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Abstract: Thorax disease classification is a challenging task due to complex pathologies and subtle
texture changes, etc. It has been extensively studied for years largely because of its wide application
in computer-aided diagnosis. Most existing methods directly learn global feature representations
from whole Chest X-ray (CXR) images, without considering in depth the richer visual cues lying
around informative local regions. Thus, these methods often produce sub-optimal thorax disease
classification performance because they ignore the very informative pathological changes around
organs. In this paper, we propose a novel Part-Aware Mask-Guided Attention Network (PMGAN)
that learns complementary global and local feature representations from all-organ region and multiple
single-organ regions simultaneously for thorax disease classification. Specifically, multiple innovative
soft attention modules are designed to progressively guide feature learning toward the global
informative regions of whole CXR image. A mask-guided attention module is designed to further
search for informative regions and visual cues within the all-organ or single-organ images, where
attention is elegantly regularized by automatically generated organ masks and without introducing
computation during the inference stage. In addition, a multi-task learning strategy is designed, which
effectively maximizes the learning of complementary local and global representations. The proposed
PMGAN has been evaluated on the ChestX-ray14 dataset and the experimental results demonstrate
its superior thorax disease classification performance against the state-of-the-art methods.

Keywords: thorax disease classification; soft attention; mask-guided attention; multi-task learning

1. Introduction

Chest X-rays (CXR) have been one of the most common radiological examinations
aiding in thorax disease diagnosis [1,2]. While leveraging CXR images, most existing
diagnostic methods still rely on the radiologist, who need to observe carefully to read the
image. However, the lack of professional radiologists limit people’s access to thorax disease
screening, especially during the pandemic, such as the SARS in 2003 and the COVID-19
pandemic of 2019. On the other hand, CXR images contain complex pathologies and
subtle texture changes of different thorax diseases, which bring great challenges to disease
diagnosis even for professional radiologists, thus may lead to wrong diagnosis. Aiming to
address these challenges, it is important to develop the CXR image classification systems
to support the daily clinical routines.

Deep neural networks have been widely used for medical image analysis [3–7] as well
as thorax disease classification tasks in recent years. Leveraging large-scale CXR datasets
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such as ChestX-ray8 [8] and ChestX-ray14 [9], they detect pneumonia from CXR by automat-
ically learning the feature representations of X-ray images based on a supervised learning
paradigm. Most existing deep learning-based approaches directly learn a global feature
representation from a whole CXR image for thorax disease classification, but without con-
sidering in depth the informative local regions. For example, several works adopt prevalent
Convolutional Neural Network (CNN) models, i.e., ResNet [10] and DenseNet [11], to clas-
sify multiple thoracic pathologies according to information that is captured from global
CXR image. Although these methods have achieved some promising results, exploiting
informative regions to learn discriminative local features from CXR images remains an
open research challenge. A complete CXR image mainly consists of different organs, such
as the left-lung, right-lung and heart, where some organs may have pathological changes
and have some specific diseases. For example, atelectasis is usually related to only lungs
and cardiomegaly is usually related to only the heart as illustrated in Figure 1. To capture
the local information, some approaches [12,13] design a multi-channel CNN architecture
that learns complementary local features from some cropped local regions. On the other
hand, the local region generation technique usually suffers from misalignment problem and
introduces extra computation.

(a) (b)

Figure 1. Motivations and concepts behind the proposed part-aware mask-guided attention in
thorax disease classification: Pathological changes usually only happen in the local regions of CXR
image, the corresponding thorax diseases thus only relate to specific organs. (a) A CXR image has
‘Atelectasis’, (b) A CXR image has ‘Cardiomegaly’.

Visual attention is a mechanism that guides the feature learning toward informative
regions by indicating where the important cues are lying for a certain task. Given a specific
learning object, it helps the deep models to learn target relevant feature representations by
generating an attention map where non-informative regions usually have much weaker
response compared with regions of interest. Due to its good potential to train a better deep
model, visual attention has been widely used for various computer vision tasks, i.e., image
classification [14] and person re-identification [15], and has brought significant performance
improvements. Visual attention also has been applied in thorax disease classification in
recent years, but most existing methods [16–20] learn global attention maps from whole CXR
images only where local informative cues lying around specific organs are often suppressed.
To refine the learned global feature, several works [16,17,19] have been reported to either
use single attention module or use multiple attention modules to re-weight the learned
feature representations of backbone network. In addition, ref. [20] adopts a multi-branch
attention network to capture richer global feature representations. To capture disease-
specific local features, Huang et al. [18] learn a multi-attention network, in which each
attention map presents the most informative regions related to each category. However,
the produced attention maps are also global since they are learnt from the whole CXR image.
In addition, since a deep network usually learns feature representation and attention map
simultaneously supervised by a single task driven objective function, it might be biased to
capture too many background cues when CXR images have very complex backgrounds.
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These cues dramatically introduce difficulties when extracting robust feature representations
and thus compromise the thorax disease classification performance.

Motivated by the experience of expert radiologists who leverage both global (con-
textual) and local (saliency) cues simultaneously to analyze the CXR images, we aim to
learn both global and local features from CXR images for optimal thorax disease classi-
fication. Specifically, global features from whole CXR images lay the groundwork, and
local features from organ images capture complementary information. Robust local feature
learning requires good localization of human organs, which can be located by human organ
masks obtained from anatomical segmentation models [21]. However, to the best of our
knowledge, only one work [13] has adopted organ masks into thorax disease classification.
This is mainly due to the fact that anatomical segmentation models bring large compu-
tational complexity. Inspired by this observation, we propose an innovative Part-Aware
Mask-Guided Attention Network (PMGAN), which learns complementary global and local
feature representations guided by visual attention networks. Specifically, we introduce a
segmentation constraint using an organ mask to regularize the learning of the attention
module, in this way the organ mask is only needed in the training stage, which will not
introduce extra computation during the inference stage.

The reset of this paper is organized as follows. Section 2 introduces some related
works. Section 3 presents PMGAN in detail and our experimental results are showed in
Section 4. At last, the summary of this work is presented in Section 5.

2. Related Work

Deep learning has been widely studied for years in medical image analysis and a
number of technologies have been reported in the literature. This section will introduce
related deep learning-based thorax disease classification methods since our approach is
CNN based. According to different learning strategies, current deep learning-based meth-
ods can be broadly grouped into three categories including: (1) thorax disease classification
using global information [9,22–28], (2) thorax disease classification using global and local
information [12,13] and (3) thorax disease classification using visual attention [16–20].

2.1. Thorax Disease Classification Using Global Information

Since the 2012 ImageNet challenge [29], where AlexNet architecture [30] improved
the accuracy remarkably for image classification, CNN has been proved to be a very pow-
erful tool to deal with computer vision and pattern recognition problems, and becomes
prevalent in visual feature representation learning. For the thorax disease classification
task, earlier researchers directly adopt off-the-shelf CNN architectures, i.e., ResNet [10] and
DenseNet [11], to learn global feature representations from whole CXR images. For exam-
ple, Wang et al. [9] adopted AlexNet [30], GoogLeNet [31], VGG16 [32] and ResNet50 [10] as
feature extraction networks, respectively. The feature extraction network is first pre-trained
on ImageNet [29]. Then they remove the last fully connected layers and the final classifi-
cation layer, targeting the pre-trained backbone. In addition, they add a transition layer,
which is followed by a global pooling layer and a prediction layer to form the complete
model for thorax disease classification. Wang et al. [25] propose a TieNet, which introduces
the text embedding of radiological reports to improve the thorax disease classification
accuracy. Rajpurkar et al. [23] design a 121-layer CheXNet which has been announced to
outperform radiologists in their ability to detect 14 thoracic diseases on ChestX-ray14 [9]
dataset. Aiming to capture detail information from original High-Resolution (HR) CXR
images, Ranjan et al. [22] introduce an auto-encoder structure into the CNN model, which
jointly learns thoracic disease classification and image reconstruction. Specifically, they use
a learnable auto-encoder to reduce the resolution of original CXR images rather than simply
use interpolation techniques, which may result in the loss of detail cues, thus severely
hindering thorax disease classification. Pant et al. [33] adopt a residual UNet to replace
generic CNN structure for pneumonia diagnoses. Chen et al. [24] combine two asymmet-
ric subnetworks (ResNet [10] and DenseNet [11]) to adaptively capture discriminative
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feature representations of different abnormalities from the CXR images. Yao et al. [27]
use LSTMs to leverage interdependencies among target labels under the assumption that
multiple diseases classification contains rich relationship information among pathologies.
Chen et al. [26] bring Graph Convolution Networks (GCNs) into thoracic disease classifica-
tion to explore the correlation information of pathologies. More recently, Gündel et al. [28]
incorporate the lung/heart segmentation task into the thorax disease classification system
to regularize the feature representation learning.

Though these approaches can capture global CXR image feature representations
effectively and improve the thorax disease classification accuracy significantly, they often
ignore local cues which are essential for some diseases with only small pathological changes
and thus lead to suboptimal classification performance.

2.2. Thorax Disease Classification Using Global and Local Information

With the goal of addressing the problem of methods learning global feature repre-
sentation only, there are new methods proposed to jointly learn complementary global
and local features from CXR images. Designing multi-channel CNN architecture is a
common approach to learn multi-granularity feature representation. Multi-channel CNN
architecture has been adopted for various tasks [34–39] in computer vision and pattern
recognition research communities due to its good potential to learn complementary feature
representations. For example, Wu et al. [34] propose an MM-CNN which learns feature
representations of industrial process data along the time dimension by a multi-channel
and multi-head CNN. They capture features of industrial process data from the local to
the global level, for use in fault classification. Lyu et al. [35] adopt the multi-channel CNN
architecture to improve the performance of ultrasound tomography image reconstruction.
Cheng et al. [36] propose a multi-channel parts-based CNN to learn global features from
whole-body images and local features from body-part images for person re-identification.
Over the past few years, several multi-channel CNN based models [12,13] have been pro-
posed for learning global and local feature representations for thorax disease classification.
For example, Wang et al. [12] propose a two-branch CNN architecture including: (1) one
global branch that learns features from global images and (2) one local branch that learns
features from a local region, which is guided by heatmaps produced by class activation
mapping (CAM). Liu et al. [13] propose a two-branch CNN model where one branch is
used to capture the features of the whole CXR images and the other branch is used to
obtain features of the cropped lung region images. Note that the local lung regions are
generated by a segmentation network, which introduces extra computation.

Although a number of multi-channel CNN based methods have been proposed, ex-
ploiting accurate organ images to learn detail cues remains an open research challenge.
In addition, most existing methods adopt off-the-shelf CNN architectures to design multi-
channel network without considering the relationship among branches. More impor-
tantly, they miss in-depth examination of specific organ images and ignore the impor-
tance of different regions within both global images and organ images while learning
feature representations.

2.3. Thorax Disease Classification Using Visual Attention

Recently, a number of methods use visual attention to optimize deep neural networks
for thorax disease classification [16–20]. For example, Sorkhei et al. [19] add a space at-
tention module on top of a pre-trained ResNet to capture global context features, which
are then combined with original feature maps (local features). In addition, they introduce
an attention gated module after the second and third residual blocks of ResNet to pro-
gressively refine the learning feature representation from coarse to fine. Ma et al. [20]
propose a cross-attention model that first leans two feature maps by using two independent
attention networks. Then, an element-wise hadamard product is adopted to fuse these two
feature maps to produce cross-attention feature maps. Wang et al. [16] propose a triplet
attention model that simultaneously learns the channel-wise, element-wise, and scale-wise
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attention to capture discriminative information for the thorax disease classification task.
Huang et al. [18] propose multiple attention modules that learn multi-attention maps si-
multaneously. They optimize each attention module by corresponding disease label and
thus each attention map consists of feature representations that are related to each category.
Ma et al. [17] propose a multi-attention learning framework for comprehensive thoracic
disease classification and localization, which consists of a feature attention module, a space
attention module and a hard example attention module. Specifically, the feature attention
module is a squeeze-and-excitation structure, which is equipped after each residual block of
ResNet101 to refine the extracted feature maps at multiple resolutions. The space attention
module consists of a global average pooling layer and a resize operation, which is used to
enlarge the receptive field of final classifier and bring global information. A hard example
attention module is proposed to alleviate the class imbalance problem by increasing the
proportion of positive examples.

A visual attention mechanism has been proven to be an efficient technique in feature
representation learning [40–42]. However, on the one hand, most existing approaches
mainly focus on learning the attention map using global CXR images, without considering
learning dedicated attention map from each local organ region. On the other hand, global
attention tends to guide feature learning toward the global salient regions which often
suppresses local informative regions around organs, and thus leads to suboptimal thorax
disease classification performance when CXR images have very complex backgrounds.

Aiming to address above constraints, the proposed part-aware mask-guided attention
network learns global and local feature representations from both global and local informa-
tive regions. First, it adopts multiple mask-guided attention for accurate organ detection.
Second, it learns complementary attention maps from global CXR images and precisely
located organ images. Moreover, two independent binary cross-entropy classification
losses are introduced to optimize attentive global and local branches independently and
concurrently, with the aim of maximize the learning of complementary local and global
feature representations.

3. Methodology

The thorax disease classification task is defined as: Given N CXR images I = {Ii}N−1
i=0

in which each image is labeled with q thorax diseases Li = [l1
i , l2

i , ..., l j
i ] (where l j

i ∈
{0, 1}, j = 0, ..., q), the objective of thorax disease classification is to learn a model that has
the capability of correctly classifying each CXR image into categories of corresponding q
thorax diseases. Thus, thoracic disease classification is a multi-label classification problem.

We propose a novel Part-Aware Mask-Guided Attention Network (PMGAN) that
learns complementary global and local features from whole CXR images and local organ
images independently and concurrently for thorax disease classification, as illustrated
in Figure 2. The following subsections will present the design of PMGAN, the baseline
model, the soft attention module, the part-aware mask-guided attention module and the
loss functions in detail.
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Figure 2. The framework of the proposed part-aware mask-guided attention network (PMGAN). Given a CXR image Ii,
features are first sequentially extracted by the Conv1 layer and residual blocks I–III from low-level to high-level. Blocks I and
II are followed by a dedicated Soft Attention (SA) module to refine the corresponding feature representations. An all-organ
region and three single-organ regions are then determined by four independent Mask-Guided Attention (MA) module.
Four dedicated attentive branches based on residual Block IV are further designed to map the respective input region to
feature representations.

3.1. Baseline Model

We adopt the ResNet50 [10] as our base network which consists of a conv layer and
four residual blocks (Blocks I–IV) as illustrated in Figure 2. For a given CXR image Ii,
a conv layer is first employed to capture low-level features, then four consecutive residual
blocks are adopted to further capture high-level semantic features progressively. On top
of residual Block IV, a global average pooling layer is first applied to the learned global
feature representation to obtain a feature vector vi. A q-dimensional fully-connected layer
is then applied to obtain the output Yi = [Y1

i , Y2
i , ..., Yq

i ], which is the predicted probability
of q thorax diseases. Finally, a sigmoid activation layer is employed to normalize the output
Yi to range [0, 1] as follows:

Y j
i = Sigmoid(wjvi + bj), j = 0, ..., q, (1)

where wj and bj denote the weight vector and bias terms of the prediction function for the
j-th disease. Table 1 presents the detailed configuration of the base network.

We use the binary cross-entropy loss to train the base network. Given a training
CXR image Ii with q thorax disease labels Lj

i , j = 0, ..., q and Y j
i denoting the output of the

network, the binary cross-entropy loss L1
ce can be defined as follows:

L1
ce = − 1

N

N

∑
i=1

1
q

q

∑
j=1

[Lj
i log(Y j

i ) + (1− Lj
i)log(1−Y j

i )], (2)

where N is the number of training images, q is number of disease classes.
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Table 1. Detailed design and implementation of the baseline network.

Layer # Stage Output Size Layer

1 Conv1 256 × 256 7 × 7, 64, Stride-2

9 Block I 128 × 128

3 × 3 MaxPooling, Stride-2[ 1 × 1, 64
3 × 3, 64
1 × 1, 256

]
× 3

18 Block II 64 × 64

[ 1 × 1, 256
3 × 3, 256
1 × 1, 512

]
× 6

12 Block III 32 × 32

[ 1 × 1, 512
3 × 3, 512

1 × 1, 1024

]
× 4

9 Block IV 16 × 16

[ 1 × 1, 1024
3 × 3, 1024
1 × 1, 2048

]
× 3

1 Prediction 14
Global Average Pooling

14 Fully Connection

3.2. Soft Attention

Aiming to refine the extracted features across multiple resolutions, we design multiple
soft attention modules that re-weight the learned feature representations of residual blocks
I–IV progressively as illustrated in Figure 2. Specifically, Let fi ∈ Rh×w×c denote the
feature maps extracted by the i-th residual block, where h, w and c denote the height, width
and channel of fi, respectively. Let mi ∈ Rh×w×c (with the same size as fi) denotes the
attention maps estimated by the soft attention module that follows the i-th residual block.
With the feature maps fi and attention maps mi, we adopt a residual attention scheme [14]
to re-weight the feature maps fi as follows:

f̂i = (1 + mi)⊗ fi (3)

where f̂i denotes the adjusted feature maps, ⊗ denotes element-wise product. As defined
in Equation (3), the features are largely enhanced when the attention scores of corre-
sponding positions approximate 1. Otherwise, they remain almost unchanged when the
corresponding attention scores approximate 0.

Note that the Mask-Guided Attention (MA), after residual block III, has the same
structure as the soft attention, the only difference is that it is constrained by organ masks.
More details of the proposed mask-guided attention module will be described in the
next subsection.

Aiming to reduce the number of parameters and lower the optimizing complexity,
we split the soft attention network into two sub-networks, one for spatial-wise attention
network and the other for channel-wise attention network as illustrated in Figure 3. These
two attention sub-networks estimate the attention scores concurrently and independently.
Specifically, the spatial-wise attention network estimates an attention map si ∈ Rh×w×1

(with the same spatial size as fi) of the i-th residual block, in which each attention confi-
dence score indicates the importance of each spatial image region. All features therefore
share the same spatial attention map. For example, the heart region is important when the
CXR image has cardiomegaly. The channel-wise attention network estimates an attention
map ti ∈ R1×1×c (with the same size of channel as fi) of i-th residual block, in which each
attention confidence score indicates the importance of each semantic feature. For example,
the shape feature is the most important visual cue around the heart region while predicting
cardiomegaly. The spatial-wise and channel-wise attention networks thus guide the learn-
ing to capture most important features from semantic-related regions simultaneously for
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optimal thorax disease classification. More details of the proposed soft-attention network
will be presented in the following subsections, including spatial-wise attention network
and channel-wise attention network.

ℎ ∗ 𝑤 ∗ c

ℎ ∗ 𝑤 ∗ 𝑐

Soft Attention

Spatial-wise Attention

Channel-wise Attention

Conv Layer

DeConv Layer

Element-Wise Product

Element-Wise Sum

Reduce GAP

ℎ ∗ 𝑤 ∗ 1 1 ∗ 1 ∗ 𝑐

Sigmoid

ℎ ∗ 𝑤 ∗ 𝑐
GAP Global Average Pooling

Figure 3. Architecture of the proposed soft attention network: Given the feature maps fi that
extracted by the i-th residual block, a spatial-wise attention sub-network is adopted to estimate
an attention map si ∈ Rh×w×1, while a channel-wise attention sub-network is applied to estimate
an attention map ti ∈ R1×1×c. Spatial-wise and channel-wise attention maps are then fused by an
element-wise production operation for feature re-weighting.

3.2.1. Spatial-Wise Attention

The spatial-wise attention network consists of a feature reduction layer and an encoder-
decoder structure as illustrated in Figure 3. In particular, the feature reduction layer is a
global average pooling operation that compresses the feature maps fi of i-th residual block
across the channel dimension as follows:

f spatial
i =

1
c

c

∑
j=1

fi,1:h,1:w,j (4)

As studied in [43], since all visual cues share the same spatial attention map, the
feature reduction layer will not deteriorate the attention learning. Moreover, it reduces the
parameters of the following layers by 1

c times since the input size h× w× c is compressed
to h× w× 1.

On the other end, the encoder–decoder structure attempts to extract multi-scale feature
representations for comprehensive attention estimation. It is inspired by the human visual
system that first perceives the whole image in a large reception field and then progressively
focuses on the salient local regions for discriminative visual cues capturing. Specifically,
the encoder consists of several conv layers (each with stride 2 and kernel size 3 × 3)
that process the input feature map down to a predefined lowest resolution. Afterward,
the decoder consists of several deconv layers (with the symmetrical structure as encoder)
that iteratively generate a pixel-wise attention map (with the same spatial size as the input
feature map). For the encoder, note that we apply 3 conv layers in Block I, 2 conv layers in
Block II, and 1 conv layer in Block III–IV.
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3.2.2. Channel-Wise Attention

A feature channel can be interpreted as a semantic feature that captured by a conv filter
across the spatial domain. The learning of the channel-wise attention can be interpreted as
a process of selecting the most discriminative features with respect to the all spatial image
regions. All spatial image regions therefore share the same channel attention map. We
first apply a global average pooling layer to the input feature maps fi to obtain a channel
feature f channel

i as follows:

f channel
i =

1
h× w

h

∑
j=1

w

∑
k=1

fi,j,k,1:c. (5)

Two convolutional layers are then adopted to process the channel feature f channel
i to

obtain a channel-wise attention map ti ∈ R1×1×c as follows:

ti = ReLu(BN(W2(ReLU(BN(W1 f channel
i ))))), (6)

where W1 ∈ R c
r×c and W2 ∈ Rc× c

r denote the parameters of the first and second convolu-
tional layers, r denotes the reduction factor that is used to reduce model complexity. In our
implementation, r is empirically set at 16.

3.2.3. Combination of Spatial-Wise and Channel-Wise Attention

The spatial-wise attention map si and channel-wise attention map ti are combined by
an multiplication operation followed by a convolutional layer (with kernel size 1× 1) to
produce the final attention map mi as follows:

mi = Conv(si × ti) (7)

Finally, a sigmoid activation layer is employed to normalize the output mi to range [0, 1].

3.3. Part-Aware Mask-Guided Attention

As illustrated in Figure 2, aiming to extract richer visual cues from local regions
for thorax disease classification, we first design four dedicated Mask-guided Attention
(MA) modules Ab(b = 0, ..., 3) to process the input feature maps f3 (output of residual
Block III) to produce organ-related features. Four network branches with independent
parameters then further learn higher-level global and local features from previous organ-
related features. Based on the observation that organs can be precisely localized by organ
masks, we adopt anatomical segmentation techniques [21,44] to first automatically generate
organ masks and then use the generated organ masks to constrain the attention learning of
the proposed MA. In particular, we employ an off-the-shelf segmentation method [21] to
generate four organ masks, the all-organ mask M0, the left-lung mask M1, the right-lung
mask M2, and the heart mask M3 as illustrated in Figure 4. Since the mask-guided attention
network has the same architecture as soft attention network, we introduce independent
segmentation constraint into each MA to guide the attention learning toward corresponding
organ region. Specifically, with the organ mask Mb(b = 0, ..., 3) and spatial-wise attention
map sb

3 (generated by b-th MA after 3-rd residual block), the segmentation constraint is
computed by Root Mean Squared Error (RMSE) as follows:

Lb
att =

√
∑h

j=1 ∑w
k=1 ‖Mb

j,k − sb
3,j,k‖2

N
, (8)

where N is the number of training images.
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Figure 4. Illustration of the organ segmentation: (a) Input CXR image, (b) four generated or-
gan masks.

The overall segmentation constraint can thus be defined as follows:

Latt = L0
att + β

3

∑
b=1

Lb
att, (9)

where β controls the relative weights of segmentation constraints of global and local branches.
An important point to note here is that anatomical segmentation model brings large

computational complexity. Since we only use the segmentation constraint (as defined
in Equation (8)) in the training stage, the anatomical segmentation model is used only
during training to generate the organ masks. In the inference stage, our proposed approach
therefore dose not add any computation that introduced by the anatomical segmentation
model. Such comprehensive attention modeling elegantly guides the network branches
to learn feature presentations from precisely localized organ regions in training stage and
without introducing computation during the inference stage.

3.4. Loss Functions

As illustrated in Figure 2, four prediction results are obtained according to their
corresponding features relate to all-organ region, left-lung region, right-lung region and
heart region, respectively. Moreover, a max score operation is applied to the local branches
that aim to select the most relative organ for each disease. Aiming to maximize the
learning of complementary global and local features from all-organ and single-organ
regions for optimal thorax disease classification, two independent binary cross-entropy loss
are adopted to supervise the feature learning of global and local branches. Thus the binary
cross-entropy loss L2

ce of local branches can be defined in a similar way as Equation (2)
as follows:

L2
ce = − 1

N

N

∑
i=1

1
q

q

∑
j=1

[Lj
i log(Zj

i ) + (1− Lj
i)log(1− Zj

i )], (10)

where q is number of disease classes, Zj
i is the probability of j-th thorax disease relates to

i-th CXR image as predicted by local branches.
The overall classification loss can thus be derived by combining the global binary

cross-entropy loss L1
ce (as defined in Equation (2)) and local binary cross-entropy loss L2

ce
as follows:

Lce = L1
ce + αL2

ce, (11)

where α controls the relative weights of binary cross-entropy losses of global and local
branches which is set to 0.5 in our implementation.

The objective function of the part-aware mask-guided attention network can be de-
rived by combining the binary cross-entropy loss Lce with the segmentation constraint
Latt as follows:

L = Lce + Latt. (12)
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4. Experiments
4.1. Dataset and Settings
4.1.1. Dataset

We evaluated our proposed Part-Aware Mask-Guided Attention Network (PMGAN)
on the ChestX-ray14 dataset, which is an extension of ChestX-ray8 dataset released in [8].
ChestX-ray14 is a commonly used benchmark dataset for thoracic disease classification
task. It consists of 112,120 frontal-view Chest X-ray (CXR) images of 30,805 unique patients
with 14 disease classes. These 14 disease classes are Atelectasis, Cardiomegaly, Effusion,
Infiltration, Mass, Nodule, Pneumonia, Pneumothorax, Consolidation, Edema, Emphy-
sema, Fibrosis, Pleural Thickening, and Hernia. The thoracic disease classification is thus
a multi-label classification task. This dataset provides CXR images in PNG format with
1024× 1024 resolution. The dataset also provides meta data including: 14 diseases labels,
patient ID, patient age, patient gender and view position. For the 112,120 CXR images,
60,412 of them are labeled as ‘No Finding’ (without any diseases), while the others are
labeled with up to 14 thorax diseases. Figure 5 presents the label distribution of 14 thorax
diseases on the ChestX-ray14 dataset. In our all experiments, we followed the official
protocol in [8] which randomly selects 70% of the images for training, 10% for validation
and the rest 20% from testing. In addition, we also evaluated our proposed PMGAN using
k-fold cross-validation method. In our implementation, k was empirically set at 5. More
specifically, the ChestX-ray14 dataset was randomly partitioned into five equally-sized sub-
samples, where each subsample consisted of 22,424 CXR images. For the five subsamples,
a single subsample was used as testing data, and the remaining four subsamples were used
as training data. The cross-validation process was then repeated five times, with each of
the five subsamples used exactly once as the validation data. The five results were then be
averaged to produce the final evaluation performance.
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Figure 5. Distribution of 14 thorax disease labels on the ChestX-ray14 dataset.

4.1.2. Evaluation Protocol

We employed the Area-Under-Curve (AUC) to evaluate the performance of the pro-
posed PMGAN. AUC is a widely used metric for binary classification problems including
the thorax disease classification performance problem. Specifically, q ROC (Receiver Op-
erating Characteristic) curves for q disease classes are first plotted to measure the thorax
disease classification performance at various threshold settings. The AUC is then used as a
summary of each ROC curve to measure the ability of the classifier to distinguish between
classes. The higher the AUC, the better the classifier is at distinguishing between CXR
images with the thorax disease and no disease.
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4.1.3. Implementation Details

Our proposed PMGAN was implemented on the PyTorch framework. Specifically,
the PMGAN was first initialized with the weights that pre-trained on ImageNet [29]. It
was then fine-tuned on the ChestX-ray14 dataset by the Adam optimizer [45], where the
batch size is set to 128, the weight decay was set to 1× 10−4, the learning rate was set to
0.0001. We fine-tuned the network with a maximum number of epochs of 100 and early
stop the training when the validation error improvement was below a threshold with a
patience of 5 epochs. All CXR images were rescaled to 512× 512, and each image was
first normalized by subtracting its channel means and then dividing its channel standard
deviations. In the inference stage, we first predicted the classification score by using both
global and local branches simultaneously. A max score operation is then applied to the
scores predicted by global and local branches to obtain the final score.

4.2. Comparison with State of the Arts

The proposed PMGAN was evaluated and compared with most state-of-the-art thorax
disease classification methods on widely used dataset ChestX-ray14. Specifically, PMGAN
was compared with 11 state-of-the-art methods including: (1) eight methods using global
information only (Wang [9], AECNN [22], CheXNet [23], DualCheXNet [24], TieNet [25],
CheXGCN [26], Yao [27] and Gündel [28]), (2) two methods using both global and local
information (ThoraxNet [12] and SDFN [13]), and (3) five methods using visual attention
(A3Net [16], Ma [17], Huang [18], AG [19] and CAN [20]). Tables 2 and 3 show the ex-
perimental results. As Tables 2 and 3 show, PMGAN obtained superior thorax disease
classification accuracy and outperformed state-of-the-art approaches by 1.5% in average
AUC. The significant performance improvements demonstrate the importance of learning
complementary global and local features from informative all-organ region and single-
organ regions using comprehensive attention. In particular, PMGAN improved average
AUC by 2.37% as compared to the CheXNet [23] which learns global feature only. In ad-
dition, PMGAN improved average AUC by 1.5% as compared to the method proposed
by Huang et al. [18], which uses the global visual attention only. By taking a second
look, it can be observed our proposed PMGAN achieves comparable performance when
evaluated using k-fold cross-validation method as compared with using hold-out method.
This demonstrates the robustness of our proposed model.

Table 2. Comparison with the state of the arts (using global information only) on the dataset ChestXray14: the best
performance at each row is shown in bold. ‘*’ denotes that the performance is evaluated by k-fold cross-validation method.

Methods
Wang

[9]
TieNet

[25]
Yao
[27]

Gündel
[28]

DualCheX
Net [24]

AECNN
[22]

CheX
GCN [26]

CheXNet
[23] Ours Ours *

Atelectasis 70.00 73.20 77.20 78.50 78.40 78.20 78.60 80.90 84.09 83.56
Cardiomegaly 81.00 84.40 90.40 89.20 88.80 90.10 89.30 92.50 92.15 91.90

Effusion 75.90 79.30 85.90 83.60 83.10 83.60 83.20 86.40 89.19 89.34
Infiltration 66.10 66.60 69.50 71.00 70.50 70.90 69.90 73.50 72.49 73.06

Mass 69.30 72.50 79.20 82.60 83.80 83.80 84.00 86.80 87.24 88.19
Nodul 66.90 68.50 71.70 75.50 79.60 78.80 80.00 78.00 83.15 82.33

Pneumonia 65.80 72.00 71.30 73.50 72.70 73.60 73.90 76.80 78.80 76.85
Pneumothorax 79.90 84.70 84.10 84.70 87.60 86.80 87.60 88.90 91.19 91.50
Consolidation 70.30 70.10 78.80 74.70 74.60 76.10 75.10 79.00 81.98 80.94

Edema 80.50 82.90 88.20 83.70 85.20 85.00 85.00 88.80 90.67 91.25
Emphysema 83.30 86.50 82.90 92.50 94.20 92.20 94.40 93.70 95.33 95.06

Fibrosis 78.60 79.60 76.70 83.80 83.70 84.00 83.40 80.50 87.06 85.26
PT 68.40 73.50 76.50 78.50 79.60 78.30 79.50 80.60 81.02 83.03

Hernia 87.20 87.60 91.40 90.50 91.20 92.40 92.90 91.60 96.75 96.24

Avg 74.51 77.24 80.27 81.59 82.36 82.41 82.63 84.14 86.51 86.32
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Table 3. Comparison with the state-of-the-art (using both global and local information, or using visual attention) on the
dataset ChestXray14: the best performance at each row is shown in bold. ‘*’ denotes that the performance is evaluated by
k-fold cross-validation method.

Methods
Thorax
Net [12]

AG
[19]

Ma
[17]

SDFN
[12]

CAN
[20]

A3Net
[16]

Huang
[18] Ours Ours *

Atelectasis 75.00 75.19 76.27 78.10 77.70 77.90 82.97 84.09 83.56
Cardiomegaly 87.10 88.42 88.35 88.50 89.40 89.50 91.55 92.15 91.90

Effusion 81.80 81.22 81.59 83.20 82.90 83.60 88.78 89.19 89.34
Infiltration 68.20 69.79 67.86 70.00 69.60 71.00 71.15 72.49 73.06

Mass 79.90 79.56 80.12 81.50 83.80 83.40 86.19 87.24 88.19
Nodul 71.50 71.72 72.93 76.50 77.10 77.70 80.83 83.15 82.33

Pneumonia 69.40 69.23 70.97 71.90 72.20 73.70 78.09 78.80 76.85
Pneumothorax 82.50 85.70 83.77 86.60 86.20 87.80 87.95 91.19 91.50
Consolidation 74.20 72.30 74.43 74.30 75.00 75.90 81.15 81.98 80.94

Edema 83.50 83.14 84.14 84.20 84.60 85.50 89.92 90.67 91.25
Emphysema 84.30 88.60 88.36 92.10 90.80 93.30 93.87 95.33 95.06

Fibrosis 80.40 78.81 80.07 83.50 82.70 83.80 83.70 87.06 85.26
PT 74.60 76.19 75.36 79.10 77.90 79.10 79.06 81.02 83.03

Hernia 90.20 91.38 87.63 91.10 93.40 93.80 94.92 96.75 96.24

Avg 78.76 79.38 79.41 81.47 81.70 82.57 85.01 86.51 86.32

4.3. Ablation Study

Our proposed PMGAN learns complementary global and local feature representations
for comprehensive thoracic disease classification. The soft attention is designed to guide
feature learning toward informative regions. In addition, multiple part-aware mask-guided
attention network branches are designed to learn feature representations from an all-organ
region, left-lung region, right-lung region and heart region, respectively. To find out
how each of these two innovative attention modules helps to improve the thorax disease
classification performance in Tables 2 and 3, We developed three models for ablation study
including (1) a baseline model which implements the base ResNet50; (2) a soft attention
(SA) model that includes the soft attention beyond the baseline; (3) a mask-guided attention
(MA) model that includes the part-aware mask-guided attention network beyond the
SA model.

Table 4 presents the results about the performance of the 3 models on the ChestX-ray14
dataset. As Table 4 shows, the inclusion of soft attention significantly helps to improve
the thorax disease classification performance. Specifically, SA improves average AUC
by 1.32% as compared to the baseline. Especially in Herina, SA outperforms baseline by
a large margin (3.84% in AUC). This demonstrates the effectiveness of learning feature
representations from informative regions for thorax disease classification problem. More
specifically, MA consistently outperforms SA, which is largely due to the incorporation of
the complementary local features.

Figure 6 further illustrates how our proposed PMGAN improves the baseline net-
work that does not include soft attention and part-aware mask-guided attention. In the
figure, we plot the ROC curves of baseline, soft SA and MA on the 14 diseases ChestX-
ray14 dataset.
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Table 4. Ablation study on the dataset ChestXray14: the best performance at each row is shown
in bold.

Methods Baseline SA MA

Atelectasis 82.29 83.45 84.09
Cardiomegaly 90.60 91.63 92.15

Effusion 88.38 88.70 89.19
Infiltration 70.61 71.55 72.49

Mass 85.72 86.51 87.24
Nodul 78.77 80.25 83.15

Pneumonia 76.71 77.30 78.80
Pneumothorax 87.49 89.65 91.19
Consolidation 81.04 81.52 81.98

Edema 89.29 90.44 90.67
Emphysema 92.57 93.85 95.33

Fibrosis 84.92 85.94 87.06
PT 78.56 80.14 81.02

Hernia 90.84 94.68 96.75

Avg 84.18 85.40 86.51
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Figure 6. The ROC curves on the 14 diseases. (a) The ROC curves of baseline network, (b) The ROC curves of soft attention
network, (c) The ROC curves of part-aware mask-guided attention network.

4.4. Discussion

In addition to the ablation study, we also studied three factors that could affect the
thorax disease classification performance including: (1) the inclusion of mask-guided
attention after different residual blocks, (2) the use of multiple binary cross-entropy
loss, (3) the hyper-parameters, and (4) the computation of segmentation constraint with
different losses.

4.4.1. Mask-Guided Attention Analysis

Our PMGAN consists of four branches including: (1) a global branch that learns
feature representation from all-organ region, and (2) three local branches that learn feature
representation from left-lung region, right-lung region and heart region, respectively.
Since the lower convolutional layers extract low-level patterns that are common to all
semantic structures in the same CXR image, the global and local branches share the shallow
layers to reduce the number of model parameters and over-fitting risks. On the other
hand, the model with more shared lower layers will limit the representation capability of
higher layers, which may deteriorate the thorax disease classification performance. We
evaluate how the sharing granularity of global and local branches affects the thorax disease
classification performance, in cases where the mask-guided attention module is appended
to different residual blocks.
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As mentioned in Section 3.2, the Mask-Guided Attention (MA) has the same structure
as the Soft Attention (SA), and the only difference is that it is constrained by organ masks.
In our implementation, we adopt segmentation constraint (as defined in Equation (8)) to
guide the attention learning of different SA modules that are appended to different residual
blocks. A SA module with segmentation constraint is named to MA. Since the experiments
here are to evaluate how the sharing granularity of global and local branches affects the
thorax disease classification performance, the global and local branches only share the
layers before MA module; and do not include MA and following layers. As Table 5 shows,
the best performance is obtained when mask-guided attention module is appended to
residual Block III.

Table 5. Comparison of mask-guided attention after different block: the best performance at each
row is shown in bold.

Methods Block I Block II Block III Block IV

Atelectasis 83.75 83.94 84.09 83.79
Cardiomegaly 91.12 91.30 92.15 91.62

Effusion 88.84 88.85 89.19 88.87
Infiltration 71.75 71.99 72.49 71.75

Mass 86.74 87.03 87.24 87.23
Nodul 82.56 82.72 83.15 82.50

Pneumonia 77.13 78.17 78.80 77.51
Pneumothorax 90.34 90.89 91.19 90.49
Consolidation 81.21 81.34 81.98 81.55

Edema 90.42 90.47 90.67 90.26
Emphysema 94.83 95.22 95.33 94.92

Fibrosis 85.83 86.44 87.06 86.23
PT 80.13 80.54 81.02 80.45

Hernia 94.61 95.95 96.75 93.52

Avg 85.66 86.06 86.51 85.76

4.4.2. Multi-Task Learning

One key idea in the training of the proposed PMGAN is to optimize the global and local
branches independently with multiple losses to maximize the learning of complementary
global and local features from all-organ region and single-organ regions. We investigate
how this multi-task learning approach helps to improve the thorax disease classification per-
formance as compared with the traditional feature representation learning with single loss.
As can be seen from Table 6, when the PMGAN is trained by the multi-task learning strategy
with multiple binary cross-entropy losses, it achieves significant performance improvement.
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Table 6. Comparison of single loss and multiple loss: the best performance at each row is shown
in bold.

Methods Single Loss Multiple Loss

Atelectasis 83.46 84.09
Cardiomegaly 91.89 92.15

Effusion 88.95 89.19
Infiltration 71.96 72.49

Mass 86.39 87.24
Nodul 81.59 83.15

Pneumonia 77.56 78.80
Pneumothorax 89.84 91.19
Consolidation 81.57 81.98

Edema 89.92 90.67
Emphysema 94.15 95.33

Fibrosis 85.89 87.06
PT 80.42 81.02

Hernia 96.26 96.75

Avg 85.70 86.51

4.4.3. Parameter Analysis

We first evaluate the impact of α (as defined in Equation (12)) which controls the
relative weights of binary cross-entropy losses of global and local branches. As illustrated
in Figure 7a, the inclusion of multiple binary cross-entropy losses clearly improves the
thorax disease classification performance (as compared with the inclusion of single loss
when α is set to 0). The best thorax disease classification performance is archived when
α = 0.5. We also evaluate the impact of β (as defined in Equation (9)) which controls the
relative weights of segmentation constraints of global and local branches. Figure 7b shows
the thorax disease classification performances with different values of β. As illustrated in
Figure 7b, a moderate β helps to enhance classification capability of PMGAN, and the best
performance is obtained when β is set to 1.0.
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Figure 7. Evaluation with different values of α and β .

We also compare the proposed PMGAN with the baseline model (ResNet50 [10])
in CPU computational complexity. As Table 7 shows, our PMGAN only doubles the
computational complexity, though it consists of four branches. The fair computational
complexity is largely due to the four branches of PMGAN share the first conv layer and
three residual blocks (Blocks I–III) as illustrated in Figure 2. Additionally, the soft attention
and part-aware mask-guided attention are both computational light and do not introduce
much computational overhead.
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Table 7. Comparisons of CPU computational complexity. FLOPs: the number of floating-point operations.

Models FLOPs Branch

Baseline 2.14× 1010 1
PMGAN 4.49× 1010 4

4.4.4. Segmentation Constraint Analysis

The segmentation constraint can be computed by different losses, such as Binary Cross
Entropy (BCE) loss, dice loss, as well as Root Mean Squared Error (RMSE). We investigate
how different losses affect the thorax disease classification performance. As Table 8 shows,
the thorax disease classification performance of PMGAN is impacted just marginally and
the best results are obtained when the PMGAN is trained by RMSE. The experiment results
demonstrate that different losses result in subtle numerical differences in segmentation
constraint, and may not affect the attention learning significantly.

Table 8. Comparison of different losses for segmentation constraint computing: the best performance
at each row is shown in bold.

Methods BCE Dice RMSE

Atelectasis 83.78 83.75 84.09
Cardiomegaly 91.98 92.07 92.15

Effusion 88.98 88.85 89.19
Infiltration 72.02 72.28 72.49

Mass 86.79 86.59 87.24
Nodul 82.34 82.90 83.15

Pneumonia 78.18 78.99 78.80
Pneumothorax 90.59 90.45 91.19
Consolidation 81.63 81.34 81.98

Edema 90.28 90.10 90.67
Emphysema 94.83 95.06 95.33

Fibrosis 87.10 86.72 87.06
PT 80.52 81.01 81.02

Hernia 95.69 96.15 96.75

Avg 86.05 86.16 86.51

4.4.5. Contribution and Difference from Previous Works

In this paper, we propose an Part-Aware Mask-Guided Attention Network (PMGAN),
which explicitly enforces the complementary global and local feature learning in an at-
tentive manner. More specifically, there are two stages in our network. In the first stage,
an attentive CNN branch is proposed to learn the global feature and attention maps from
whole CXR images. In the second stage, a multi-branch attentive network is designed to
learn the global and local feature representations as well as attention maps simultaneously,
in which each branch is guided by corresponding organ mask. The proposed PMGAN has
four major contributions as listed:

• It designs a novel multi-branch network architecture that learns complementary global
and local feature for thorax disease classification under the guidance of organ masks;

• It designs a novel mask-guided attention network that learns features from precisely
located all-organ and single-organ regions concurrently and independently;

• It designs a novel multi-task independent learning scheme to maximize the learning
of complementary local and global representations by optimizing multiple losses on
the same disease label concurrently;

• It develops an end-to-end trainable deep network that achieves superior thorax disease
classification performance.

Indeed, a number of deep learning based approaches [9,12,13,22–28] have been re-
ported, but exploiting organs to capture local cues for optimal thorax disease classification
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remains an open research challenge. For our part, by observing that some diseases only
occur at a specific organ and some diseases may occur at different organs, we design a
part-aware multi-branch network that learns multi-granular feature representations from
all-organ region and single-organ regions simultaneously for thorax disease classification.

While visual attention has been used in existing methods [16–20], we here explore
the usability of visual attention in multi-granular feature representation learning. More
specifically, for the all-organ region and each of the interested single-organ regions, a ded-
icated attentive network branch is designed to learn the optimal feature representations
and attention maps simultaneously. Such comprehensive attention modeling helps in
overcoming the sub-optimal attention learning of global attention, which tends to guide
feature learning toward the global salient regions which often suppresses local informative
regions around organs.

From the above aspects, we incorporate part-aware multi-granular feature learning
and visual attention and make them learn in a collaborative and complementary way.

Since the proposed PMGAN is regularized by the segmentation constraint (as de-
fined in Equation (8)) in the training stage, the segmentation errors brought by off-the-
shelf anatomical segmentation techniques may cause the attention learning to deteriorate,
and thus lead to sub-optimal thorax disease classification.

5. Conclusions

In this paper, we propose a comprehensive thorax disease classification framework,
PMGAN, that learns a multi-branch network guided by soft attention and part-aware mask-
guided attention. Unlike most existing thorax disease classification methods, which either
directly learn global feature representations from whole CXR images or search for global
informative regions only, the proposed PMGAN independently captures global and local
visual cues from precisely located all-organ and single-organ regions by incorporating soft
attention and part-aware mask-guided attention modules, as well as a four-branch network.
In addition, a novel multi-task learning strategy is designed that optimizes multiple binary
cross-entropy loss on the same disease label concurrently to maximize the learning of
complementary global and local branches. Experimental results on the widely-used CXR
dataset ChestX-ray14 demonstrate the proposed PMGAN obtains superior thorax disease
classification performance against state-of-the-art approaches. Extensive ablation analysis
and discussions are also performed to provide more insight into the proposed PMGAN.
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