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Abstract: Changing the construction of mart Meter (SM) devices, more specifically equipping them
with more than one communication module, facilitates the elimination of a Transformer Station Data
Concentrator (TSC) module, moving its function to one of the SMs. The opportunity to equip a chosen
device in an additional communication module makes it possible to use it as an acquisition node. The
introduction of this solution creates a problem with the optimum selection of the above-mentioned
node out of all the nodes of the analyzed network. This paper suggests the criterion of its location
and, as per the criterion, the way of conduct using the elements of the graph theory. The discussion
is illustrated with the examples of the possibility to use the method for the optimization of the
architecture of the network. The described method makes it possible to choose the location of a
backup acquisition node as well as locate intermediary nodes (signal repeaters) in case of a failure
(removal) of some SM devices. In the era of the common introduction of dispersed telemetric systems
requiring an adequate level of performance and reliability of information transmission, the offered
method can be used for the optimization of the structures of Smart Grids.

Keywords: graph theory; smart meter; smart metering; wireless sensor network

1. Introduction

Currently, a rapid growth of technologies based on computers with increasingly good
parameters, a progressing miniaturization of electronic systems and the development of
professional software and methods of information transfer are being observed. Wireless
transmission technologies are becoming more and more important thanks to their low cost
and quick deployment. Amongst them are wireless sensor networks (WSNs) [1]. They
feature low transmitting power, very low energy consumption, are operated with the most
recent monolithic transceivers, and their nodes cooperate directly with sensors of various
measurable parameters.

The networks are widely used, for example, in municipal buildings as early warning
systems for terrorist attacks or environmental contamination [2], for monitoring the envi-
ronment (temperature, humidity, pollution level) [3], for industrial surveillance (providing
information about the overall condition of machines used in the production process, e.g.,
vibration, fluid level, temperature of components, etc., received from sensors placed in
hard-to-reach or inaccessible places) [4], for the control of traffic [5], and in medicine (allow-
ing higher effectiveness of diagnosing and monitoring patients’ health without the need to
connect them to medical devices with limited mobility, e.g.,wireless body sensor networks
(WBSNs)) [6,7]. WSNs areused for the creation of smart cities, professionally known as
Cyberville, Digital City, or Electronic Communities. Their most important features are
digital and computerized management of energy production and distribution;, automatic
smart security systems; lighting and heating control; management of car parks; fast data
transmission using the latest wireless technologies in the 5G network; municipal serviceless
meters and usage sensors with digital water, electricity, and gas distribution management
systems; smart medical care systems remote life quality management and improvement
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such as systems of e-participation in various forms of cultural, sporting, leisure, and social
activity; and surveillance systems, biometric systems, and safety systems for terrorist and
criminal threats, etc. [8–10].

An example of the utilization of the WSN technology is the wireless scattered telemetry
network intended for the last-mile service of the Smart Metering system. The term Smart
Metering refers to smart power grids which provide the communication between producers
and recipients of energy as well as with power repositories. The basic component of
these networks is an expanded metering systemthat gives access to information about the
power consumption. It consists of ICT systems transferring the measurements to decision
points, as well as smart information, forecasting, and decision algorithms. The Smart
Metering system makes it possible to transfer and process information important for a
power grid, such as the power consumption by receivers and the production of energy
from conventional and renewable sources. It ensures a high flexibility level of the power
grid which in turn allows it to control the demand and supply of power quickly and
optimally [11].

A data concentrator collecting the information from Smart Meter (SM) devices is one
of the basic components of ICT systems [9]. Usually, it is installed next to an MV/LV
transformer, hence its name Transformer Station Data Concentrator (TSC) [12]. TSC has the
same role as an acquisition node in sensor networks. Similarly to sensor networks, in order
to increase the range of the last-mile network operation, a multi-hop technique is used [13].

In the communication between the two above-mentioned components of the system,
two basic transmission methods are used, wired and wireless. Amongst the wireless
technologies, the most frequently used are radio transmission in the Industrial-Scientific-
Medical (ISM) band (known as RF) and General Packet Radio Service (GPRS), available as
one of the services offered by the Global System for Mobile Communications (GSM). SM
devices equipped with GPRS communication modules are used only in countries with low
population density such as Denmark or Sweden [13,14]. If the density is higher, the GPRS
modules are installed only in TSCs, thus giving them access to IP networks.

Amongst the wired technologies, another two main techniques can be mentioned.
These are Power Line Communication (PLC) and M-bus. The M-bus technology, designed
for the reading of various kinds of metering devices, is used in Smart Metering only in last-
mile network with direct hubs—Local Metering Concentrators (LMCs)—to which multiple
SM devices can be connected through the use of M-bus [9,15,16]. LMC communicates
with TSC by the use of the RF or the PLC technology. Modern SMs are equipped with M-
buses and/or Modbus interfaces, which facilitate the installation of a few communication
modules in one meter [17] thanks to the ongoing miniaturization of components, and
equips the SMs in more than one LMC unit whereby each of them can use a different
communication technique. Adopting such solutions makes it possible to realize and
utilize last-mile networks more flexibly while increasing their security, reliability, quality,
productivity, and the ease of migration process, e.g., from RF to PLC [18–21].

This article touches upon a new approach in the last-mile network structural solutions,
i.e.,the elimination of TSC and moving its functions to an SM equipped with two LMC
units, namely RF or PLC and GSM. The benefits of introducing this solution are lower
network creation costs, the elimination of additional TC–SM connections, which are often
unreliable due to the long distance between a transformer and an edge of a last-mile
network, and there is no need for the maintenance of TSCs involving complex procedures,
assuring the safety of transmission and service. However, moving functions from TSC to
SM, apart from the above-mentioned benefits, also causes a problem—a solution for which
the author offers in this paper. The solution consists of choosing a parameter of the optimal
SM localization, which additionally works as a data concentrator.
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2. Research Method

For the analysis of telemetric networks, parts of the graph theory were used [22]. The
topology of such networks can be defined by a formula describing geometrical random
graphs [9]:

G = (V, E, R) (1)

where V is a set of vertices, E is a set of edges, and R is set of radii determining the
transmission range.

Each vi vertex of the G graph represents a single network node. Each node is sur-
rounded by a circle of radius ri depicting the range of the signal emitted by a node’s
transmitter. All nodes in the circle surrounding the node (assuming omnidirectional anten-
nas are used) can freely communicate with the surrounded node bidirectionally and are
considered directly adjacent, as it is shown in Figure 1.
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Figure 1. An example of a graph describing the topology of a network.

The below formula [23] defines a set of nodes in the transmission range of a given node:

Br(x) = {y : |x− y| < r}, x, y ∈ V (2)

where Br(x) is a set of nodes within the transmission range, x and y are the localization of
the nodes, and ri is the radius of the signal range.

The edge set E contains all edges of the G graph and represents direct paths con-
necting any chosen vertices and all their adjacent items within the circle, representing the
communication range of each node.

It is assumed that the edges do not have to represent bidirectional connections, which
means that the presence of edges (x,y) does not mean that edges (y,x) exist. The assigned
measurable value between two vertices of a graph, such as distance, angle, and amount of
energy in the node or probability, can be assigned to the edge as its weight, provided that
it can have different values for edges (x,y) and (y,x). The definition of asymmetric edges is
expressed with the Formula (3):

E = {(x, y, d) : y ∈ Br(x) ∧ d = |x− y|}, x, y ∈ V (3)

where E is a set of asymmetric edges and d is the measure of the asymmetry of weights.
A graph obtained this way, describing the whole connection topology of the network,

is called a maximum power graph (in real-life conditions when first determining the
connection topology, the transmitters work with maximum power). The structure of this
graph has to be reduced because of the presence of many redundant connections, which
are undesirable due to their transmitting of identical information, leading to collisions,
unnecessary power consumption, and the increase in the final network emissivity. The
reduction in these connections leads to the creation of a minimum spanning tree whose root
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is an acquisition node in which all the information consistent with the network’s function
are collected.

The configuration of the discussed network can be presented with a graph with an adja-
cency matrix [24]. To explain the way of conduct, a graph describing an example of a virtual
network is shown in Figure 2. The edges of the graph correspond to the links connecting
its nodes—that is, the nodes intermediary to the transmission and acting commutatively.
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The network shown in Figure 2 is described by an adjacency matrix (Ms):

[Ms] =



0 1 1 0 0 1 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 1 1 0 0
0 1 0 0 1 0 0 1 0 0 0 0
0 1 0 1 0 1 1 1 0 0 0 0
1 0 1 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1 1 0 1 0
0 0 0 1 1 0 1 0 0 0 0 1
0 0 1 0 0 1 1 0 0 1 1 0
0 0 1 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 1 1 0 1
0 0 0 0 0 0 0 1 0 0 1 0


By exponentiating the (Ms) matrix, we obtain a set of paths created by the edges

connecting the graph nodes, whose length corresponds to the power of the matrix. The
process is carried on until it is confirmed that all the nodes are interconnected and the
maximum power of the (Ms) matrix is the diameter of the analyzed graph. By the analysis
of the obtained components of the matrix, minimum lengths of the paths connecting
chosen nodes (created by the smallest number of edges) are determined, and their number
is calculated, as well.

Table 1 includes the calculated lengths of minimum paths connecting the nodes of the
analyzed graph, and Table 2 shows the numbers of these paths.

For example, there are four minimum paths connecting node 4 with node 9, which
consist of three edges.

However, on the basis of the obtained results, it is not possible to determine which
edges of the set create individual paths. To define a configuration of every path, each edge
is given a name, presented in Table 3 and in Figure 3.
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Table 1. The lengths of the minimum paths (the number of edges).

1 1
2 1 2

3 2 1 3

4 2 1 2 1

5 1 2 1 2 1

6 3 2 2 2 1 2

7 3 2 3 1 1 2 1

8 2 3 1 3 2 1 1 2
9 2 3 1 4 3 2 2 3 1

10 3 3 2 3 2 2 1 2 1 1

11 4 3 3 2 2 3 2 1 2 2 1

Node 0 1 2 3 4 5 6 7 8 9 10

Table 2. The numbers of the minimum paths.

1 1

2 1 1

3 1 1 2

4 2 1 1 1

5 1 2 1 1 1

6 4 1 1 2 1 2

7 3 2 2 1 1 1 1

8 2 4 1 3 2 1 1 1
9 1 1 1 8 4 2 2 3 1

10 3 1 2 3 1 1 1 2 1 1

11 6 2 2 1 1 2 2 1 1 1 1

Node 0 1 2 3 4 5 6 7 8 9 10

Table 3. Adopted edge marking.

Edge a b c d e f g h i j k

Nodes 0–1 0–2 0–5 1–3 1–4 2–5 2–8 2–9 3–4 3–7 4–5

Edge l m n o p r s t u v w

Nodes 4–6 4–7 5–8 6–7 6–8 6–10 7–11 8–9 8–10 9–10 10–11

By performing the exponentiation of the sign matrix according to the rule of matrix
exponentiation, sets of minimum paths are obtained together with their structure. It is
shown in Table 4.

While reviewing the components in Table 4, it is clearly visible that the numbers and
the lengths of the minimum paths connecting the nodes are consistent with the calculation
results presented in Tables 1 and 2.
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Table 4. Minimum paths configurations.

Node 0 1 2 3 4 5 6 7 8 9 10 11

0 - a b ad ae
ck c

ael
ckl
cnp
bgp

adj
ckm
aem

cn
bg bh

bhv
cnu
bgu

adjs
aems
cnuw
bguw
bhvw
ckms

1 a - ab d e ek
ac el dj

em

elp
ekn
acn
abg

abh elr djs
ems

2 b ab - bad
fki fk f gp fkm

gpo g h hv
gu

hvw
guw

3 ad d bad
fki - i ik il

jo j
ilp
jop
ikn

ilpt
iknt
ikfh
ikrv
jorv
jopt
jswv
dabh

ilr
jor
jsw

js

4 ae
ck e fk i - k l m Lp

kn

lpt
lrv
knt
kfh

lr ms

5 c ek
ac f ik k - kl

np km n nt
fh nu nuw

kms

6

ael
ckl
cnp
bgp

el gp il
jo l kl

np - o p pt
rv r rw

os

7
adj

ckm
aem

dj
em

fkm
gpo j m km o - op opt

swv
or
sw s

8 cn
bg

elp
ekn
acn
abg

g
ilp
jop
ikn

lp
kn n p op - t u uw
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Table 4. Cont.

Node 0 1 2 3 4 5 6 7 8 9 10 11

9 bh abh h

ilpt
iknt
ikfh
ikrv
jorv
jopt
jswv
dabh

lpt
lrv
knt
kfh

nt
fh

pt
rv

opt
swv t - v vw

10
bhv
cnu
bgu

elr hv
gu

ilr
jor
jsw

lr nu r or
sw u v - w

11

adjs
aems
cnuw
bguw
bhvw
ckms

djs
ems

hvw
guw Js ms nuw

kms
rw
os s uw vw w -

3. Determining the Optimal Position for the Acquisition Node of a Telemetry Network

So far, the analysis was made with the assumption that the probability of realization
of a correct transmission by each node is 1, which is in contradiction to reality, and the
parameter is especially important for radio networks.

It is known that radio links are less resistant to external interference than fiber-optic or
cable links, and a radio wave carrying information is subject to suppression depending on
the distance between a transmitter and a receiver. The dependency is partially described
by the free space signal suppression value formula FSL (Free Space Loss):

FSL = 32.44 dBm + 20 log( f ) + 20 log(d) (4)

where f is the transmission frequency in MHz and d is the distance between a transmitter
and a receiver in km [25].

By assuming the same level of radio signal emission, e.g., 0 dBm, the same sensitivity
of the receivers and the use of omnidirectional antennas (which causes the increase in
the suppression value by 40 dBm of the signal reaching the receiver), the parameter RSSI
(Received Signal Strength Indicator) was determined on the basis of the dependency shown
in Figure 4, taken from paper [26], and PER (Packet Error Ratio) parameter values were
found (it was assumed that 433 MHz radio frequency was used).

In the analyzed case, assuming the distances between the nodes are as shown in
Table 5 (they are correlated with the data presented in Figure 1), the RSSI and PER values
were determined.

Table 5 includes the RSSI values resulting from the distance between the network
nodes linearly. The possibility that suppressing signals for a given link can vary for
individual directions of information transmission was not taken into consideration.

To check the construction of the structure after including different signal suppression
depending on the information transfer direction, it was assumed that the values of the
probability of a return transmission from the target nodes to the source nodes reaches the
values given in Table 6 (the ‘←’ sign means the change of the information transfer direction).
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Table 5. The determined RSSI and PER values.

Edge a b c d e f g h i j k

d(m) 48.6 36.45 34.02 29.16 26.73 36.45 51.03 55.89 34.02 33.04 34.02

RSSI
(dBm) −95.38 −92.88 −92.28 −90.94 −90.19 −92.88 −95.80 −96.59 −92.28 −92.03 −92.28

PER 0.8922 0.9347 0.9354 0.9579 0.9620 0.9347 0.8592 0.8592 0.9354 0.9505 0.9354

Edge l m n o p r s t u v w

d(m) 19.44 43.74 31.59 37.91 38.88 33.05 31.59 26.73 23.33 38.88 36.45

RSSI
(dBm) −87.42 −94.47 −91.64 −93.22 −93.44 −92.03 −91.64 −90.19 −89.01 −93.44 −92.88

PER 0.9723 0.9092 0.9513 0.9347 0.9299 0.9505 0.9513 0.9620 0.9657 0.9347 0.9347

Table 6. The assumed RSSI and PER values for the second transmission direction.

Edge ← a ← b ← c ← d ← e ← f ← g ← h ← i ← j ← k

PER 0.9723 0.9092 0.9513 0.9347 0.9299 0.9505 0.9513 0.9620 0.9657 0.9347 0.9347

Edge ← l ← m ← n ← o ← p ← r ← s ← t ← u ← v ← w

PER 0.8922 0.9347 0.9354 0.9579 0.9620 0.9347 0.8592 0.8592 0.9354 0.9505 0.9354

By using the data from Table 6 and assuming that the data of the information transfer
direction from the source nodes to the target nodes are above the diagonal of the table, and
from the target nodes to the source nodes are below the diagonal, the probability values
were calculated and are presented in Figure 5.

The way of conduct described in the previous part of the paper was used for the
determination of the optimal position of the acquisition node of the network, i.e., the
node whose average probability of the realization of a correct transmission is the highest
in comparison with the other nodes. For this purpose, the probability values for both
transmission values were multiplied. They corresponded to individual paths connecting
the nodes of the graph (for example, nodes 0 and 5) and the obtained values were averaged.
It is shown in Table 7.
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Figure 5. The calculated probability values of obtaining a correct transmission.

Table 7. The resulting probability of obtaining a correct transmission.

Node 0 1 2 3 4 5 6 7 8 9 10 11 Pawr

0 0.867 0.850 0.777 0.777 0.890 0.669 0.670 0.743 0.702 0.656 0.562 0.7421

1 0.867 0.737 0.895 0.895 0.777 0.776 0.778 0.670 0.783 0.689 0.636 0.7931

2 0.850 0.737 0.681 0.777 0.888 0.731 0.657 0.817 0.827 0.736 0.644 0.7587

3 0.777 0.895 0.681 0.903 0.790 0.790 0.888 0.705 0.586 0.679 0.726 0.7655
4 0.777 0.895 0.777 0.903 0.874 0.868 0.850 0.777 0.653 0.771 0.695 0.8035
5 0.890 0.777 0.888 0.790 0.874 0.777 0.743 0.890 0.735 0.804 0.655 0.8021

6 0.669 0.776 0.731 0.790 0.868 0.777 0.895 0.895 0.764 0.888 0.754 0.8001

7 0.670 0.778 0.657 0.888 0.850 0.743 0.895 0.801 0.648 0.755 0.817 0.7731

8 0.743 0.670 0.817 0.705 0.777 0.890 0.895 0.801 0.827 0.903 0.790 0.8016

9 0.702 0.783 0.827 0.586 0.653 0.735 0.764 0.648 0.827 0.888 0.777 0.7446

10 0.656 0.689 0.736 0.679 0.771 0.804 0.888 0.755 0.903 0.888 0.874 0.7859

11 0.562 0.636 0.644 0.726 0.695 0.655 0.754 0.817 0.790 0.777 0.874 0.7209

On the basis of the data presented in the table above, it was concluded that the optimal
localization for an acquisition node was node 4.

Table 8 includes the set of minimum length paths, taking into consideration the
presence of parallel, internodal paths (the parallel paths are the paths consisting of the
same number of edges connecting the same nodes—source and target).

Table 8. The set of minimum length paths obtained with the assumption that the acquisition node is
node 4.

Node 0 1 2 3 5 6 7 8 9 10 11

Set of
Paths

ae
ck E fk I K l m lp

kn

lpt
lrv
knt
kfh

lr ms

Ppath 0.777 0.895 0.777 0.903 0.874 0.868 0.850 0.777 0.653 0.771 0.695

Where: Set of Paths, the set of all minimum length paths; Ppath, the probability of the realization of transmission
between nodes.
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In Figure 6, the image of the obtained graph describing the network created by the
minimum length paths is shown.
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Figure 6. The image of the obtained graph.

Thanks to the analysis of the elements in Table 8, a minimum spanning tree was
created; its root is node 4, so by removing the redundant connections, paths were chosen
that ensured the highest probability of a correct transmission. The set of paths creating the
minimum spanning tree is included in Table 9.

Table 9. The set of paths creating the minimum spanning tree.

Node 0 1 2 3 5 6 7 8 9 10 11

Cmin ck E fk i K l M nk vrl rl sm

Ppathtree 0.778 0.895 0.777 0.903 0.874 0.868 0.850 0.778 0.685 0.771 0.695

Where: Cmin, the configuration of a minimum path; Ppathtree, the probability of the realization of transmission.

In Figure 7,the obtained minimum spanning tree is shown.
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The described way of conduct can be used for the analysis of a situation caused by a
failure of individual links due to which the graph describing the obtained tree becomes
a disconnected graph resulting in isolated nodes. When there are two parallel paths
connecting chosen nodes created by various combinations of edges (in the examples 4—
0, 4—8, and 4—9), the graph stays connected. Thanks to the proposed method, that is,
the analysis of the matrix powers (Ms), it is possible to determine a set of emergency
connections and avoid a connection shortage. The set of paths used in case of a link failure
is included in Table 10.
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Table 10. The set of paths used in case of a link failure.

Link Failure Node 0 1 2 3 5 6 7 8 9 10 11

E

Sets of Paths

ck Di fk I K l m nk vrl rl sm

F ck E bck I K l m nk vrl rl sm

K ae E bae I Cae l m lp vrl rl sm

I ck E fk Jm K l m nk vrl rl sm

L ck E fk I K om m nk knt unk Sm

M ck E fk I K l ol nk vrl unk Wrl

R ck E fk I K l m nk knt unk Sm

S ck E fk I K l m nk vrl rl Wrl

The determined set of paths can be saved in routing memories of individual nodes
and used to support transmission in case of a failure of certain links.

4. The Analysis of the Possibility to Ensure the Operation of a Network after
Node Removal

In practice, due to changes in networks (for example, by replacing the energy meters
with devices working in a different technology), ‘holes’ appear, which causes the graphs
describing these networks to be disconnected. In such cases, a signal repeater is often
installed in place of one of the nodes. Its task is only to mediate in the transmission of
signals between sensors and an acquisition node. Using such a solution is led by the use
of an already existing infrastructure enabling the supply of power to the repeater. There
is also a case of choosing a location for the repeater. In this case, the proposed method of
network analysis can work as well.

To explain the accepted way of conduct, the analysis of a more complex network was
used. The network is shown in Figure 8.

Entropy 2021, 23, x FOR PEER REVIEW 11 of 15 
 

 

8, and 4—9), the graph stays connected. Thanks to the proposed method, that is, the anal-
ysis of the matrix powers (Ms), it is possible to determine a set of emergency connections 
and avoid a connection shortage. The set of paths used in case of a link failure is included 
in Table 10. 

Table 10. The set of paths used in case of a link failure. 

Link Failure Node 0 1 2 3 5 6 7 8 9 10 11 
E 

Sets of Paths  

ck Di fk I K l m nk vrl rl sm 
F ck E bck I K l m nk vrl rl sm 
K ae E bae I Cae l m lp vrl rl sm 
I ck E fk Jm K l m nk vrl rl sm 
L ck E fk I K om m nk knt unk Sm 
M ck E fk I K l ol nk vrl unk Wrl 
R ck E fk I K l m nk knt unk Sm 
S ck E fk I K l m nk vrl rl Wrl 

The determined set of paths can be saved in routing memories of individual nodes 
and used to support transmission in case of a failure of certain links. 

4. The Analysis of the Possibility to Ensure the Operation of a Network after Node 
Removal 

In practice, due to changes in networks (for example, by replacing the energy meters 
with devices working in a different technology), ‘holes’ appear, which causes the graphs 
describing these networks to be disconnected. In such cases, a signal repeater is often in-
stalled in place of one of the nodes. Its task is only to mediate in the transmission of signals 
between sensors and an acquisition node. Using such a solution is led by the use of an 
already existing infrastructure enabling the supply of power to the repeater. There is also 
a case of choosing a location for the repeater. In this case, the proposed method of network 
analysis can work as well. 

To explain the accepted way of conduct, the analysis of a more complex network was 
used. The network is shown in Figure 8. 

 
Figure 8. The analyzed network before nodes failure. 

By following the rules described above, the optimum location of the acquisition node 
was determined to be node 17. 
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By following the rules described above, the optimum location of the acquisition node
was determined to be node 17.

It was assumed that for some reasons, nodes 2, 6, 7, and 10 had been excluded which
caused nodes 0,1, 3, and 5 to lose the possibility to contact the acquisition node. This is
shown in Figure 9.
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By analyzing the changed structure of the network, it was divided into two parts. One
related to the fifth node (Figure 10a) and one associated with the remaining nodes 0, 1, and
3 (Figure 10b).
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(b) associated with the remaining nodes i.e., 0, 1 and 3.

The sets of virtual shortest paths connecting the isolated nodes are given in Table 11.

Table 11. The sets of the shortest paths (for the node 5).

Node Paths Ppath

5

e12, e20, e11 0.6570

e6, e5, e11, e22 0.6706

e12, e24, e31, e35 0.7900

The data in Table 11 show that when it comes to node 5, it is clear for a signal repeater
to be installed in node 10.

The situation presented in Figure 10b is more difficult to analyze. In that case, it
should be verified which of the edges creating the paths ensure obtaining the maximum
probability of a correct transmission.

Even a superficial scan of the network scheme shows that placing a repeater in node 9
is futile, so the focus was moved towards node 6 or 7. The set of minimum length paths for
nodes 0, 1, and 3 is presented in Table 12.
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Table 12. The set of minimum length paths (nodes 0, 1, 3).

Node Paths Ppath

0

e1, e15, e27 0.78192

e1, e16, e29 0.68325

e1, e14, e22 0.72990

1

e3, e18, e29 0.66908

e2, e9, e15, e27 0.71395

e2, e9, e14, e22 0.66645

3

e9, e15,e27 0.81298

e9, e14,e22 0.75889

e9, e16,e29 0.71039

e8, e18,e29 0.71623

The configurations of paths connecting individual nodes with the acquisition node
ensuring the highest probability of a successful transmission were analyzed: from node
0—e1, e15, e27; from node 1—e2, e9, e15, e27; from node 3—e9, e15, e27. Each of the
above-mentioned paths is connected with node 6, so it is therefore the location of an
intermediary node.

5. Discussion

The proposed method allows for the determination of the best location ofan SM
device for an additional role as a concentrator, thanks to which it is possible to eliminate
a TSC module as well as redundant connections between the TSC and its adjacent SM
modules. The absence of need for the installation of TSC lowers the cost of the network
construction and its location maintenance (that is a transformer station MV/LV). It leads
to the avoidance of time-consuming, complex, and expensive procedures. The removal
of unreliable links between the TSC and the SM modules, resulting from a long distance
between them, causes the improvement of the reliability and traffic parameters of the
network. Improvement of the traffic parameters allows for more frequent reading, which
is crucial in energy consumption forecasting. One additional benefit is the possibility to
perform more frequent reading of the meters, which is particularly crucial, for example,
in Smart Grid systems, with distributed generation, increase in the number of SMs in a
last-mile network, and therefore the extension of the operating area of the network.

Sometimes, in order to improve the traffic parameters of a network, it is necessary to
divide it into several subnetworks. The division of networks within the structure using
TSC was possible only if the main network was extended with a new transformer. The
proposed method makes it possible to determine the best location for the SMs, which
are also supposed to work as concentrators in particular subnetworks. The paper also
proves that the proposed method can be used for finding a place for backup concentrators
and repeaters.

6. Conclusions

All the presented solutions referred to last-mile networks using the RF technology.
Thanks to the introduction of the ITU-T recommendations defining the PLC interfaces for
Smart Metering [27–29], the technology can be used in many areas of a Smart Grid [30].
Currently, the author is working on the adaptation of the proposed method for networks
based on the G3 PLC [28] and PRIME [29] interfaces. In this case, it is necessary to develop
a method for the calculation of the PER values for the links using PLC (not only RSSI, but
also Signal to Noise Ratio (SNR) and a way to describe the topology of a network (in case
of a three-phase mains, the installed SM devices for transmission can use three common
media or only one of them).
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