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Abstract: Quantum computers are invaluable tools to explore the properties of complex quantum
systems. We show that dynamical localization of the quantum sawtooth map, a highly sensitive
quantum coherent phenomenon, can be simulated on actual, small-scale quantum processors. Our re-
sults demonstrate that quantum computing of dynamical localization may become a convenient tool
for evaluating advances in quantum hardware performances.

Keywords: digital quantum simulation; quantum algorithms; complex quantum systems

1. Introduction

The simulation of complex systems is expected to be one of the main applications
of future quantum computers [1]. The special role of quantum mechanics in simulation
was pointed out long time ago by Feynman [2]. He observed that, while in a classical
computer the memory requirements for the simulation of a many-body quantum system
can grow exponentially with the number of particles, the growth is only polynomial in a
quantum computer, which is itself a many-body quantum system. Lloyd [3] then validated
the conjecture of an exponential speedup in the simulation of quantum systems by means
of a quantum computer, with respect to a classical computer. Applications have been
discussed for many physical models, so far (see, e.g., Refs. [4–13], and references therein).
An ideal quantum computer operating with more than fifty qubits could outperform a
classical computer, and the quantum advantage for specific problems has been recently
claimed [14,15]. However, quantum advantage can only be reached with a high enough
quantum gate precision and through processes generating a large enough amount of
entanglement, otherwise they can be efficiently simulated via tensor network methods [16].
On the other hand, present-day quantum computers suffer from significant decoherence
and the effects of various noise sources, such that the amount of entanglement that can
be reached is still limited. Therefore, achieving the quantum advantage in complex,
practically relevant problems such as chemical reactions, new materials design, or biological
processes, is still an imposing challenge. It is then important to benchmark the progress of
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currently available quantum computers by simulating less demanding but still physically
significant tasks.

Dynamical localization is one of the most interesting phenomena that characterize the
quantum behavior of classically chaotic systems: quantum interference effects suppress
the diffusion taking place in the underlying classical model, leading to exponentially
localized wave functions. This phenomenon, first discovered in the quantum kicked-rotor
model [17,18], has been observed experimentally in the microwave ionization of Rydberg
atoms [19], in atom-optic systems [20–22], and in nuclear magnetic resonance quantum
ensemble computation [23]. Dynamical localization has deep analogies with Anderson
localization of electronic transport in disordered materials [24]. Localization is indeed
ubiquitous in wave physics, since it originates from the interference between multiple
scattering paths. It has been shown that in a quantum computer simulating dynamical
localization the amount of entanglement is deeply connected with the localization length
of the system being simulated [25].

In this paper, we simulate dynamical localization with three qubits by means of several
IBM quantum processors, with the aim of analyzing the performances of current noisy
quantum hardware, freely available for cloud quantum computing. In particular, we use the
known quantum algorithm for the quantum sawtooth map [26,27], which is the ideal model
to investigate dynamical localization, and more generally quantum chaotic dynamics on a
quantum computer. This is because all of the qubits are actually used to simulate dynamics,
without the need for auxiliary qubits. Moreover, the quantum algorithm performs forward-
backward Fourier transform, thus exploring the entire Hilbert space of the quantum register
in a complex multiple-path interferometer that leads to wave-function localization. As
such, dynamical localization is a very fragile quantum phenomenon, extremely sensitive to
noise. Its effective simulation on an actual quantum hardware is therefore a potentially
ideal test bench to illustrate the power of quantum computation.

Here we show that it is possible to detect quantum localization with n = 3 qubits and
a single step of the sawtooth map, requiring 4n = 12 single-qubit and 2(n2 − n) = 12 two-
qubit quantum gates. We find that the height of the localization peak is smaller than the
value expected for a noiseless quantum computing machine. Moreover, the peak reduction
in real quantum processors is significantly larger than expected from the Qiskit simulator,
which only takes into account a limited number of noise channels. Our results show that
for the best performing and freely available IBM quantum processors the localization peak
does emerge from noise for about 3 map steps.

The paper is organized as follows. In Section 2 we recall the main steps of the quantum
algorithm for simulating dynamical localization (see Refs. [26,27] for a detailed description).
In Section 3 results obtained from IBM quantum processors are shown and compared with
those from the IBM simulator and with the exact, noiseless evolution. Our conclusions are
finally drawn in Section 4.

2. Quantum Algorithm for the Dynamical Localization
2.1. Quantum Algorithm for the Sawtooth Map

The most convenient model to simulate dynamical localization on a quantum com-
puter is the quantum sawtooth map. This map describes the dynamics of a periodically
driven system, as derived from the Hamiltonian

H(θ, I; τ) =
I2

2
+ V(θ)

+∞

∑
j=−∞

δ(τ − jT) , (1)

where (I, θ) are conjugate action-angle variables (0 ≤ θ < 2π), with the usual quantization
rules, θ → θ and I → I = −i∂/∂θ (we set h̄ = 1) and V(θ) = −k(θ − π)2/2. This
Hamiltonian is the sum of two terms, H(θ, I; τ) = H0(I) + Hk(θ; τ), where H0(I) = I2/2 is
the Hamiltonian of a particle freely moving on a circle parameterized by the coordinate θ,
while Hk(θ; τ) = V(θ)∑j δ(τ − jT) represents a force acting on the particle and switched
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on and off instantaneously (kicking potential) at time intervals T. The evolution from time
tT− (prior to the t-th kick) to time (t + 1)T− (prior to the (t + 1)-th kick) is described by a
unitary operator U acting on the wave function ψ:

ψt+1 = U ψt = UTUk ψt ;

UT = e−iTI2/2 , Uk = eik(θ−π)2/2 . (2)

This map is known as quantum sawtooth map, since the force F(θ) = −dV(θ)/dθ =
k(θ − π) has a sawtooth shape, with a discontinuity at θ = 0.

The map (2) can be efficiently simulated on a quantum computer. The quantum algo-
rithm simulating the sawtooth map dynamics is based on the forward/backward quantum
Fourier transform between action (momentum) and angle bases. Such an approach is con-
venient since the operator U, introduced in Equation (2), is the product of two operators,
Uk and UT , diagonal in the θ and I representations, respectively. This quantum algorithm
requires the following steps for one map iteration:

• We apply Uk to the wave function ψ(θ). In order to decompose the operator Uk into
one- and two-qubit gates, first of all we write θ in binary notation:

θ = 2π
n

∑
j=1

αj2−j , (3)

with αj ∈ {0, 1}. As n is the number of qubits, the total number of levels in the
quantum sawtooth map is N = 2n. Using expansion (3), we can decompose Uk into
a product of n2 two-qubit operations, each acting non-trivially only on the qubits j1
and j2. In the computational basis {|αj1 αj2〉} each two-qubit gate can be written as
exp(i2π2kDj1,j2), where Dj1,j2 is a diagonal matrix:

Dj1,j2 =


1

4n2 0 0 0

0 − 1
2n

(
1

2j1
− 1

2n

)
0 0

0 0 − 1
2n

(
1

2j2
− 1

2n

)
0

0 0 0
(

1
2j1
− 1

2n

)(
1

2j2
− 1

2n

)

. (4)

Neglecting a global phase factor of no physical significance, we can decom-
pose exp(i2π2kDj1,j2) in terms of quantum gates (P and CP) available in the IBM
Qiskit interface:

ei2π2kDj1,j2 =


1 0 0 0

0 e
− iπ2k

2j1 n 0 0
0 0 1 0

0 0 0 e
− iπ2k

2j1 n




1 0 0 0
0 1 0 0

0 0 e
− iπ2k

2j2 n 0

0 0 0 e
− iπ2k

2j2 n




1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e
iπ2k

2j1+j2−1

. (5)

The first two factors in the product correspond to phase-shift gates (P gates) applied to
qubit j1 and j2, respectively, while the last one corresponds to a controlled phase-shift
gate (CP gates) applied on both qubits, if j1 6= j2, and to a P gate if j1 = j2. Overall
we need then n2 − n CP e 2n2 + n P gates to implement Uk. As Uk is the product of
diagonal matrices in the θ representation, the order of P and CP gates is irrelevant.
Therefore, changing their order allows combining gates applied to the same qubits,
thus improving the efficiency of the quantum algorithm. We then reduce the number
of quantum gates needed to implement Uk to n(n− 1)/2 CP and n P gates. We note
that the above decomposition for Uk is possible thanks to the particular form of V(θ)
for the sawtooth map. This is the reason for which the quantum sawtooth map is the
most convenient model to simulate dynamical localization. For other potentials, like
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V(θ) = cos θ corresponding to the kicked-rotor model [17,18], auxiliary qubits are
introduced to efficiently compute Uk [9], thus increasing the overall simulation cost.

• The change from the θ to the I representation is obtained by means of the quantum
Fourier transform (QFT), which requires n Hadamard (H) gates and 1

2 n(n− 1) CP
gates. The correct order of qubits after the Fourier transform is obtained by simply
relabeling qubits, thus avoiding bn/2c physical SWAP gates.

• In the I representation, the operator UT has essentially the same form as the operator
Uk in the θ representation and can therefore be similarly decomposed.

• We return to the initial θ representation by application of the inverse QFT.

Overall, this quantum algorithm requires O(n2) gates per map iteration. This number is to
be compared with the O(n2n) operations required by a classical computer to simulate one
map iteration using the fast Fourier transform. The quantum simulation of the quantum
sawtooth map dynamics is then exponentially faster than any known classical algorithm.
Note that the resources required to the quantum computer to simulate the sawtooth map
are only logarithmic in the system size N. With the above discussed improvements of
the quantum circuit, we need 2(n2 − n) CP, 2n P, and 2n Hadamard (H) gates to simulate
one step of the quantum sawtooth map. Which corresponds to 24 quantum gates (12
single-qubit a 12 two-qubit gates) for the case n = 3 which we have simulated on the IBM
quantum hardware. The angles used in the P gates are obtained by changing order of the
gates and combining them. The explicit formulas for the angles are given as the following:

θ
j
k = −

2π2k
2j +

π2k
22j−1 , θ

j
T =

2N2T
2j+2 −

N2T
22j+1 , φ

j1,j2
k =

2π2k
2j1+j2−1 , φ

j1,j2
T = − 2N2T

2j1+j2+1 . (6)

The circuit (see Figure 1) avoids SWAP gates via relabeling of qubits after the QFT and the
inverse QFT.
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Figure 1. Quantum circuit of sawtooth map with n = 3.
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The classical limit of the quantum sawtooth map is obtained for k→ ∞ and T → 0, at constant
K = kT. The classical motion is chaotic for K < −4 and K > 0. Although the sawtooth map
is a deterministic system, in this regime the motion along the momentum direction is in practice
indistinguishable from a random walk, with diffusion in the momentum variable. If we consider
a classical ensemble of trajectories with fixed initial momentum m0 and random initial angle θ, the
second moment of the distribution grows linearly with the number t of map iterations,

〈(∆m)2〉 ≈ Dt, (7)

with the diffusion coefficient D(k) ≈ (π2/3)k2 for K > 1.88

The quantum sawtooth map, in agreement with the correspondence principle, initially exhibits
diffusive behavior, with the classical diffusion coefficient D. However, after a break time t?, quantum
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2.2. Dynamical Localization for the Sawtooth Map

The classical limit of the quantum sawtooth map is obtained for k → ∞ and T → 0,
at constant K = kT. The classical motion is chaotic for K < −4 and K > 0. Although
the sawtooth map is a deterministic system, in this regime the motion along the momen-
tum direction is in practice indistinguishable from a random walk, with diffusion in the
momentum variable. If we consider a classical ensemble of trajectories with fixed initial
momentum m0 and random initial angle θ, the second moment of the distribution grows
linearly with the number t of map iterations,

〈(∆m)2〉 ≈ Dt, (7)

with the diffusion coefficient D(k) ≈ (π2/3)k2 for K > 1.
The quantum sawtooth map, in agreement with the correspondence principle, initially

exhibits diffusive behavior, with the classical diffusion coefficient D. However, after a break
time t?, quantum interference leads to suppression of diffusion. For t > t? the quantum
distribution reaches a steady state which decays exponentially over the momentum eigenbasis:

Wm ≡
∣∣〈m|ψ〉∣∣2 ≈ 1

`
exp
[
−2|m−m0|

`

]
, (8)
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where the index m singles out the momentum eigenstates (I|m〉 = m|m〉) and the system is
initially prepared in the eigenstate |m0〉. Therefore, for t > t? only√

〈(∆m)2〉 ≈
√

Dt? ≈ ` (9)

levels are populated.
An estimate of t? and ` can be obtained by means of a heuristic argument [28]. Since

the number of levels involved grows diffusively, ∝
√

t, and, due to the Heisenberg principle,
the discreteness of levels is resolved down to an energy spacing ∝ 1/t, then the discreteness
of spectrum eventually dominates. The localized wavefunction has significant projection
over about ` eigenstates of the Floquet operator U, which determines the evolution of the
system over one map step. This operator is unitary and therefore its eigenvalues can be
written as exp(iλi), with λi (known as quasienergies) distributed in the interval [0, 2π].
The mean level spacing between quasienergy eigenstates which significantly determine the
dynamics is ∆E ≈ 2π/`. The Heisenberg principle tells us that the minimum time required
to the dynamics to resolve this energy spacing is given by

t? ≈ 1/∆E ≈ `. (10)

Relations (9) and (10) imply
t? ≈ ` ≈ D. (11)

The quantum localization can be detected if ` is smaller than the system size N.

3. Quantum Computing of Dynamical Localization

We simulate dynamical localization with n = 3 qubits on a real quantum hardware.
The initial condition is peaked in momentum, ψ0(m) = δm,m0 , with m0 = 0. The quantum
algorithm for the sawtooth map allows us to compute the wave vector ψt(m) as a function
of the number of map steps, and then the momentum probability distribution Wt(m) =
|ψt(m)|2. We consider k ≈ 0.273 < 1, so that the distribution is already localized after a
single map step. On the other hand, we use K = 1.5, corresponding to diffusive behavior for
the underlying classical dynamics. In Figure 2 we compare after t = 1 map step the ideal,
noiseless distribution (green curve) with the Qiskit simulator (blue curve), used to test the
quantum algorithm before submitting it to a real quantum hardware (red curve). Data
for the quantum hardware are for the recently released (8th January 2021) lima quantum
processor. This machine has a nominal quantum volume VQ = 8 (i.e., a single number
meant to encapsulate the quantum computer performance [29]), which is equal or smaller
than the quantum volume of other freely available quantum processors. Nevertheless, in
our simulation we obtained the best results for the localization problem with this machine
(see discussion below).

As we can see in Figure 2, the quantum hardware exhibits a localization peak after a
single map step. On the other hand, the height of the peak, W1(0) ≈ 0.56, is significantly
smaller than the noiseless value, W1(0) ≈ 0.83, and the prediction of the Qiskit simulator,
W1(0) ≈ 0.74. These results show that the Qiskit simulator may at least underestimate
some of the relevant noise channels. It is also interesting to remark that, while the ideal
distribution is symmetric around its peak, the noisy ones are markedly asymmetric. We
interpret this asymmetry as a consequence of the binary coding of momentum eigenstates.
For instance, a noise channel leading to a flipping of the most significant qubit would
induce a probability transfer from the peak (m = 0, corresponding to the state |100〉 of the
three qubits) to the state |000〉 (corresponding to m = −4).
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m

0.0

0.2

0.4
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1(m

)
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lima simulator
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Figure 2. Dynamical localization in the quantum sawtooth map with n = 3 qubits, K = 1.5, k ≈ 0.273
(T = 2πL/N, with L = 7). Hereafter data from the quantum processors (here lima) are obtained after
averaging over 10 repetitions of 8192 experimental runs. Data taken on 26th February 2021.

To compare the performance of different freely available quantum machines, we ran
the sawtooth quantum algorithm for one map step for several days (from 24th February
to 5th March 2021). In Figure 3, we show data for lima, belem, and quito (relase date 8th
January 2021, nominal quantum volume VQ = 16), santiago (3rd June 2020, VQ = 32), athens
(3rd March 2020, VQ = 32), and ibmqx2-yorktown (24th January 2017, VQ = 8). This latter
is an old machine having a low quantum volume (nominally), but its bow-tie layout is
in principle more favorable for the present application, as it allows direct connectivity
between all the three qubits involved in the algorithm. Actually the unfavorable layout of
the other machines is not very relevant for our 3-qubit simulations. Indeed, the number of
extra quantum gates needed to relate non-physically connected qubits, in order to make the
quantum algorithm work on these devices, is such that the execution time of the algorithm
never exceeds the minimum decoherence time of the qubits used for all the machines.
For such qubits, the algorithm run time for yorktown is ≈11.1 µs, while for the other
devices requiring extra gates it increases only up to ≈16.7 µs on average. By comparing the
height of the localization peak for several days of runs on the available quantum processors,
we conclude that lima is to be considered the best performing machine at time of writing,
both in terms of the best achieved absolute performance (W1(0) ≈ 0.56) and stability of the
results obtained.

In order to quantitatively relate the effectiveness of the dynamical localization quan-
tum algorithm to the error rate, we compare the height of the localization peak to the noise
level in each of the analyzed devices, as measured from the day-to-day calibrations (nomi-
nally given on the IBM Q website). As a measure of the quality of the qubits, we define
an average decoherence time 〈Tdec〉, obtained after averaging over the n = 3 qubits used
in a given simulation, Tdec = min{T1, T2}, where T1 and T2 are the standard relaxation
and dephasing times, respectively. Then, we also estimate the overall relative error of a
quantum computer run, defined as Etot, as the sum of the relative errors of each quantum
gate and of the final readout error. Results are then reported in Figure 4, where we use
a color code from red to violet to quantify 〈Tdec〉, while Etot is proportional to the size
of the symbols. It can be seen that the height of the localization peak is larger for larger
〈Tdec〉 and smaller Etot, i.e., corresponding to small violet circles (in particular, see data for
the lima processor). On the other hand, the worst performances are obtained for smaller
〈Tdec〉 and larger Etot, i.e., corresponding to large red circles (in particular, see data for
the yorktown processor). However, large fluctuations around this average behavior can be
noticed. This is expected, since the data from the Qiskit simulator that are obtained by as-
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suming the same nominal parameters used to define 〈Tdec〉 and Etot, largely underestimate
noise, as it is shown in Figure 2. In particular, fluctuations of the qubit quality parameters
between different calibration procedures, memory effects, and cross-talks between qubits
(even not specifically employed in a given simulation) could also affect the performance
of a quantum processor, and may not be fully captured by the currently implemented
noise models.
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Figure 3. Height of the localization peak after one map step for several quantum processors. Data
taken from 24th February to 5th March 2021.
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Figure 4. Height of the localization peak for the six quantum processors used in this work. For all the
data from Figure 3, we show the average decoherence time, 〈Tdec〉 (color coded from red to violet),
and the overall relative error, Etot (size of the circles), as defined in the text.



Entropy 2021, 23, 654 8 of 10

Finally, with the aim of further testing the capabilities of quantum processors to
simulate dynamical localization, we show in Figure 5 the localization peak value as a
function of the number of kicks. For the noiseless case the distribution remains localized
with fluctuations of Wt(0) around 0.9. For the ibmqx2 - yorktown quantum processor the
peak at m = 0 does not emerge from noise already at t = 2. On the other hand, for the lima
quantum processor the peak is visible up to t = 3 kicks. Evidently, the Qiskit simulator
underestimates the level of noise in the corresponding devices, and predicts a peak decay
in 3–5 map steps (for ibmx2-yorktown) and in 10–15 kicks for lima. Overall, the data of
Figures 3 and 5 testify the significant improvement of quantum hardware performance
in the last few years. As a closing remark, it is worth reminding that error mitigation
techniques can be applied to reduce the impact of various sources of noise on near term
quantum processors [30–32]. We have applied an error mitigation procedure based on
Ref. [31] in combination with the Qiskit noise model, and only found a limited effect
in improving the specific quantum localization algorithm (results not shown). A more
detailed characterization of noise in such devices is by itself an interesting problem, which
goes, however, beyond the scope of the present work.

1 2 3 5 10
t

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

W
t(0

)

noiseless
lima simulator 
lima
yorktown simulator
yorktown

Figure 5. Height of the localization peak as a function of the number of map steps, for parameter
values as in Figure 2. Data are for lima (red) and ibmqx2-yorktown (black). Data taken on 14th February
(ibmqx2-yorktown) and 5th March 2021 (lima).

4. Conclusions

We have simulated the dynamical localization phenomenon of the quantum sawtooth
map by means of several freely available IBM quantum processors, remotely accessed
through cloud quantum programming. The localization peak emerges from noise, even
though significantly reduced with respect to the noiseless dynamics, with up to three steps
of the sawtooth map model for three qubits. Our results demonstrate a significant improve-
ment of the performances of the available quantum processors over the past few years.
This study shows that quantum computing of dynamical localization may be employed
as a fast and convenient benchmark to check the performance of future generations of
quantum processors. In particular, we could envision studying the maximum number n
of qubits for which the peak height after one kick is reproduced with a given accuracy.
Since the number of elementary quantum gates required to simulate a single step of the
map scales as n2, in this “localization test” both the number of qubits and the circuit depth
grow with n. The results of this work show that, for n = 3, the localization test does not
necessarily agree with the quantum volume measure.
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