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Abstract: We consider the prediction of future research collaborations as a link prediction problem
applied on a scientific knowledge graph. To the best of our knowledge, this is the first work on the
prediction of future research collaborations that combines structural and textual information of a sci-
entific knowledge graph through a purposeful integration of graph algorithms and natural language
processing techniques. Our work: (i) investigates whether the integration of unstructured textual
data into a single knowledge graph affects the performance of a link prediction model, (ii) studies the
effect of previously proposed graph kernels based approaches on the performance of an ML model, as
far as the link prediction problem is concerned, and (iii) proposes a three-phase pipeline that enables
the exploitation of structural and textual information, as well as of pre-trained word embeddings. We
benchmark the proposed approach against classical link prediction algorithms using accuracy, recall,
and precision as our performance metrics. Finally, we empirically test our approach through various
feature combinations with respect to the link prediction problem. Our experimentations with the new
COVID-19 Open Research Dataset demonstrate a significant improvement of the abovementioned
performance metrics in the prediction of future research collaborations.

Keywords: knowledge graph; link prediction; natural language processing; document representation;
future research collaborations; graph kernels; word embeddings

1. Introduction

The development of knowledge graph-based approaches for predicting future research
collaborations has received increasing attention in recent years [1,2]. In these approaches, a
scientific article that has been written by two researchers denotes implicitly a collaboration
between them [3]. In general, the majority of the existing knowledge graph based ap-
proaches builds on concepts and methods from graph theory to infer knowledge that is not
explicitly provided, exploiting the structural characteristics of the corresponding research
graph [4]. However, these approaches ignore the extremely useful (but unstructured)
textual data that are in most cases available in documents such as scientific articles and
reports [5]; as a consequence, they are not able to meaningfully incorporate both structural
and textual information into their knowledge graph.

Aiming to overcome the above issues, this paper proposes the development and
deployment of a novel scientific knowledge graph that enables the co-existence and joint
utilization of structured as well as unstructured data, such as author, document and word
nodes. Expanding on past work, the documents of a scientific graph are represented as
a graph of documents (graph-of-docs approach) [6–8], which facilitates the discovery of
future research collaborations by using prominent link prediction algorithms. In addition,
recent advances in graph mining enable our approach to calculate the similarity between
two graph-of-docs representations, using graph similarity techniques (e.g., graph kernels
and graph neural networks). For the implementation of our approach, we use the Neo4j
graph database (https://neo4j.com, accessed on 25 April 2021) as far as the implementation
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and storage of the proposed knowledge graph is concerned, the Python programming
language for coding purposes, and the TensorFlow and scikit-learn Machine Learning (ML)
libraries for the training of our prediction models.

To evaluate the approach described in this paper, we benchmark it against different
well-established combinations of graph-related measures. For the ML models proposed,
we include the accuracy, precision, and recall metrics as they are considered the most robust
and popular metrics for performance assessment. In the experiments included in this work,
the COVID-19 Open Research Dataset (CORD-19) is utilized. Having in mind that the size
of the dataset could affect our approach in a variety of ways (e.g., overfits or underfits), we
consider ten (10) different datasets, extracted from the original dataset. The experimental
results lead to a significant improvement of the link prediction accuracy, compared to the
ML models considered. The final version of code, datasets, and evaluation results of our
work are openly accessible on GitHub (https://github.com/nkanak/cordkel, accessed on
25 April 2021). The main contributions of this paper are the following:

• We investigate whether the integration of unstructured textual data into a single
knowledge graph affects the performance of a link prediction model.

• We study the effect of previously proposed graph kernels-based approaches on the
performance of an ML model, as far as the link prediction problem is concerned.

• We propose a three-phase pipeline that enables the exploitation of structural and
textual information, as well as of pre-trained word embeddings.

• We empirically test our approach through various feature combinations with respect
to the link prediction problem.

To the best of our knowledge, this is the first work on the prediction of future research
collaborations that combines structural and textual information of a scientific knowledge
graph through a purposeful integration of graph algorithms and natural language process-
ing (NLP) techniques. The remainder of this paper is organized as follows. Background
concepts and related work are introduced in Section 2. In Section 3, our approach is pre-
sented in a thorough and elaborated fashion, while the experiments carried out to evaluate
our approach are reported in Section 4. The novelty, future work directions as well as the
limitations of the proposed approach are discussed in Section 5.

2. Background and Related Work

Our approach in predicting future research collaborations makes use of a set of graph
theory, graph-based text representation, NLP, and knowledge graph techniques.

2.1. Graph Related Concepts

In graph theory, many different graph types have been proposed, which vary upon
the types of nodes and edges, the features they may share and their overall structure [9].
Bellow, we present graph concepts and notations that are used in the context of this paper.

Definition 1 (Graph). Let a graph G = (V, E) be defined as a tuple consisting of a set of vertices
(or nodes) V and a set of edges E ⊆ V ×V, which connects a pair of vertices. The size of the graph
is defined by the number of edges |V|, while the number of the vertices is defined as |E|.

Definition 2 (Directed Graph). A directed graph is a graph G = (V, E), where the edges are
directed by arrows. Directed graphs are also known as digraphs.

Definition 3 (Weighted Graph). A weighted graph is a graph G = (V, E), in which a function
w : E→ R assigns edges with some weights or numbers.

Definition 4 (Labeled Graph). A labeled graph is a graph G = (V, E), in which a function
` : V ∪ E→ Σ assigns labels to its vertices and edges from a discrete set of values Σ. Depending
on the application at hand, there may exist a necessity to label only the vertices, in which case the
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graph is called node-labeled graph. Accordingly, if only the edges are labeled, the graph is called
edge-labeled graph. Finally, a graph with both vertices and edges labelled is called fully-labeled.

Definition 5 (Attributed Graph). A graph G = (V, E) is an attributed graph if there exists a
function f : V ∪ E→ Rd that assigns real-valued vectors to its vertices and edges.

Definition 6 (Adjacency Matrix). Adjacency matrix offers a systematic mapping of the graph
structure. Let Aij be the element in the ith row and jth column of the matrix A. Then, the adjacency
matrix A can be defined as:

Aij =

{
1, i f

{
vi, vj

}
∈ E

0, otherwise
(1)

Definition 7 (Degree Matrix). Given a graph G = (V, E), the degree matrix is defined as the
diagonal matrix D = diag(dii) where:

dii = ∑
j

Aij (2)

is the number of neighbors for each node of the graph.

Definition 8 (Walk, Path). A walk in a graph G = (V, E) is a series of vertices v1, v2, . . . , vk+1
where vi ∈ V for all 1 ≤ i ≤ k + 1 and edges {vi, vi+1} ∈ E for all 1 ≤ i ≤ k. The number of the
edges in this sequence is called the length of the walk. If all the vertices in the walk are different from
each other, the walk is called a path.

Definition 9 (Shortest Path). A path from node vi to node vj is defined as the shortest path
between these two nodes, if there exist no other path between these two nodes with smaller length.

Definition 10 (Graph Isomorphism). A graph isomorphism between two labeled/attributed
graphs Gi = (Vi, Ei) and Gj =

(
Vj, Ej

)
is a bijection φ : Vi → Vj , that preserves adjacencies, i.e.,

∀v, u ∈ Vi : (v, u) ∈ Ei ⇔ (φ(v), φ(u)) ∈ Ej , and labels, i.e., if ψ ∈ Vi ×Vi → Vj ×Vj is the
mapping of vertex pairs implicated by the bijection φ such that ψ((v, u)) = (φ(v), φ(u)), then, the
conditions ∀v ∈ Vi : `(v) ≡ `(φ(v)) and ∀e ∈ Ej : `(e) ≡ `(ψ(e)) must hold, where ≡ denotes
that two labels are considered equivalent.

2.2. Graph Measures and Indices

A variety of graph measures and indices which extract knowledge based on the
structural characteristics of a graph have been proposed in the literature [10]. Below, a
small subset of them is presented, which are applied in the approach described in this paper.

The Common Neighbors measure for two nodes a and b, denoted by CN(a, b), calcu-
lates the number of common neighbor nodes (i.e., nodes that are connected with both a
and b) [11]. It is defined as:

CN(a, b) = |N(a) ∩ N(b)|

where N(x) denotes the set of neighbors for a node x.
The Total Neighbors measure for two nodes a and b, denoted by TN(a, b), takes

into consideration all neighbors of these two nodes (contrary to the Common Neighbors
measure which deals with only the neighbor nodes). It is defined as:

TN(a, b) = |N(a) ∪ N(b)|

The Preferential Attachment measure for a pair of nodes a and b, denoted by PA(a, b),
is defined as the product of the in-degree values of the two nodes [12]. The assumption
behind this measure is that the likelihood of two nodes being connected in the future is far
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greater for two highly connected nodes, in contrast to two loosely connected ones. This
measure is defined as:

PA(a, b) = |N(a)| × |N(b)|

The Adamic Adar measure for two nodes a and b, denoted by AA(a, b), calculates the
sum of the inverse logarithm of the degree of the neighbor nodes shared by the nodes a
and b [13]. This measure assumes that the likelihood of a neighbor node to be influential in
the future depends on how low its degree may be. It is defined as:

AA(a, b) = ∑c ε N(a)∩N(b)

(
1

log|c|

)
Last but not least, the Jaccard Coefficient index for two nodes a and b, denoted by

J(a, b), extends the CN measure mentioned above, differentiating slightly by considering
the amount of the intersection of their neighbor nodes over the union of them [14]. It is
defined as:

J(a, b) =
|N(a) ∩ N(b)|
|N(a) ∪ N(b)|

2.3. Graph Kernels

Kernels have gained much attention as a generalization technique in machine learning
applications, aiming to model and compute the similarity among objects. Specifically,
graph kernels have proven to be the dominant approach for learning on graph-structured
data [15]. Machine learning tasks with graph-based data are directly related to graph
comparison, which presents many complex difficulties, as the nature of graph-structured
data tends to be very different from the usual representations (vectors, matrices etc.). To
overcome these problems, graph kernels capture the semantics and the latent characteristics
that are inherent in the graph in a computationally efficient time, thus achieving state-of-
the-art results on several datasets.

Graph kernels compute the similarity between two graphs, based on the common
substructures they share. In the literature, a variety of substructures have been proposed,
including random walks [16,17], shortest paths [18] and subtrees [19]. Generally, we can
express a graph kernel as the inner product defined in some Hilbert space, e.g., given a
kernel k, we can define a mapping function ϕ : G → H into a Hilbert spaceH such that
k(G1, G2) = 〈ϕ(G1), ϕ(G2)〉 for all graphs G1, G2 ∈ G. Depending on the substructures in
hand, graph kernels achieve to compute the similarity among graphs with respect to these
substructures. Therefore, for each application under consideration, one must carefully
choose which kernels should be utilized.

Depending solely on substructures of graphs, however, can create the downside of
ignoring global structure and characteristics, which may be valuable. For graphs with
small size, such local approaches may be appropriate; however, for larger graphs, graph
kernels may fail to perform equivalently well. As a result, the problem of incorporating
global properties of graphs to graph kernels has gained some attraction and a recent work
attempts to tackle this issue [20]. We refer to [15] for an in-depth review of graph kernels.

2.3.1. Pyramid Match Graph Kernel

The pyramid match graph kernel makes use of mappings of nodes of a graph to a
low-dimensional vector space (embeddings) [20]. The most profound way of producing
node embeddings is by using the eigenvectors of the d largest in magnitude eigenvalues of
the adjacency matrix A of the graph. By creating a d-dimensional vector for each node, we
define a d-dimensional hyperplane (hypercube), where each node embedding is represented
as a point. Then, the kernel partitions the hypercube into regions of increasingly larger size
and for each region takes a weighted sum of the matches, i.e., sum all the co-occurrences of
points into the same region. As the regions expand, the matches are less and less weighted.

More specifically, the kernel repeatedly fits a grid with cells of increasing size to the
d-dimensional hypercube. Each cell is related only to a specific dimension and its size along
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that dimension is doubled at each iteration, whereas it remains constant for the rest of the
dimensions. Given a sequence of iterations (levels) from 0 to R, at level r the d-dimensional
kernel region has 2r cells along each dimension and D = 2r·d cells in total. Then, given
two graphs Gi, Gj, let Hr

Gi
, Hr

Gj
denote the histograms of Gi and Gj at iteration r, and

Hr
Gi
(k), Hr

Gj
(k) the number of nodes that lie in the kth cell for each graph. The number of

nodes (matches) found in the same region at iteration r is computed as follows:

I
(

Hr
Gi

, Hr
Gj

)
=

D

∑
k=1

min
(

Hr
Gi
(k), Hr

Gj
(k)
)

However, there is no need to compute the matches found in every iteration as a large
number of these matches should have been computed in a previous iteration. Instead,
we want to compute the number of new matches found at each level which is given by
I
(

Hr
Gi

, Hr
Gj

)
− I
(

Hr+1
Gi

, Hr+1
Gj

)
for r = 0, . . . , R − 1. Then, the pyramid match kernel is

defined as follows:

k
(
Gi, Gj

)
= I
(

HR
Gi

, HR
Gj

)
+

R−1

∑
r=0

1
2R−r

(
I
(

Hr
Gi

, Hr
Gj

)
− I
(

Hr+1
Gi

, Hr+1
Gj

))
where 1

2R−r is the decreasing weight appointed to each level.

2.3.2. Propagation Kernel

The basic idea behind the propagation kernels is the propagation of label information
between nodes of the graph, based on the overall graph structure. The general frame-
work was introduced in [21], where the graph is considered to have attributes on nodes
(attributed graph). Propagation kernel defines a probability distribution P of size |V| × d,
where d is the size of attributes in the feature space. This probability distribution is then
updated for a given number of iterations tMAX by concatenating the neighbors’ attributes,
on the basis of the following substitution rule:

Pt+1 → D−1·A·Pt

where D is the degree matrix and A is the adjacency matrix for a graph. Then, the proba-
bility matrix P is utilized to bin nodes, through a hash function producing a hash vector
ϕ
(
Gt). Finally, we compute the kernel K

(
Gt

i , Gt
j

)
at iteration t between two graphs Gi, Gj

as follows:
K
(

Gt
i , Gt

j

)
= ∑

vi∈Vi

∑
vj∈Vj

k
(
vi, vj

)
= 〈ϕ

(
Gt

i
)
, ϕ(Gt

j )〉

This procedure is repeated for tMAX iterations, until the kernel converges to a lo-
cal minimum.

2.4. Graph-Based Text Representations

In the graph-of-words textual representation [22] each document of a corpus is rep-
resented as a single graph. Specifically, every unique word of a document is depicted
as a graph node and the co-occurrence between two words (i.e., if two words appear
simultaneously within a sliding window of text) is denoted with an edge connecting the
corresponding nodes. As far as the size of the sliding window is concerned, it is suggested
in Rousseau et al. [23] that a window of four words seems to be the most appropriate value,
as the impact on the performance and the accuracy of the ML models is negligible. Taking
into consideration the co-occurrence between terms results in feature engineering being
more sophisticated in the graph-of-words representation, compared to the bag-of-words
one. Nevertheless, the limitations of the graph-of-words text representation are that: (i) the
importance of a word for a whole set of documents cannot be assessed; (ii) it is not possible
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for multiple documents to be represented in a single graph, and (iii) the expendability of
the representation in order to support more complex data architectures is not intuitive.

To address the drawbacks of the graph-of-words representation, the authors in [7]
have proposed the graph-of-docs representation, where multiple textual documents are
depicted in a single graph. In this way: (i) the investigation of the importance of a term into
a whole corpus of documents is easily calculated, and (ii) the co-existence of heterogeneous
nodes in the same graph renders the representation easily expandable and adaptable to
more complicated data. In this paper, the graph-of-docs model is utilized to represent the
textual data of a knowledge graph.

2.5. Word Embeddings

In general, word embeddings map a corpus of words into a vector space where
similar words have similar vector representations. A list of techniques for learning word
embeddings has been proposed in the literature [24], the most popular ones including
Word2Vec [25], GloVe [26] and fastText [27]. Word embeddings are broadly used in many
NLP tasks ranging from text classification and sentiment analysis to more sophisticated
ones such as spam detection and question-answering. They improve the accuracy of an ML
model, prevent overfitting and assist in terms of generalization [28,29]. In majority, word
embeddings are trained on large datasets, which are usually language or domain specific.
Hence, they enable the learning techniques to capture statistical correlations between the
words and, subsequently, produce word embeddings for a specific NLP task (e.g., finding
cars similar to a Jaguar or finding animals similar to a jaguar). A common practice is to
start with pre-trained word embeddings and adjust them to a specific domain or NLP
task. Popular pre-trained word embeddings include GoogleNews using Word2Vec and
Common Crawl using GloVe. We refer to [30] for an in-depth review of the available pre-
trained word embeddings. It is also noted that the majority of the techniques for learning
word embeddings has been expanded to serve the learning of sentence, paragraph and
document embeddings [31,32]. For instance, Doc2Vec [33] relies on Word2Vec to represent
each document of a corpus as a vector.

2.6. Predicting Future Research Collaborations

As far as link prediction techniques for the discovery of future research collaborations
are concerned, works closest to ours are proposed in [34–38]. In particular, in [34], the
authors rely only on a co-authors network’s topology aspects, and the proximity of a pair
of nodes in order to predict future research collaborations between them. In [35], the
authors recommend an approach, where structural properties are used to calculate the
probability of future research collaborations in heterogeneous bibliographic networks, with
varying types of nodes (e.g., papers, authors, venues, topics) and edges (e.g., publish, write,
mention, cite, contain). They leverage the multiple relationships among the papers to
improve the overall accuracy of their link prediction algorithm.

In [36], the authors predict potential research collaborations by combining link predic-
tion techniques with a random forest classifier. For each pair of nodes of a co-authorship
network, a wide range of topology-based measures such as Adamic Adar and Common
Neighbors, are calculated and, then, combined with location-based characteristics related
to the authors. Hence, the position of the authors in the co-authorship network and their
location are used to generate future collaboration proposals. In [37], the authors construct
a co-authorship network that represents research collaborations from 1980 to 2005 in the
field of computer science. In this case, a variety of graph theory algorithms and classical
statistical techniques are employed in order to extract the co-authorship network properties.
The dataset used is composed of 451,305 papers from 283,174 authors.

In [38], the authors use medical co-authorship networks along with link prediction
algorithms to predict future research collaborations. For a given author, potential collab-
orators are identified, as long as they complement her skillset. For each pair of author
nodes common topological and structural measures are extracted, such as Adamic Adar,
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Common Neighbors and Preferential Attachment, and multiple ML models are utilized for
the prediction of possible future collaborations.

Adopting a broader link prediction perspective, additional works (e.g., [39–41]) describe
the task of predicting possible relationship types between nodes of a particular network from
various and interesting scopes (such as social networks and friendship suggestions).

3. The Proposed Approach

We first compose a scientific knowledge graph containing both structured and un-
structured textual data (Section 3.1). The unstructured textual data are integrated into the
knowledge graph via graph-of-docs text representation (see Section 2.4). Then, a series
of graph measures (see Section 2.2) and graph kernels (see Section 2.3) are employed
for feature extraction associated to both textual and structural information concerning
the entities of the knowledge graph (Section 3.2). Finally, we map the whole problem of
predicting future research collaborations to a link prediction task, by utilizing the features
produced in the previous step for the deployment of an ML model (Section 3.2). To sum up,
our approach is divided in three phases, namely Knowledge Graph Construction, Feature
Extraction and Link Prediction. Figure 1 illustrates the phases of the proposed approach.
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ax denotes nodes of the ‘Author’ type. locx denotes nodes of the ‘Location’ type. ix denotes nodes of the ‘Institution’ type.
labx denotes nodes of the ‘Laboratory’ type. The word embedding of a word (wx) is denoted by ex. SFx and TFx denote
structure-related and text-related features, respectively. labelx denotes the label (0 or 1) that corresponds to the sample x of
the given dataset. ˆF1F2 denotes the concatenation of the structure-related and text-related features, aiming to generate the
feature vector of the sample x of the given dataset.
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3.1. Knowledge Graph Construction

The nature of knowledge graphs enables the co-existence of multiple types of entities
and relationships in the same data schema. Specifically, our scientific knowledge graph
includes entity nodes with types such as ‘Paper’, ‘Author’, ‘Laboratory’, ‘Location’, ‘Institution’
and ‘Word’, as well as types of relationship edges such as ‘is_similar’, ‘cites’, ‘writes’, ‘includes’,
‘connects’, ‘co_authors’ and ‘affiliates_with’ (see Figure 2).
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Figure 2. The data schema of the proposed scientific knowledge graph. Dotted lines connect
properties associated with the entities of the knowledge graph.

As far as entity nodes are concerned, nodes that are labeled as ‘Paper’ express scientific
documents; the ‘Author’ entity represents an author of a scientific paper or document
the laboratory of an author and its location are represented as a ‘Laboratory’ and ‘Lo-
cation’ entity, respectively; each ‘Institution’ entity corresponds to the institution of an
author; finally, for the representation of a unique word of a scientific paper a ‘Word’ entity
is utilized.

With respect to relationship edges, the existence of a specific word to a certain paper
is depicted with the ‘includes’ relationship, which connects a ‘Paper’ with a ‘Word’ entity.
Similarly, the co-occurrence of a pair of words within a predefined sliding text window
is modeled through a ‘connects’ relationship, which is only applicable between two ‘Word’
entities. The graph-of-docs representation of the textual data of the available papers can
be defined as the subgraph constructed by the ‘Word’ and ‘Paper’ entities, as well as the
‘includes’, ‘connects’ and ‘is_similar’ relationships

Furthermore, the ‘is_similar’ relationship links pairs of ‘Paper’ or ‘Author’ nodes. In the
former case, it denotes the similarity between two papers represented as graph-of-docs. In
the latter, it denotes the similarity between the documents associated to the two authors. We
can produce an author similarity subgraph by considering the subgraph that is composed
of the ‘Author’ entities and the ‘is_similar’ relationships.

Finally, the citation of a paper from another one is depicted as a ‘cites’ relationship
between two ‘Paper’ nodes; the writer of a scientific document is represented with a ‘writes’
relationship between an ‘Author’ with a ‘Paper’ entity; accordingly, the relationship of an au-
thor with an institution and its location and laboratories are depicted with an ‘affiliates_with’
relationship connecting an ‘Author’ entity with an ‘Institution’, ‘Location’ or ‘Laboratory’
entity, respectively; The ‘co_authors’ relationship denotes a research collaboration between
the connected ‘Author’ entities. Similarly to the the graph-of-docs and authors similarity
subgraphs, we can construct a co-authors’ subgraph, by isolating the available ‘Author’
entities and the ‘co_authors’ relationships from the original scientific knowledge graph.
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The produced knowledge graph enables the user to gain insights about a variety
of tasks through the employment of well-studied graph algorithms. Such tasks would
be recommending similar research work, finding nearby experts based on the ‘Location’
entities, and discovering future research collaborations; this paper focuses on the last of
these tasks.

3.2. Feature Extraction

The proposed knowledge graph enables the extraction of informative features for each
entity. Each feature of an entity encapsulates either structural or textual information related
to the whole knowledge graph; in this paper, we concentrate on the extraction of features
that describe the relationship between two ‘Author’ nodes. To extract structure-related
features, we can use graph measures or indices such as common neighbors, preferential
attachment and Adamic Adar (see Section 2.2). To extract text-related features, we can
use graph similarity techniques including graph neural networks and graph kernels (see
Section 2.3); for the experiments reported in this paper, we employ graph kernels. It
is also noted here that text-related features can be further enriched, either by attaching
labels or word embeddings to the ‘Word’ nodes of each paper of the knowledge graph
(see Section 2.5). Finally, for the generation of the feature vector of each sample of a given
dataset, we concatenate the structure-related and text-related feature vectors (Figure 1).

3.3. Link Prediction

For the discovery of future research collaborations, a wide range of link prediction and
ML techniques are employed. Specifically, in our approach, the issue of suggesting future
research collaborations is reduced to the common binary classification problem. Such an
approach enables us to construct a link prediction algorithm by predicting the presence (or
absence) of a ‘co_authors’ relationship for a pair of ‘Author’ entities. Various binary classi-
fiers, including logistic regression, k-nearest neighbors, linear support vector machines,
decision tree, and neural networks have been considered in the related literature [42]. In
the experiments reported in this paper, we have used the logistic regression and neural
network ones.

4. Experimental Evaluation

To implement and evaluate our approach, we utilized the Python programming
language, the TensorFlow [43] and scikit-learn [44] ML libraries, as well as the GraKeL [45]
library for graph kernels. In addition, we used the word embeddings from the CORD-19
Swivel text embedding module of the TensorFlow Hub (available online: https://tfhub.
dev/tensorflow/cord-19/swivel-128d/3, accessed on 25 April 2021). Furthermore, we
utilized the Neo4j database (https://neo4j.com, accessed on 25 April 2021), aiming to
store the instance of the graph-of-docs representation and the knowledge graph. All
the material related to our experiments and the evaluation can be also found at https:
//github.com/nkanak/cordkel (accessed on 25 April 2021).

4.1. Evaluation Metrics

To evaluate our approach, we use three widely used metrics, namely accuracy, precision
and recall. These metrics rely on the number of true positives (|TP|), true negatives (|TN|),
false positives (|FP|), and false negatives (|FN|) predictions of each classification model.
In particular, accuracy is the percentage of correct predictions. Recall estimates the ability of
the classifier to find all the positive samples. Precision estimates the ability of the classifier
not to label as positive a negative sample. The accuracy metric is defined as:

accuracy =
|TP|+ |TN|

|TP|+ |TN|+ |FP|+ |FN|

https://tfhub.dev/tensorflow/cord-19/swivel-128d/3
https://tfhub.dev/tensorflow/cord-19/swivel-128d/3
https://neo4j.com
https://github.com/nkanak/cordkel
https://github.com/nkanak/cordkel
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The precision metric is defined as:

precision =
|TP|

|TP|+ |FP|

The recall metric is defined as:

recall =
|TP|

|TP|+ |FN|

To further evaluate our approach, we also take into account the values of the average
cross-entropy metric, which we utilize as a loss function, whenever it is possible. As opposed
to the accuracy, precision and recall metrics, cross-entropy is not affected by the order of
the training data. In particular, binary cross-entropy measures the dissimilarity between
the distribution of the real value y and the predicted value ŷ of a model. The binary
cross-entropy is defined as follows:

H(y, ŷ) = −y· log(ŷ)− (1− y)· log(1− ŷ)

Accordingly, we can define the average cross-entropy among N samples as:

J =
1
N

N

∑
n=1

H(yn, ŷn) = −
1
N

N

∑
n=1

yn· log(ŷn) + (1− yn)· log(1− ŷn)

Finally, we use the micro sign test to investigate whether there is any statistical
significance in improvement (p < 0.05) of each metric between the baselines and the
proposed models.

4.2. The CORD-19 Dataset

The COVID-19 Open Research Dataset (CORD-19) [46] includes 63,000 scientific
articles, related to COVID-19 and other coronaviruses. It is available from the Allen
Institute for AI and Semantic Scholar. The scientific papers in CORD-19 have been re-
trieved from several famous medical-related repositories, such as PubMed Central (PMC),
bioRxiv, Elsevier, World Health Organization (WHO) and medRxiv. Each scientific paper in
CORD-19 is associated with an array of attributes, including ‘publish time’, ‘citations’, ‘title’,
‘abstract’ and ‘authors’. Most of the scientific papers (i.e., 51,000) also has a ‘full text’ attribute.
It is apparent that this dataset benefits the research community as far as the COVID-19
related research is concerned. However, due to the unstructured nature of the textual data
included in the dataset, many shortcomings exist in terms of gaining useful insights. As
already mentioned in the literature, by combining a graph-based text representation and
a knowledge graph, we are able to generate a semi-structured representation of the data,
which alleviates the existing drawbacks [4,5,47]. To construct the scientific knowledge
graph, we use the ‘publish time’, ‘abstract’ and ‘authors’ attributes of the scientific papers.
Due to hardware limitations, we do not utilize the full text of each scientific paper. Figure 3
illustrates different snapshots of the knowledge graph that corresponds to the CORD-19
dataset. The different node and edge colors highlight the heterogeneity of the produced
graph. For illustration purposes, we limit the depicted nodes to 1000, 2000, 3000 and,
respectively. As Figure 3 shows, the number of relations between the nodes increases
radically in proportion to the number of nodes.

Generation of Datasets for Predicting Future Research Collaborations

We generate ten (10) new balanced datasets using the CORD-19, aiming to investigate
whether our approach performs well, irrespective of the properties of a dataset. To create a
sample of each dataset, we use the ‘authors’ similarity subgraph an the ‘co_authors’ subgraph,
which is composed of the ‘co_authors’ edges. We note that edges also have as a property the
first collaboration year of two authors.
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Table 1 reports the number of samples of the training and testing subset for each one
of the produced datasets. The samples of each dataset have been randomly chosen. Table 2
describes the features of each sample of the dataset. We conduct a list of experiments using
different combinations of features, aiming to investigate whether the performance of a ML
model is affected by the features under consideration (Table 3). We note that each training
sample is selected from an earlier instance of the ‘co_authors’ subgraph, which is generated
from the ‘co_authors’ edges that first appeared within or before the year 2013. Accordingly,
the testing subset incorporates ‘co_authors’ edges generated after 2013. We separate the
dataset by using the time to ensure that any data leakage is avoided among the testing and
the training subset [34].
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Figure 3. Snapshots of the knowledge graph that is generated from the CORD-19 dataset: limited
to 1000 (upper-left), 2000 (upper-right), 3000 (bottom-left) and 30,000 (bottom-right) nodes. The
different node and edge colors highlight the heterogeneity of the produced graph.

Table 1. Number of training samples (|Training subset samples|) and number of testing subset
samples (|Testing subset samples|) of each dataset.

Dataset ID |Training Subset Samples| |Testing Subset Samples|

D1 1000 330
D2 1000 330
D3 1000 330
D4 1000 330
D5 1000 330
D6 1000 330
D7 6000 1890
D8 9900
D9 1000 330
D10 1000 330
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Table 2. The features of each sample of the extracted datasets. A feature is associated with either a textual or a structural
relationship of two authors.

Feature Description Type

adamic adar The sum of the inverse logarithm of the degree of the set of common
neighbor ‘Author’ nodes shared by a pair of nodes. Structural (SF)

common neighbors The number of neighbor ‘Author’ nodes that are common for a pair of
‘Author’ nodes. Structural (SF)

preferential attachment The product of the in-degree values of a pair of ‘Author’ nodes. Structural (SF)

total neighbors The product of the in-degree values of a pair of ‘Author’ nodes. Structural (SF)

pyramid match

The similarity of the text of the graph-of-docs graphs of two nodes of
‘Author’ type using the Pyramid match graph kernel. The Propagation
graph kernel incorporates the terms, the corresponding label of each
term and the structure of the text into its formula, aiming to calculate

the similarity between two texts.

Textual (TF)

propagation

The similarity of the text of the graph-of-docs graphs of two nodes of
‘Author’ type using the Propagation graph kernel. The Propagation

graph kernel incorporates the terms, the corresponding word
embedding of each term and the structure of the text into its formula,

aiming to calculate the similarity between two texts.

Textual (TF)

weisfeiler pyramid match

The similarity of the text of the graph-of-docs graphs of two nodes of
‘Author’ type using the Weisfeiler Lehman framework and the

Pyramid match graph kernel. The Weisfeiler Pyramid match graph
kernel incorporates the terms, the corresponding label of each term
and the structure of the text into its formula, aiming to calculate the

similarity between two texts.

Textual (TF)

jaccard
The similarity of the text of the graph-of-docs graphs of two nodes of
‘Author’ type using the Jaccard coefficient. The Jaccard index deals

only with the absence or the presence of a term into a text.

Structural and Textual
(SF and TF)

Label
It denotes an edge of the ‘co_authors’ type between two nodes of the
‘Author’ type. A positive value (1) represents the existence, while a

negative value (0) represents the absence of the edge.
Class

Table 3. The various features combinations in order to test how the different combinations affect the
performance of the ML models in link prediction.

Feature Combination Name Features Included Proposed In

ALL

Adamic Adar, Common Neighbors,
Preferential attachment, Total Neighbors,

Pyramid match, Weisfeiler Pyramid match,
Jaccard, Propagation

[8]

PM Pyramid Match [20]
WPM Weisfeiler Pyramid match [20]

AA_J (baseline) Adamic Adar, Jaccard [8]
AA (baseline) Adamic Adar [13]

p Propagation [21]
J (baseline) Jaccard [14,38]
AA_WPM Adamic Adar, Weisfeiler Pyramid match

AA_P Adamic Adar, Propagation
AA_PM Adamic Adar, Pyramid match

4.3. Baseline Feature Combinations

We benchmark the feature combinations extracted by our approach against three
baseline combinations, namely AA_J, AA and J (see Table 3 for a detailed explanation):
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• AA_J [8]: It combines the structural information of the knowledge graph using the
Adamic Adar measure as well as the textual similarity of the papers of two authors
using the Jaccard index.

• AA [13]: It utilizes the structural information of the knowledge graph using the
Adamic Adar measure.

• J [14,38]: It utilizes the textual similarity of the papers of two authors using the
Jaccard index.

4.4. Evaluation Results

The evaluation of our approach is achieved by assessing the sensitivity of the ML
models towards the various feature combinations, regarding the binary classification
problem. The binary classifiers used in our experiments are logistic regression (LR) and
neural network (NN); for the training of the NN model, we use five epochs, the Adam
optimizer, two hidden layers with 50 and 25 units, respectively, while we utilize the
average binary cross-entropy as a loss function. Further experimentations with a plethora
of classifiers and various hyperparameter configurations is available online: https://github.
com/nkanak/cordkel (accessed on 25 April 2021). As already mentioned in Section 4.1,
our performance metrics include the accuracy, precision and recall of the binary classifiers.
In addition, we test for statistical significance against the AA_J feature combination, since
it has the best performance across all the baseline combinations. The experimental results
are summarized in Tables 4 and 5.

Table 4. Performance of the logistic regression classifier for each feature combination. * indicates
statistical significance in improvement (p < 0.05) for each evaluation metric using the micro sign test
against the AA_J baseline.

Feature Combination Accuracy Recall Precision

ALL 0.6588 0.9963 * 0.6345
J 0.5093 0.0233 1.0

AA 0.9818 0.9643 0.9995
AA_J 0.9834 0.9671 0.9998

p 0.6669 0.5589 0.8157
PM 0.838 0.6965 0.9752

WPM 0.9476 0.9044 0.9905
AA_P 0.9652 0.9923 * 0.9625

AA_PM 0.998 * 0.9966 * 0.9995
AA_WPM 0.9986 * 0.9977 * 0.9995

Table 5. Performance of the neural network classifier for each feature combination. * indicates
statistical significance in improvement (p < 0.05) for each evaluation metric using the micro sign test
against the AA_J baseline. Average binary cross-entropy between real and predicted label value is
considered as the train and test loss.

Feature
Combination Accuracy Recall Precision Train Loss Test Loss Abs Loss

Difference

ALL 0.9908 0.9931 * 0.9886 0.102 0.0499 0.0521
J 0.5093 0.0233 1.0 0.6647 0.6858 0.0211

AA 0.9922 0.985 0.9995 0.1303 0.0497 0.0806
AA_J 0.9925 0.9856 0.9995 0.1097 0.0413 0.0684

p 0.6954 0.5045 0.8624 0.6289 0.6057 0.0232
PM 0.8452 0.7085 0.9816 0.3219 0.399 0.0771

WPM 0.9248 0.859 0.9905 0.2612 0.239 0.0222
AA_P 0.9923 0.9851 0.9995 0.1311 0.0464 0.0847

AA_PM 0.994 * 0.9886 * 0.9995 0.1281 0.0395 0.0886
AA_WPM 0.9932 0.987 0.9995 0.1108 0.0372 0.0736

https://github.com/nkanak/cordkel
https://github.com/nkanak/cordkel
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The obtained results indicate that in many cases (e.g., AA_PM or AA_WPM) the
inclusion of a text-related feature increases the average accuracy, precision and recall scores,
while still remaining unaffected by the nature of the binary classifier. Additionally, it is
worth mentioning that our feature combinations correctly predict the majority of the future
collaborations, by observing the average precision score compared to the average recall
score. The best average accuracy and recall scores are achieved by the LR classifier, using
the AA_WPM feature combination. Thus, by combining these two features we get the
optimal outcome. The best average precision score is achieved by both classifiers, using the
J feature combination. However, by using the J feature combination, both classifiers have a
low recall score, which means that they always classify all the samples of a test dataset as
candidate future collaborations, something that is totally wrong.

In addition, it is revealed that features including ‘total_neighbors’, ‘preferential_attachment’
and ‘common_neighbors’ (appearing in the ALL feature combination) add noise to the LR
classifier, but not to the NN classifier; this is due to the fact that NNs are able to capture
more complex and non-linear connections between the given features and the predicted
values than LR models. Specifically, we note that LR models are built on the assumption
that the independent variables are linearly related to the log of probabilities of features.
However, in most real-world applications, this relationship tends to be non-linear, thus
making LR models behave poorly. Moreover, logistic regression requires average or no
collinearity between features, which may not always be the case (e.g., ‘common_neighbors’
and ‘jaccard’ features may be highly correlated). On the other hand, LR models offer
greater interpretability, as we can estimate the importance of the features by examining the
corresponding model coefficients. Such a feature importance estimation can lead to fine-
tuned systems, by iteratively disregarding less important features until a local optimum
is reached.

It is also observed that metrics or kernels for calculating textual similarities, which
incorporate into their formula the terms with their corresponding attributes as well as the
structure of the text (e.g., WPM), perform better compared to metrics that deal only with
the absence or the presence of a term (e.g., J). By considering the abovementioned remarks,
we conclude that using both textual and structural characteristics of a scientific knowledge
graph leads to more accurate ML models and less prone to overfitting. Moreover, the NNs
are optimized towards minimizing average binary cross-entropy, which can lead to more
dynamic and robust models as cross-entropy measures information content and is not as
much sensitive to the order of the training data as accuracy-based metrics (see Figure 4).
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5. Concluding Remarks

In this paper, we apply link prediction techniques on scientific knowledge graphs for
recommending future research collaborations. Our three-phase approach incorporates both
structured and unstructured textual data in every knowledge graph. To do so, we leverage
the graph-of-docs text representation. For our experiments, we construct ten datasets using
the CORD-19 dataset. We benchmark our approach against several feature combinations.
Our approach demonstrates a significant improvement of the average accuracy, precision
and recall of the task of predicting future collaborations, while, also, minimizing the
average cross-entropy, as far as the NN models are concerned.

The proposed approach diverges from the state-of-the-art ones since it takes into
consideration both the textual similarity of the papers of each set of authors as well as
the associated structural information. The approaches that deal solely with unstructured
textual data rely on NLP methods and text representations, which require the construction
of huge feature spaces. As a result, the ‘curse-of-dimensionality’ phenomenon re-emerges.

Key enablers that drive the development of the proposed approach are the availability
of large computing power, the existence of big volumes of unstructured textual and social
network data (e.g., data from a research graph), as well as the availability of a range of
well-tried and powerful ML software libraries for analyzing complex graph-structured
data [48,49]. Building on a meaningful and flexible combination of textual and structural
information related to an author and his papers, our approach enables ML models to better
identify future research collaborations. Simply put, our approach improves significantly
the quality of the prediction, while enabling ML models to interpret more complex data
patterns. However, diverse problems and limitations still exist; these refer to: (i) the time
to construct the knowledge graph, (ii) the ability of the graph-based models to add new
nodes (e.g., author or paper nodes) to an existing scientific knowledge graph, and (iii) the
performance of the models on graphs with rich node attribute information (e.g., nodes
having high-dimensional embeddings).

Future work directions include: (i) the experimentation with graph mining architec-
tures such as graph neural networks and inductive representation learning methods (e.g.,
GraphSAGE [50]); (ii) the embedment of explainability features in the predictions provided
by the proposed approach [51–53]; (iii) the exploitation of the rest of the information avail-
able in the scientific knowledge graph (e.g., the location, the whole text and the institution
of the authors) [54–56].
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