seismic activity (Section 4.3).

In our investigation, we present the NT analysis results for the TR, DP, and NF time
series of both TBB–UWA and ISR–UWA propagation paths, which are summarized in
Table 2, while indicative results are shown in Figures 9–11. Note that, although the NT
analysis criticality conditions are satisfied for a number of thresholds for each case included
in Table 2, in Figures 9–11 only four indicative thresholds are presented per case.

Table 2. NT analysis results for the propagation paths TBB–UWA and ISR–UWA. Only the transmitter
data which presented clear satisfaction of the NT analysis criticality criteria are mentioned.

Date TR DP NF

17 October 2020 TBB
19 October 2020 ISR ISR
22 October 2020 TBB
25 October 2020 TBB
28 October 2020 ISR
30 October 2020 ISR

1 November 2020 ISR

In Figure 9, we present an example of the NT analysis of the DP VLF quantity of the
TBB–UWA propagation path for the examined time period 1 October 2020–8 November
2020. It is shown that criticality is clearly achieved on 25 October 2020, since, on that date,
for all 4 threshold values, DPTh, the κ1 parameter is decreased to the 0.07 limit “from
above”, while the entropies Snt, Snt− remain below the limit (ln2/2) − 1/4 (≈ 0.0966),
and the “average” distance D remains lower than 10−2. In Figure 10, we present another
example concerning the NT analysis of the TR VLF quantity of the ISR–UWA propagation
path for the same time period. It is found that criticality is reached on 19 October 2020, as
the NT analysis criticality criteria are satisfied.
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Figure 9. NT analysis of the DP VLF propagation quantity time series of the propagation path TBB–UWA for the examined
time period (1 October 2020–8 November 2020). The presented temporal variations of the NT parameters correspond to
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the Year is the same: 2020).
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The last example is presented in Figure 11, where it is clearly observed that on
1 November 2020 (actually, 31 October–1 November 2020), notably after the occurrence of
the main EQ, the system was still in critical condition. This criticality obviously cannot be
related to the preparation of the 2020 Samos EQ, while no other phenomenon that could
have disturbed the lower ionosphere occurred over a period of at least 1 month after this
date (see also Section 3). Thus, this is a puzzling finding that calls for further investigation
with the help of an independent criticality analysis method, such as the MCF. Moreover, it
is questionable whether the criticality found on 30 October 2020 for the ISR–UWA path
is related to the EQ preparation processes that resulted in the 2020 Samos EQ. Note that
the NT analysis has been performed on daily valued time series, so that a criticality found
on the day of the EQ may come from the part of the original VLF amplitude recordings
preceding or the part following the EQ occurrence. Indeed, in Section 5.4., we proceed to
such an investigation that explains these puzzling results.

5.4. MCF Analysis Results

In this section we present our MCF analysis results for the considered VLF data.
We should clarify that the daily valued NFM VLF propagation quantities, which have
been obtained by means of NT analysis, cannot be analyzed by means of the MCF for the
reason that they comprise very few values, whereas the MCF needs approximately >5000
values [9] in order to produce reliable results. Here, the MCF is applied to the raw linear
amplitude nighttime fluctuation data (restored from the originally recorded dB values) for
the two propagation paths of interest (TBB–UWA and ISR–UWA), following the way in
which the MCF was applied to VLF data in [24,30]. It should be mentioned at this point
that in the case of the 2020 Samos EQ, there was no need to add uniform noise (see Section
4.4, and [9]), because the amplitude fluctuations for both propagation paths were sufficient
for the application of the MCF. Thus, the MCF was directly applied to the stationary parts
of the original time series, as was done in the time series of the fracture-induced EM
emissions [8,23]. The time series excerpts presenting critical characteristics according to
MCF are referred to as “critical windows” (CW).

It must be noted that CWs in seismo-EM signals usually appear up to 2 weeks before
the mainshock; however, here we focus on the last few days before the 2020 Samos EQ,
while we also examine the VLF data after the main EQ in order to investigate the puzzling
finding of the NT analysis that criticality is also found on 1 November 2020, after the
occurrence of the main EQ.
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The analysis of both the ISR–UWA and TBB–UWA propagation paths in terms of
the MCF revealed CWs before the 2020 Samos EQ, the last of which were found in the
recordings of 29 October 2020 (see Figure 12, Figure 13a, and Figure 14a), i.e., 1 day prior
to the mainshock, verifying the findings of the NT analysis for the existence of criticality
before the mainshock in the analyzed VLF data.

Figure 12. MCF analysis of a CW, identified in the VLF recordings of the ISR−UWA propagation path prior to the Samos EQ
on 29 October 2020. (a) The green-colored excerpt is the analyzed excerpt of the VLF signal from 63,500 s to 71,000 s; time
refers to the sample number within the specific day (sampling rate = 1 sample/s), starting at 00:00 UT. (b) The distribution
of the green-colored excerpt of Figure 12a from which φ0 = 0.00075 is determined. (c) The estimated values for the
exponents p2, p3 for different values of the end of the laminar region φL. The red dashed horizontal line indicates the critical
limit (p2 = 1). The criteria p2 > 1 and p3 ∼= 0 are satisfied for a wide range of φL . (d) The distribution of the laminar
lengths and the corresponding fitted power law (green solid line) for the laminar region determined by φ0 = 0.00075 and
φL = 0.00068; R2 ≈ 1 indicates an excellent fit.

In Figure 12, we show an example of the application of the MCF to one of the last in time
CWs identified by the MCF, on 29 October 2020, in the VLF data of the ISR–UWA propagation
path. Specifically, the amplitude fluctuation of part of the day (62,000 s–73,000 s, starting
time at 00:00 UT) is illustrated in Figure 12a, while the excerpt presenting critical fluctuations,
i.e., the CW, is marked with green color. The corresponding amplitude distribution of this
excerpt is presented in Figure 12b, where the selected fixed point (f.p.), i.e., the φ0 value,
for the MCF analysis is indicated (see Section 4.4). In Figure 12c, we give the sets of the
exponents p2, p3 for which the MCF criticality conditions p2 > 1, p3 ≈ 0 are satisfied.
The intervals between φ0 and each one of the φL values define the corresponding laminar
regions (φ0,φL)—that is, one laminar region (φ0,φL) for each different φL value. Finally, in
Figure 12d, we present the distribution of laminar lengths (waiting times) within the laminar
region determined by φ0 = 0.00075 and φL = 0.00068, as well as the corresponding fitting
function f(L) (see Section 4.4), which is a power law.
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Figure 13. (a) Power-law behavior in the distribution of laminar lengths, resulting from the MCF
analysis of an excerpt of the sub-ionospheric propagation amplitude time series for the ISR–UWA
path, for the date 1 November 2020, (72,600 s–80,000 s, UT). (b) Autocorrelation function (ACF) of
the time series excerpts corresponding to the power laws of Figure 12d (green curve), found ~1
day before the EQ, and Figure 13a (red curve), found ~2 days after the main EQ. It is clear that the
post-EQ power law presents significantly shorter correlation length than the pre-EQ power law.

Figure 14. Power-law behavior in the distribution of laminar lengths, resulting from the MCF analysis of excerpts of the sub-
ionospheric propagation amplitude time series for the TBB–UWA path, for the dates: (a) 29 October 2020 (56,000 s–61,500 s,
UT), ~1 day before the EQ occurrence, and (b) 1 November 2020 (71,000 s–75,200 s, UT), ~2 days after the EQ occurrence.
(c) Autocorrelation function (ACF) of the time series excerpts corresponding to the power laws of Figure 14a (green curve)
and Figure 14b (red curve). It is clear that the post-EQ power law presents significantly shorter correlation length than the
pre-EQ power law.

We now focus on the investigation of the puzzling finding of the NT analysis that
criticality is also found on 30 October–1 November 2020. For this reason, we also analyzed
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the VLF data after the main EQ using the MCF. Indeed, we found power-law behavior in
the distribution of laminar lengths of the sub-ionospheric propagation data for 1 November
2020, ~2 days after the 2020 Samos EQ, for both the ISR–UWA and TBB–UWA paths, as
shown in Figures 13a and 14b, respectively.

Since MCF criticality conditions p2 > 1, p3 ≈ 0 are satisfied for the specific cases
(i.e., power-law behavior of the laminar lengths’ distribution), one could conclude that
both of these post-EQ power laws indicate critical states and, therefore, that the corre-
sponding time series excerpts are CWs. Such power laws, after the main EQ, were until
recently attributed to the preparation of another, discrete, main EQ that may follow after
the first one—or in the case of VLF data, to another extreme space-sourced geophysical
phenomenon that is capable of disturbing the lower ionosphere. However, very recently,
on the occasion of the analysis of the fracture-induced EM emissions in the MHz band that
were recorded prior to the 2020 Samos EQ, it was found that such power-law findings in
seismo-EM time series may not be related to the preparation of a new EQ [71]. Specifically,
as already mentioned in Section 4.4, in such cases one must also check the autocorrelation
function, ACF(τ), of the corresponding time series excerpts. If the values of the autocorre-
lation function of the examined time series collapse immediately after the EQ and remain
low, then no new strong EQ is expected, but if the autocorrelation function values return to
high values, then a new strong EQ may be expected soon [71]. For both cases of post-EQ
power laws presented in Figures 13a and 14b, Figures 13b and 14c clearly illustrate that the
autocorrelation function values of the corresponding time series excerpts are significantly
lower than those of the true critical windows that were identified before the 2020 Samos
EQ (such as those corresponding to the power laws of Figures 12d and 14a). It is worth
noting that in [71] similar behavior was found for the fracture-induced EM emissions in
the MHz band. Note also that all of the laminar distributions’ power laws found before the
2020 Samos EQ were accompanied by long-range correlations, as verified by means of the
autocorrelation function of their corresponding time series excerpts.

As presented in detail in [71], by employing the 3D Ising thermal model, power laws in
the laminar lengths’ distribution may appear after the SSB as a result of “locally surviving”
critical dynamics, despite the unstable critical point no longer existing. The interpretation
suggested in [71] for the post-EQ power laws is that they are due to local fracture structures
(which explains the collapse of long-range correlations that are a key characteristic of the
critical state), while critical dynamics “locally survive” due to the small temporal distance
from the EQ occurrence. Such local fractures, in course of the aftershock sequence, due
to the absence of long-range correlations, are not able to organize the system towards the
preparation of a new mainshock.

At this point, it should be noted that due to the very low temporal resolution of the
VLF propagation quantities of NFM that were analyzed by NT analysis (1 value per day), it
was difficult for the NT analysis to discriminate between the criticality indications shortly
before and shortly after the 2020 Samos EQ. For this reason, the post-EQ criticality found
by the NT analysis in the DP VLF propagation quantity time series of the ISR–UWA path,
as presented in Figure 11, seems to initially extend from 29 October 2020 to 1 November
2020, progressively focusing on 31 October–1 November 2020. For the same reason, the
criticality found on 30 November 2020 for the NF VLF propagation quantity time series of
the ISR–UWA path (Table 2) might well be related to the aforementioned critical dynamics
“locally surviving” after the occurrence of the main EQ.

5.5. Summary of Analysis Results

Considering all of the results obtained by means of the statistical and criticality
analyses applied to the VLF sub-ionospheric propagation data possibly disturbed by the
2020 Samos EQ (Sections 5.1–5.4), and also taking into account the fact that no other
extreme events (magnetic storm, solar flare, volcano, another EQ, etc.), which could af-
fect the examined propagation paths occurred during the examined time period (1 Oc-
tober 2020–8 November 2020) or later (see also Section 3), one could summarize in the
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following comments:

1. Within ~1 week before the EQ, VLF anomalies have been revealed by means of the
NFM statistical analysis method. Specifically, on 22 October 2020, the ISR–UWA
path presents clear indications of disturbance in all the examined VLF propagation
quantities, while on 26 October 2020 the TBB–UWA path also appears to be perturbed,
since two out of the three examined VLF propagation quantities present anomalies.

2. Within ~2 weeks before the EQ, on 14 October 2020, both propagation paths present
very clear anomalies, while on 12 October 2020 anomalies were found for 2 out of the
3 examined VLF propagation quantities for TBB–UWA path. These lower ionosphere
perturbations are also considered to be related to the preparation of the 2020 Samos
EQ, despite the fact that pre-seismic VLF anomalies usually appear up to ~1 week
before the mainshock. In particular, the 14 October 2020 VLF anomalies that appear
in both propagation paths are considered to be significant precursors to the EQ.

3. Both the earliest (12 October 2020) and latest (26 October 2020) anomalies appear in
the TBB–UWA path.

4. The anomalies revealed for the TTs by inspection of the sequential plots of the diurnal
variation of the VLF signal’s amplitude of both propagation paths imply that the lower
ionosphere was disturbed within the time interval 25 October 2020–29 October 2020,
while a TT anomaly was also found for the ISR–UWA path on 23 October 2020, all
within ~1 week before the EQ in question. However, anomalies were also identified
earlier—specifically, on 21 October 2020 and 17 October 2020 for the TBB–UWA path, as
well as on 21 October 2020, 20 October 2020, and 16 October 2020 for the ISR–UWA path.

5. The application of the TMM statistical analysis indicate that the TTs’ anomalous
behaviors on 28 October 2020 for the TBB–UWA path, as well as on 26 October 2020
and 27 October 2020 for the ISR–UWA path, are important precursory information,
already observed by the inspection of the sequential plot of the diurnal variations.
The same holds for the clear perturbation revealed by the TMM on 16 October 2020
for the ISR–UWA path, also observable in the corresponding sequential diurnal plot,
although it appears ~2 weeks before the 2020 Samos EQ’s occurrence.

6. The criticality analysis performed by means of the NT analysis method provides
evidence that the lower ionosphere was in the critical state within the time interval 17
October 2020–28 October 2020, within 2 weeks before the EQ of interest. Specifically,
the TBB–UWA path first presents criticality from 17 October 2020 to 25 October 2020,
while for the ISR–UWA path criticality appears between 19 October 2020 and 28
October 2020.

7. Moreover, criticality was also found by the NT analysis for the ISR–UWA path even
on 1 November 2020, 1 day after the 2020 Samos EQ, but also on the day of the EQ.
These puzzling findings were further investigated with the help of the MCF analysis.

8. The application of the MCF analysis verified that the lower ionosphere was in the
critical state up to 1 day before the mainshock occurrence, while providing evidence
that the criticality indications appearing after the occurrence of the 2020 Samos EQ
lack long-range correlations and, thus, are attributable to critical dynamics “locally
surviving” after the occurrence of the main EQ, and not to the preparation of any
other extreme space-sourced geophysical phenomenon that could have disturbed the
lower ionosphere.

9. The criticality analysis results of this study are extremely consistent with the criticality
analysis results obtained by the used analysis methods on other EQ cases [9,24,25,30].

As already mentioned in Section 3, no other ionosphere-influencing phenomena
occurred during the analyzed time period (or for at least 1 month after the EQ under study)
in the wider area of interest. For this reason, the precursory evidence found is considered
to be related only to the 2020 Samos EQ.

Finally, we must mention that if all of the NFM calculations are repeated using a run-
ning window of 30 days before the day of interest plus the day of interest for the calculation



Entropy 2021, 23, 676 23 of 26

of statistical quantities, and these NFM results are used as inputs to the NT analysis, we
will end up with the same conclusions summary for the NFM and NT analysis results.

6. Conclusions

This work has presented the statistical and criticality analysis of the VLF sub-ionospheric
propagation data recorded by a newly installed radio receiver located in Athens (UWA),
investigating the 2020 Samos EQ which occurred on 30 October 2020 in Greece. Specifically,
we used the widespread statistical methods NFM and TTM, while for the criticality analysis
we used NT analysis and the MCF. In the analysis we used the data of 2 sub-ionospheric
propagation paths, corresponding to a transmitter located in Turkey (TBB) and one more
transmitter located in Israel (ISR), for the time period 1 October 2020–8 November 2020,
including almost 1 week after the EQ occurrence, knowing that no other extreme event that
could affect the lower ionosphere occurred in the abovementioned period or for at least 1
month after the examined EQ’s occurrence.

Our findings indicate that precursory anomalies are identified in the lower ionosphere
within a time interval of ~2 weeks prior to the 2020 Samos EQ. Since no other ionosphere-
influencing phenomena occurred during the analyzed time period (or for at least 1 month
after the EQ under study) in the wider area of interest, the precursory evidence found is
considered to be definitely related to only the 2020 Samos EQ.

Interestingly, criticality indications were found even after the EQ’s occurrence, both
by NT analysis and by the MCF. However, it was shown that these were not precursory
signals of an EQ or other extreme event capable of influencing the lower ionosphere,
but rather critical dynamics “locally surviving” after the occurrence of the main EQ,
possibly due to local fracture structures, lacking long-range correlations, in course of the
aftershock sequence, which were not able to organize the system towards the preparation
of a new mainshock.
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