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Abstract: The use of chaotic systems in electronics, such as Pseudo-Random Number Generators
(PRNGs), is very appealing. Among them, continuous-time ones are used less because, in addition
to having strong temporal correlations, they require further computations to obtain the discrete
solutions. Here, the time step and discretization method selection are first studied by conducting
a detailed analysis of their effect on the systems’ statistical and chaotic behavior. We employ an
approach based on interpreting the time step as a parameter of the new “maps”. From our analysis, it
follows that to use them as PRNGs, two actions should be achieved (i) to keep the chaotic oscillation
and (ii) to destroy the inner and temporal correlations. We then propose a simple methodology
to achieve chaos-based PRNGs with good statistical characteristics and high throughput, which
can be applied to any continuous-time chaotic system. We analyze the generated sequences by
means of quantifiers based on information theory (permutation entropy, permutation complexity,
and causal entropy × complexity plane). We show that the proposed PRNG generates sequences
that successfully pass Marsaglia Diehard and NIST (National Institute of Standards and Technology)
tests. Finally, we show that its hardware implementation requires very few resources.

Keywords: PRNG; statistical properties; NIST; diehard; chaos; permutation entropy; permutation
complexity

1. Introduction

Many engineering applications require the utilization of random numbers, such as in
the area of communication, encryption, codification, and modulation [1–3].

The use of chaotic systems, such as Pseudo-Random Number Generators, has recently
grown because of the multiple advantages they present over stochastic algorithms [4–7].
In [8], the authors propose a five-step encryption algorithm. One of these parts is a chaotic
systems module, where the system chooses between different number generators. In the
conclusions, the authors highlight the importance of its randomness and present digital
degradation as a subject to study. It is well known that both chaotic maps and continuous-
time chaotic systems have internal correlations (they can be easily seen in 3D plots of
their outputs) that prevent them from being used as PRNGs. The picture is even worse
in the case of continuous-time chaotic systems that, unlike chaotic maps, present strong
temporal correlations. In the literature, there are studies that promise to generate good
PRNGs from continuous-time chaotic systems that can be used in cryptography and secure
communications. In general, they fail in three main aspects: speed, randomness, and
generality. These qualities are essential for any PRNG. A slow PRNG is useless for almost
all applications, for example, for real-time encryption. To ensure security, the sequences

Entropy 2021, 23, 671. https://doi.org/10.3390/e23060671 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-8348-0083
https://orcid.org/0000-0002-0420-4823
https://www.mdpi.com/article/10.3390/e23060671?type=check_update&version=1
https://doi.org/10.3390/e23060671
https://doi.org/10.3390/e23060671
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23060671
https://www.mdpi.com/journal/entropy


Entropy 2021, 23, 671 2 of 17

have to pass statistical tests, such as Diehard or NIST. Otherwise, there exist tools capable of
detecting the inner correlations and thus capable of breaking the security. Finally, generality,
because a good chaotic PRNG should not depend on a single chaotic system. It should
work with other chaotic systems [9].

In [10,11], the authors employ a skipping technique to enhance the randomness of the
chaotic outputs (called self-cascading in [11]). Instead of iterating with the original map f ,
it uses its d-times iterated one f d [12]. Actually, this technique hides the correlations rather
than destroying them. The higher the iteration used, the less the structures can be seen;
however, the sequences still keep their internal correlations (lacks in randomness).

If the iterations are alternated between different maps, the method is called switching;
this is also proposed in [11] (called hybrid-cascading there), in [13,14]. The limitation is
that the maps must have common convergence domains, or at least common areas, which
are not easy to find (lacks in generality).

Some works [15,16] iterate chaotic systems using floating point architecture and
complex integration algorithms (such as Runge Kutta) and apply some type of post-
processing or coding to eliminate the internal structures. Floating point operations, as
well as complex integration algorithms, require many calculations. This, added to the
post-processing calculations, limits the output speed (lacks in speed) and also requires
lots of resources. Another frequently used method is to introduce external disturbances to
the system. In these cases, the randomness of the final system turns out to be that of the
disturbing system; unlike what may be expected, the randomness is not added, which is
the case of [13,14].

A successful technique for obtaining random outputs from continuous time chaotic
systems is the discarding method ([17–20], called the deep-zoom method in the latter). It
basically consists of dismissing the most significant bits of each output, and it exploits
the fact that chaos analytically relies on the infinitesimal depth of precision digits used.
However, to maintain chaotic oscillation, they are forced to use a high number of bits (even
floating point arithmetic) and complex temporal discretization methods. Furthermore, due
to the internal and temporal correlations of these systems, a low number of bits for the
PRNG can be taken (lacks in speed) at each iteration.

There are works that propose to generate random sequences by applying fractional calculus
to existing chaotic systems or even using new defined fractional chaotic systems [21,22]. The
novelty is that continuous-time systems of less than three dimensions can exhibit chaotic
behavior. However, the typical internal structures of chaotic systems remain in the sequences
generated by these systems. So, they are in the same situation as mentioned before. What
is more, the procedure of generalizing the integer derivative and integral orders to real and
complex numbers requires more calculations, and it is not clear if having fewer dimensions is
an advantage; for example, in our approach, we take advantage of the three dimensions as we
extract bits from the three variables, so to increase throughput.

Traditionally, continuous-time chaotic systems have not been the preferred choice
over chaotic maps mainly due to the strong time correlation and the extra computations
they require to perform the time-discretization.

There exist an ample variety of numerical algorithms to solve ordinary differential
equations. Which of them to choose will depend on the final objective. Here, rather than
generating what some researchers call the “true solutions”, the interest is to obtain the most
random output while keeping the chaotic behavior. Meanwhile, it is desired to employ
the least amount of resources in terms of hardware, so the simplest method would be
preferable. The drawback is that, in general, the simplest numerical methods produce the
trajectories to converge or tend to cycles with short periods.

Here, we analyze numerical integration algorithms looking for the one that (i) maxi-
mizes the randomness degree, and (ii) requires the fewest resources regarding its hardware
implementation.

The time correlation is related to the integration step, ∆t. The lower ∆t, the more
time-correlated the output would be. However, a large ∆t could result in the system losing
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its chaotic behavior. Therefore, choosing the appropriate step ∆t is not a trivial task. We
propose a point of view where the continuous system becomes a discrete map, and the time
step used is seen as an extra parameter of this new map. This enables us to characterize the
system in terms of ∆t and use statistical quantifiers as well as nonlinear tools to describe
the dynamics’ evolution of the maps.

Our goal is to propose an extremely simple modification applied to the digitalized
continuous-time chaotic system that keeps it oscillating and, at the same time, breaks the
internal structures and the time correlation of the outputs, which allows us to apply the
discarding method, but discarding a minimum number of bits, so as not to lose speed.
Using the standard Marsaglia’s Diehard and NIST tests, we show that the resulting map
can generate high-quality random numbers to ensure security. Finally, our method is
general as it can be applied to any continuous-time chaotic system. We also present the
resources needed by a hardware implementation in an FPGA board of the proposed PRNG
and compare them with the ones of the original map, showing that the circuit complexity
remains almost the same.

The rest of the paper is organized as follows. Section 2 presents the ordinary differ-
ential equations that concern us, briefly describes the methods that we consider for the
time discretization of those systems and presents the proposed modification over the Euler
method. Section 3 gives a short review of the quantifiers employed to characterize the
maps’ chaoticity and randomness. In Section 4, the obtained results when applying the
proposed methodology to the Rössler system are presented. There, we develop new maps
that emerge from applying the numerical methods and the proposed modification. Finally,
in Section 5, we draw some concluding remarks.

2. Continuous-Time Chaotic Systems

The general form of a typical continuous-time chaotic system is as follows:

u̇ = f (t, u) (1)

where f (t, u) are nonlinear functions of time and the states variables u. Given an initial
value u(t0) = u0, these systems have a determined evolution. However, there is no general
formula to solve this kind of equation; in fact, most of these first-order differential equations
cannot be analytically solved [23]. That is why particular time-dependent solutions are most
often sought with numerical means. Thus, multiple techniques that approximate the output
of the system have emerged. Among the ample range of possibilities for making such a
job, the choice of one of them depends on several factors. When an exact reproduction of
the continuous system dynamics is required, powerful numerical methods that involve
pre-iterations and variable time-steps are mandatory. However, when using these systems,
such as PRNGs, the criteria change for choosing which method to use changes. It switches
to the ones that allow the output to meet the required properties along with the strong
restrictions regarding the hardware implementation, i.e., minimize the required resources
and latency, maximize throughput and operation frequency. Considering the above, we
focus on fixed integration step methods. In this context, we evaluate the following three
well-known numerical methods for the time-digitization of continuous-time systems.

2.1. Fourth Order Runge–Kutta Method (RK4)

The main idea of this method is the precalculation of stages at various points using
samples of f to obtain the next step [24].

ut+∆t = ut +
∆t
6
(k1 + 2k2 + 2k3 + k4), (2)
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k1 = ∆t f (t, ut),
k2 = ∆t f

(
t + ∆t

2 , ut +
k1
2

)
,

k3 = ∆t f
(

t + ∆t
2 , ut +

k2
2

)
,

k4 = ∆t f (t + ∆t, ut + k3),

where ut is the discrete-time state variable and ∆t is the time step size.

2.2. Heun’s Method (HUN)

Heun’s method considers the tangent lines to the solution curve at both ends of the
interval. This method requires two stages of calculation as follows:

ut+∆t = ut +
∆t
2
[ f (t, ut) + f (t + ∆t, ũt)], (3)

ũt = ut + ∆t f (t, ut)

2.3. Euler’s Method (EUR)

Among all numerical procedures for solving ordinary differential equations with a
given initial value, the simplest one is Euler’s method in which differentials are approxi-
mated by a trapezoid with base ∆t, as Equation (4) shows. Euler’s method is a one-step
algorithm; that is, in order to calculate the variables at the time t + ∆t, it is only necessary
to know the values at the previous instant.

u̇t ≈
ut+∆t − ut

∆t
, (4)

where:
ut+∆t = ut + ∆t f (ut) (5)

2.4. Modified Euler Proposed Method (EUR_MOD)

Choosing a large ∆t would be believed to help de-correlate the output of the system
and thereby improve its randomness. However, the largest ∆t before the system loses its
chaotic behavior is not big enough to break its temporal structures. There are numerous
proposals to increase the randomness of chaotic systems [25–27]. In some of them, post-
processing the outputs is proposed; however, this idea adds hardware and increases latency.
Other works propose to disturb the system with external noise, to switch between one or
more chaotic maps [28]. Then, complexity is added to the resulting circuit, but the achieved
randomness of the final system is just that of the disturbance. As said, the objective is
to destroy the temporal correlations while keeping the chaotic oscillation of the system.
Furthermore, it is desired to minimize the hardware resources and increase throughput
and speed. Our idea is to combine the time-digitalization process with the randomization
one. Thus, we have selected Euler’s method as is the simplest one and thereby will require
the least amount of hardware to be implemented. Based on Equation (5), with the idea of
breaking the temporal structure, we apply the following modification:

xt+∆t = xt + ∆t fx(xt, yt, zt) + p1zt(−1)xt mod 2

yt+∆t = yt + ∆t fy(xt, yt, zt) + p2xt(−1)yt mod 2

zt+∆t = zt + ∆t fz(xt, yt, zt) + p3yt(−1)zt mod 2
(6)

where ut mod 2 returns the remainder of a division after ut is divided by 2. It returns 1 if
ut is odd, or 0 if it is even. The parameters p1, p2 and p3 ∈ [0, 1], so for the particular case
where p1 = p2 = p3 = 0, the map converges to ROSEUR map.

The modification consists of incorporating one extra term into each function. This term
is simply another state variable multiplied by 0.5. That term will be added or subtracted
from the function depending on the parity of the current state variable.
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3. Quantifiers

The time-digitization of continuous systems that turns them into maps generates
changes in their dynamics. Chaoticity, stochasticity, and mixing properties change, so the
following tools are used to analyze them.

3.1. Maximum Lyapunov Exponent

A chaotic orbit (chaotic attractor) is aperiodic, meaning that it never repeats exactly
itself, and the oscillation persists for a time tending to infinity. The attractor’s movements
exhibit sensitive dependence on the initial conditions. This means that two trajectories that
start very close, quickly diverge; thus, they will have very different futures. The practical
implication of this is that long-term prediction becomes impossible, as small uncertainties
are rapidly amplified. The separation δ(t) between two trajectories of the same system that
initially differ δ0 evolves exponentially in the way of Equation (7):

||δ(t)|| ∼ ||δ0||eλt (7)

Therefore, neighboring trajectories separate exponentially fast. The number λ is called
the Lyapunov exponent. When this exponent is positive, it is said that the system has a
time horizon beyond which the prediction fails at tolerance a. Actually, λ depends on the
trajectory that is being studied. Therefore, it must be averaged over many points of the
same trajectory to estimate its true value. In addition, each system has as many Lyapunov
exponents as dimensions. The largest of them, known as the maximum Lyapunov exponent
(MLE), is of special significance since a positive value indicates the possible existence of
chaos [29,30]. Nevertheless, this is a necessary but not sufficient condition of chaoticity
since a divergent system can have positive MLE. Therefore, for a system to be chaotic,
in addition to having some positive Lyapunov exponent, it must have a bounded non-
divergent trajectory in the phase plane.

3.2. Bifurcation Diagram

A bifurcation diagram allows studying the changes in the qualitative or topological
structure of the trajectories of a dynamical system. It shows the visited values of a system as
a function of a certain parameter. It allows differentiating areas of the parameter in which
the system behaves like fixed points, periodic orbits, or chaotic attractors [31]. We can say
that bifurcation occurs in a dynamical system when a small smooth change of a parameter
causes a sudden ‘qualitative’ or topological change in the dynamical system’s behavior.

3.3. Probability Density Function (PDF)

The randomness quantifiers used here are functional of the PDF P associated with
the data sequence under analysis. The determination of a PDF can be done using several
different methods [32], and their applicability depends on particular characteristics of
the data, such as stationarity, time series length, parameter variation, and level of noise
contamination. The PDF and the sample space are inextricably linked so it is a nontrivial
problem to obtain the optimal PDF to extract the desired information. Here, we have
employed the Bandt and Pompe approach, and this PDF is able to satisfactorily show the
temporal correlations of higher orders [33,34]. The delay method has been used to extract
time causal information from the sequences. A delayed reconstruction in D dimensions is
formed by the vectors xn given as:

xn = (xn−(D−1)v, xn−(D−2)v, . . . , xn−v, xn) (8)

The lag or delay time v is the time difference in the number of samples (or in time units
τ = v∆t) between adjacent components of the delay vectors. A good estimate of the
lag time is very difficult to obtain. If τ is small compared to the internal time scales of
the system, successive elements of the delay vectors are strongly correlated, whereas if τ
is very large, successive elements are already almost independent. Among the existing
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proposals, we have adopted the first zero of the autocorrelation function of the signal as the
τ value [30]. This algorithm to extract the Bandt–Pompe PDF has been widely addressed
and described by previous works [35].

3.3.1. Normalized Shannon Entropy

The well-known normalized Shannon entropy denotes the amount of “disorder” a
system presents. It has been shown to be able to successfully characterize determinism and
stochasticity of generated sequences [32]. This information theory quantifier is a functional
of the probability density function and is defined by the normalized Shannon expression
(Equation (9)):

H[P] = −∑N
i=1 pi ln(pi)

ln(N)
; (9)

where N is the number of elements of the alphabet. We denote permutation entropy (HBP)
as the result of applying the normalized entropy to the PDF proposed by Band and Pompe,
which quantifies the causality of the symbolic series discarding amplitude information.

3.3.2. Statistical Complexity Measure

A statistical complexity measure, denoted by C, is a general indicator of structure or
correlation. This measure vanishes in the extreme ordered and disordered limits (“bound-
ary conditions”). During the last decade and a half, different measures of statistical
complexity have been proposed [36]. Here, we have adopted the functional form intro-
duced by López Ruiz et al. [37] with the modifications advanced by Lamberti et al. [38],
given by Equation (10), [39].

C[P] = Qj[P, Pe]H[P], (10)

where Pe is the uniform distribution, and Qj is the so-called “disequilibrium”, defined
in terms of the extensive Jensen–Shannon divergence, which in turn induces a squared
metric, [39] (Equation (11)).

Qj[P, Pe] = Q0

{
S
[
(P, Pe)

2

]
− S[P]

2
− S[Pe]

2

}
, (11)

where Q0 is the normalization constant, Equation (12), and is obtained when the system
is deterministic; that is, only one component of P is equal to one, and the remaining
components are equal to zero:

Q0 = −2
[
(N + 1)

N
ln(N + 1)− ln(2N) + ln(N)

]−1

. (12)

This quantifier detects internal structures from the symbol source when it is applied
to the Bandt and Pompe PDF; thus, we denoted permutation complexity CBP as the
resulting quantity.

The juxtaposition in a two-dimensional graph of the quantifiers HBP and CBP has
demonstrated to be particularly efficient to reveal properties of the underlying processes
from some measurable or observable quantity, called causal Eentropy × complexity
plane [40]. High values of CBP correspond to time series with immersed structures, which
occurs with chaotic series. On the other hand, the point CBP = 0 and HBP = 1 are that
of a sequence with no internal correlations. There are many relevant applications of the
HBP × CBP plane; for example, in [34], Rosso et al. use this plane to discriminate between
stochastic and chaotic series, in [41], the authors employ it as a tool for distinguishing
songs, and Zunino and Ribeiro utilize it to discriminate image textures [42], just to mention
a few.

3.4. Statistical Randomness Tests

For a sequence to be suitable to be used as PRNG, it is necessary to successfully pass
statistical tests. Here, we employed NIST Statistical Test Suite and Marsaglia Diehard tests.



Entropy 2021, 23, 671 7 of 17

3.4.1. NIST Statistical Test Suite

The NIST SP 800-22 test suite [43] consists of 15 statistical randomness tests that are
applied to binary data stream files. It requires the size of each sequence length to be of
the order 103 to 107. For each test, it yields p-values, and it also checks the proportion of
passing sequences and the uniform distribution of the p-values.

3.4.2. Marsaglia Diehard Tests

The 15 statistical tests that make up the Diehard battery should be applied indepen-
dently over files of several million 32-bit integers. Their output is a statistical p-value. To
evidence randomness, each test output should be uniformly distributed between 0 and 1.
The tests should be repeated multiple times with different integer sets to demonstrate the
robustness of outcomes.

4. Results

To show the proposed method, the well-known Rössler system is used here. This
continuous-time chaotic system is defined by the following set of coupled ordinary differ-
ential Equations [44]: 

ẋ = −y− z,
ẏ = x + ay,
ż = b + z(x− c).

(13)

Applying the digitalizing methods mentioned in Section 2, the following maps, which
include ∆t as a new parameter, are obtained:

• ROSRK4 map, Rössler system digitalized by the 4th order Runge Kutta method.
• ROSHUN map, Rössler system digitalized by the Heun method.
• ROSEUR map, Rössler system digitalized by the Euler method.
• ROSEUR_MOD map, Rössler system digitalized by our proposed Euler modified

method.

We have employed parameters a = 0.2, b = 0.2, and c = 5.7 that assure chaotic
behavior of the continuos-time Rössler system. In the case of the ROSEUR_MOD map, the
parameters p1 = p2 = p3 = 0.4 were used unless specified otherwise. Since our objective
is to utilize the systems as PRNGs, based on subsequent experiments, we have followed
three main steps:

1. First, we analyzed the chaotic behavior when the systems are digitalized in time;
focusing on the impact on the dynamic of each discretization method and its de-
pendence on ∆t (Section 4.1). Therefore, we calculate the MLE [29] and bifurcation
diagrams of the emerged maps. Note that at this point, we do not consider amplitude
discretization of the systems. Therefore, we employ a floating-point arithmetic (IEEE
754 double-precision standard) for the calculations.

2. The second step deals with the amplitude digitization effect (Section 4.2). Then, we
analyze the statistical properties, focusing on achieving the highest randomness.

3. Finally, we present the hardware implementation of the obtained PRNG that is based
on the proposed modification to the system digitalized in time by Euler’s method and
iterated using signed fixed-point architecture. We also show the resources needed to
implement it in an FPGA board (Section 4.3).

4.1. Time Digitization Analysis

In all cases, the quantifiers are averaged over 100 surrogates starting at different initial
conditions, a transitory of 8× 106 is first deleted, and the maps are then iterated 106 times.
The minimum ∆t is iterated 106 times, and for higher ∆t, the iterations are decreased so
as to cover the same attractor window time. In order to understand the maps’ behaviors,
Figure 1 shows the 3D phase space for some ∆t values of the ROSHUN map. There, it
can be seen how attractors change and evolve. It is clearly shown that even though the



Entropy 2021, 23, 671 8 of 17

continuous-time system attractor is blurred by the increase of ∆t, new attractors appear,
and these attractors may be even more chaotic than those of the continuous-time systems
(depicted by their MLE value). As expected, smaller values of ∆t reproduce an attractor
closer to that of the continuous-time system; however, in many cases, they converge to
short cycles or fixed points, losing their chaotic behavior.

(a) (b)

(c) (d)

(e) (f)

Figure 1. Attractors of the ROSHUN map for different values of ∆t and their MLE value (a–f).

4.1.1. Topological Analysis

We have used Sprott’s method to calculate the MLE of the maps using ∆t as a parame-
ter, [45]. Figure 2a shows how the MLE varies with ∆t in the case of the time-digitalizing
Rössler system using the three methods. Each resulting map presents a different behavior
regarding the existence of chaoticity with ∆t as a parameter. As it may be supposed, the
ROSRK4 map (red line) seems to preserve the chaotic behavior for larger values of ∆t, while
the ROSEUR and ROSHUN maps (yellow and blue lines, respectively) behave similarly. In
the case of the ROSHUN map, it presents an isolated range of ∆t between ∼0.17 and ∼0.19,
where the system behaves chaotically, and it also presents isolated low values of MLE for
some time steps indicating low or no chaoticity. The ROSEUR map is the first one that
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losses its chaotic behavior for higher time steps. It is interesting to note that even though
all three maps are derived from the same system for small values of ∆t, the MLE does not
show similar values. The reason may be the accumulated arithmetic errors that prevent
following the continuous-time attractors. In addition, it can be seen that there are some
cases where larger time steps present higher values of MLE.

In Figure 2b, it can be seen that the proposed modification increases the chaotic
behavior of the system. The ROSEUR_MOD map presents higher values of MLE than the
ROSEUR map. To show the generality of the proposed method, Figure 3 shows the 3D
phase of Rössler and Lorenz systems digitalized by Euler’s method (ROSEUR and LOREUR)
in black, and their modified maps (ROSEUR_MOD and LOREUR_MOD) in gray. It can be seen
how the proposed modification breaks the inner structures and temporal correlations of
the sequences and keeps the chaotic behavior. This enables the retainment of more bits for
the PRNG output and, in this way, increases the throughput.

(a) (b)

Figure 2. MLE with ∆t as a parameter for the Rössler system using different time-discretization
algorithms and the proposed method, with floating-point arithmetic. (a) MLE for ROSRK4, ROSHUN ,
and ROSEUR maps. (b) MLE for ROSEUR and ROSEUR_MOD maps.

(a) (b)

Figure 3. Phase spaces of two well-known continuous-time chaotic systems digitalized by the Euler
method and their modified versions. In black are the classical systems, and in gray are the modified
versions. It can be seen that, by using the proposed method, the original attractors have been
broken and the spaces are more uniformly filled. (a) Attractors of ROSEUR and ROSEUR_MOD maps.
(b) Attractors of LOREUR and LOREUR_MOD maps.

Regarding the bifurcation diagram, we have built the diagrams using Poincaré maps,
which is the intersection with a certain surface. Then, the bifurcation diagrams show all
the visited values by the systems [31]. Figure 4 shows the bifurcation diagram of the
ROSHUN map superimposed with the MLE (red line). It can be seen how the MLE is able
to effectively predict the chaoticity of the map. Within the chaotic region, some isolated
gaps that correspond to low chaoticity can be seen. These gaps match with low values of
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the MLE. It can be seen that from ∆t ∼ 0.105, it completely loses its chaoticity and it stays
on a periodic cycle until ∆t ∼ 0.167. The darker areas of the chaotic region imply that the
system, while being in the state of chaos, spends more time there than in the lightly shaded
regions. The most interesting places inside that region are the “white spaces”, which have
an important role in the transition to chaos. The “white regions” and their boundaries also
show the instability of the initial conditions, another important aspect of the chaos.

Figure 4. The ROSHUN bifurcation diagram with ∆t as a parameter, for the zt variable with the plane
xt = 0 and the MLE superimposed (red line). Note that the y-axis values correspond to the plane, not
the MLE.

4.1.2. Statistical Analysis

Up to this point, we have only analyzed the chaoticity of the maps; however, we do
not have information about the randomness that their outputs present. The applications in
which these maps are intended to be used require that their sequences, in addition to being
chaotic, have no internal structures and all their possible outputs appear in a balanced
way. To evaluate this, we calculate the randomness quantifiers described in Section 3. Each
quantifier has been averaged over 100 files. Every surrogate file starts with a different
initial condition, a transitory of 8× 106 iterations was first deleted, and the maps were then
iterated 106 times.

To extract causal informati on by calculating HBP from these observations, we employ
here x state variable, v = 1, and D = 6.

Figure 5 shows the plane HBP × CBP for the Rössler system time-digitalized with the
three mentioned methods using different values of ∆t. The continuous curves correspond
to the boundaries of values for the statistical complexity, as a function of the value of the
normalized Shannon entropy [38]. It can be seen that in the cases where the system is un-
modified (ROSRK4, ROSHUE, and ROSEUR maps), the quantifiers remain in the same area,
that is, strong correlations and poor balance of values. When the proposed modification is
applied, the quantifiers move towards the area of chaotic maps. The output of the system
slightly improves the balance of its values and also increases its inner correlations.
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Figure 5. Causal entropy × complexity plane, Rössler system using the three methods of time-
discretization for 0.0001 ≤ ∆t to the higher ∆t that could be reached before the maps diverge. Red
points are the ROSRK4 map, blue points are the ROSHUE map, and yellow points are the ROSEU map.
The ROSEUR and ROSEUR_MOD maps using S(41,38) are the green points and black stars, respectively.
Finally, our proposed PRNG (ROSEUR_MOD map S(41,38) considering the 38 least significant bits) are
the pink points, and these are the best sequences in terms of randomness (closest to the ideal point
HBP = 1, CBP = 0).

4.2. Amplitude Digitization Analysis

We iterate the maps using signed fixed-point architecture for analyzing the effect of am-
plitude digitalization [46]. As said, our goal is to develop a hardware-implemented PRNG,
which is why we have selected fixed-point architecture and Euler’s discretization method
because of the simplicity they mean in terms of hardware design (Equations (14) and (15)).

• ROSEUR map: 
xt+∆t = xt + ∆t(−yt − zt)
yt+∆t = yt + ∆t(xt + ayt)
zt+∆t = zt + ∆t[b + zt(xt − c)]

(14)

• ROSEUR_MOD map:
xt+∆t = xt + ∆t(−yt − zt) +

zt
2 (−1)xt mod 2

yt+∆t = yt + ∆t(xt + ayt) +
xt
2 (−1)yt mod 2

zt+∆t = zt + ∆t[b + zt(xt − c)] + yt
2 (−1)zt mod 2

(15)

We have employed words of wl bits, with fl bits to represent the fractional part in
two’s complement arithmetic; this architecture is represented by S(wl,fl). Equation (16)
outlines the data format used for each state variable.
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ut =

signed word (wl bits)︷ ︸︸ ︷
bwl−1bwl−2 . . . bwl−(wl− f l)︸ ︷︷ ︸

integer part

.x
f ractional point

b f l−1b f l−2 . . . b0︸ ︷︷ ︸
f ractional part ( f l bits)

(16)

4.2.1. Topological Analysis

Figure 6a,b show the 3D phase space of the ROSEUR and ROSEUR_MOD maps, iterated
using fixed-point architecture. There, we used ∆t = 0.001. Figure 6a shows the phase space
of ROSEUR_MOD map using S(41,38). It can be seen that the phase space does not present
significant changes compared to that of the attractor iterated with floating-point arithmetic
(Figure 3b). Therefore, the outputs of the proposed PRNG are the kLSB least significant
bits of each state variable ut (see Equation (17)). This is a commonly used procedure in
PRNGs [10,47].

ut = bwl−1bwl−2 . . . bKLSB−1bKLSB−2 . . . b0︸ ︷︷ ︸
PRNG (KLSB bits)

(17)

It is desired to find the minimum wl that keeps oscillating the attractor in a non-
periodic way, and the largest kLSB that produces the output sequences to pass the Marsaglia
and NIST tests. In Figure 6b, it can be seen how the obtained sequence does not present
any structure and all the space is equally filled.

(a) (b)
Figure 6. Phase space of the ROSEUR_MOD system iterated with S(41,38) arithmetic. (a) Considering
all wl bits. (b) Considering the kLSB = 38 bits.

4.2.2. Statistical Analysis

Returning to Figure 5 where the causal entropy × complexity plane was shown, the
red stars correspond to the ROSEUR_MOD map using a signed fixed-point architecture with
41 bits, of which 38 are used to represent the fractional part (S(41,38)). It can be seen that
the utilization of fixed-point arithmetic does not influence the statistical properties of the
proposed system. Finally, when the most significant bits are discarded (pink point), it
can be seen that the sequences reach the ideal point in terms of randomness, HBP = 1
and CBP = 0. Table 1 shows the results obtained when applying the Marsaglia battery of
statistical tests to the original system (ROSEUR map) and the modified one (ROSEUR_MOD
map). It can be seen that the ROSEUR map needs more bits to pass the tests. There, it is
demonstrated that the proposed method keeps the system oscillating and enables it to
discard fewer bits of each output. This is due to the fact that the time correlations and
internal structures are destroyed. To confirm our proposal’s usefulness, we keep kLSB bits
of the output of both the original and the modified maps, iterated using S(wl,fl) arithmetic,
and test them using Diehard tests.
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Table 1 shows that the sequences generated by ROSEUR_MOD pass Marsaglia tests
using fewer word bits (wl = 41) and allows to keep more bits per iteration for the PRNG
(higher kLSB) than ROSEUR map (wl = 56). Table 2 shows the results of testing the pro-
posed PRNG via the NIST SP 800-22 test suite. In agreement with the values used in
the literature [13,47–49], 1000 sequences of length 106 bits each have been tested. For a
significance level of 0.01 (α = 0.01) and 1000 samples, the minimum pass rate for each
statistical test is approximately 980, with the exception of the random excursion (variant)
test where it is approximately 597 for a sample size of 611 binary sequences. The proposed
PRNG passes all these tests.

Table 1. Results from the Marsaglia Diehard test for ROSEUR and ROSEUR_MOD maps for different
precision using S(wl,fl) architecture and considering the 38 least significant bits (kLSB = 38) and
∆t = 0.001.

wl fl ROSEUR ROSEUR_MOD

40 36 fail fail
40 38 fail fail
41 38 fail success
42 38 fail success
50 45 fail success
51 45 fail success
52 45 fail success
53 45 fail success
54 45 fail success
55 50 fail success
56 50 success success

Table 2. Results from the SP 800-22 test for the ROSEUR_MOD map using S(41,38) architecture and
dismissing the 3 most significant bits (kLSB = 38).

Statistical Test p_Value Proportion Result

Frequency 0.060875 980/1000 success
BlockFrequency 0.000163 984/1000 success
CumulativeSums 0.008753 981/1000 success
Runs 0.002993 987/1000 success
LongestRun 0.141256 988/1000 success
Rank 0.961869 986/1000 success
FFT 0.424453 990/1000 success
NonOverlappingTemplate 0.697257 989/1000 success
OverlappingTemplate 0.319084 984/1000 success
Universal 0.116065 990/1000 success
ApproximateEntropy 0.894918 991/1000 success
RandomExcursions 0.330947 603/611 success
RandomExcursionsVariant 0.401777 599/611 success
Serial 0.205531 986/1000 success
LinearComplexity 0.971006 988/1000 success

4.3. Hardware Implementation

Here we show that the proposed modification is extremely simple to implement and
assures the required randomness. Figure 7 shows a schematic of a hardware implemen-
tation of ROSEUR and ROSEUR_MOD maps. In the latter map, the parameters used were
p1 = p2 = p3 = 0.5.
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Figure 7a shows a schematic of the recursive function for x of a general map obtained
by the Euler method applied to a continuous-time chaotic system (recursive functions for y
and z are analog, and for simplicity are not shown). There, the fx block receives the three
state variables at time t and calculates the next output at time t + 1. In the case of the
Rössler system studied here, this term is fx = −yt − zt. Its output is multiplied by ∆t and
added to xt in order to generate xt+∆t. This value is then latched by a register at each clock
cycle. Figure 7b shows the proposed modified circuit. It can be seen that it consists of just
one extra term. This term makes the product of one state variable (in this case zt) by 0.5.
However, for its implementation, no multiplier is required since this term is a right-shifted
version of the state variable. Then the least significant bit of the integer part of xt is fed
back to select if the new term is added or subtracted. The whole term can be implemented
by a positive or negative right-shifted version of zt, as it can be seen in the light blue square
of Figure 7b. The figure shows that it requires very few resources.

(a) (b)
Figure 7. Block diagram of hardware implementation of the maps, in this case, fx = −yt − zt.
(a) ROSEUR map. (b) ROSEUR_MOD map.

A comparison of the implementation results of the proposed PRNG with three other
PRNGs can be seen in Table 3. ROSEUR refers to a PRNG based on the ROSEUR map, which
basically consists of implementing the map and then applying the discarding method.
The map requires a word length of 56 bits to enable the extraction of 38 bits (of each
variable) on each iteration. This word length is the minimum number of bits for ROSEUR
to pass the Marsaglia test (see Table 1). We can see that this PRNG requires more resources
and that the maximum frequency and throughput are lower than that of the proposed
PRNG, which is due to the need to use a larger word size to ensure the randomness of the
output. In the third column, the resources used by an implementation of the well-known
PRNG Mersenne Twister (MT19937) implemented in an FPGA are shown [50]. We can
see that the resource requirement is slightly higher than that of the proposed PRNG. The
maximum operating frequency is lower and the achieved throughput is lower as well.
The last column corresponds to a continuos-time, chaotic-based PRNG that employs a
linear feedback shift register to obtain the transition between Lorenz-like and Chen-like
behaviors. Then, authors keep the eight least significant bits and xor them (the discarding
method) [13]. Although this generator does not comply with being generic (it only works
for the Lü-like chaotic system because it is capable of exhibiting both Lorenz-like and
Chen-like chaotic system behaviors for different parameter values), we include it in order
to compare its performance.
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Table 3. Summary of resources for ROSEUR and ROSEUR_MOD maps using S(41,38) arithmetic.

Resources ROSEUR_MOD ROSEUR MT19937 [50] Chaotic-Based [13]

Platform Xilinx Zynq-7000 Xilinx Zynq-7000 Xilinx XCV2000E Altera EP3C16F484C6
LUT 508 604 539 1826
FF 123 200 660 1826
DSP 20 34 0 0
16-Kbit BRAM 0 0 2 0
fmax [MHz] 50 40 24.234 30.98
Throughput [bits/sec] 5.7× 109 4.5× 109 24.16× 106 247× 106

5. Conclusions

In this paper, we showed that the digitalization method and the time step have a
significant influence on digitalized systems’ dynamics and, therefore, on the sequences
generated by them. The chaotic behavior and statistical degree of the sequences were
analyzed using tools from nonlinear systems analysis and information theory quantifiers.
In that way and with the objective of using these systems as PRNGs, we proposed a
modification to the map generated by Euler’s method that destroys the time correlations
of the output and keeps the chaotic oscillation. We have also analyzed the randomness
behavior with the amplitude discretization using different precision and data widths. The
HBP × CBP plane shows that the three methods of digitalization analyzed produce outputs
in almost the same area, poor balance of amplitudes, and strong inner correlations. The
proposed method produces both floating and fixed-point architectures moving towards
the typical area of the chaotic maps.

Our goal was to demonstrate that our proposed modification to the digitalized Euler
system generates the most random output, which is located in the optimum point of
HBP×CBP plane (uncorrelated noise). The proposed modification achieves the lower value
of wl and higher value of kLSB when passing the Marsaglia Diehard and NIST tests. Our
method is general and can be applied to any continuous-time chaotic system.

Regarding portability and reproducibility, which are important PRNG properties, the
proposed schematic defines the architecture and precision of the variables and the internal
calculations since it is a hardware implementation. Then, identical results will be obtained
in any programmable device, and the repeatability of the results will be ensured.

Further study on the basin of attraction of the digitized system would be required to
define the set of available seeds for the PRNG.

Finally, we compared the resources needed to implement our and other existing
methods to obtain PRNGs. We showed that the proposed PRNG is superior in terms of
resources, maximum frequency of operation, and throughput.
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