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Abstract: Novel approaches to estimate information measures using neural networks are well-
celebrated in recent years both in the information theory and machine learning communities. These
neural-based estimators are shown to converge to the true values when estimating mutual informa-
tion and conditional mutual information using independent samples. However, if the samples in
the dataset are not independent, the consistency of these estimators requires further investigation.
This is of particular interest for a more complex measure such as the directed information, which is
pivotal in characterizing causality and is meaningful over time-dependent variables. The extension
of the convergence proof for such cases is not trivial and demands further assumptions on the data.
In this paper, we show that our neural estimator for conditional mutual information is consistent
when the dataset is generated with samples of a stationary and ergodic source. In other words, we
show that our information estimator using neural networks converges asymptotically to the true
value with probability one. Besides universal functional approximation of neural networks, a core
lemma to show the convergence is Birkhoff’s ergodic theorem. Additionally, we use the technique to
estimate directed information and demonstrate the effectiveness of our approach in simulations.

Keywords: neural networks; conditional mutual information; directed information; Markov source;
variational bound

1. Introduction

In recent decades, a tremendous effort has been done to explore capabilities of feed-
forward networks and their application in various areas. Novel machine learning (ML)
techniques go beyond conventional classification and regression tasks and enable revisiting
well-known problems in fundamental areas such as information theory. The functional
approximation power of neural networks is a compelling tool to be used for estimating
information-theoretic quantities such as entropy, KL-divergence, mutual information (MI),
and conditional mutual information (CMI). As an example, MI is estimated with neural
networks in [1] where numerical results show notable improvements compared to the
conventional methods for high-dimensional, correlated data.

Information-theoretic quantities are characterized by probability densities and most
classical approaches aim at estimating the densities. These techniques may vary depending
on whether the random variables are discrete or continuous. In this paper, we focus
on continuous random variables. Examples of conventional non-parametric methods to
estimate these quantities are histogram and partitioning techniques, where the densities are
approximated and plugged-in into the definitions of the quantities, or methods based on
the distance of the k-th nearest neighbor [2]. Despite vast applications of nearest neighbor
methods for estimation of information-theoretic quantities, such as the proposed technique
in [3], recent studies advocate using neural networks while simulations demonstrate
that the accuracy of the estimations improves in several scenarios [1,4]. In particular,
the results indicate that by increasing the dimension of the data, the bias of the estimation
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deteriorates less with neural estimators. In addition to superior performance, a neural
estimator of information can be considered to be a stand-alone block and coupled in a
larger network. The estimator can then be trained simultaneously with the rest of the
network and measure the flow of information among variables of the network. Therefore,
it facilitates the implementation of ML setups with constraints on information measures
(e.g., information bottleneck [5] and representation learning [6]). These compelling features
motivate exploring the benefits of neural networks to estimate other information measures
and more complex data structures.

The cornerstone of neural estimators for MI is to approximate bounds on the relative
entropy instead of computing it directly. These bounds are referred to as variational bounds
and recently have gained attention due to their applications in ML problems. Examples
are the lower bounds proposed originally in [7] by Donsker and Varadhan, and in [8]
by Nguyen, Wainwright, and Jordan that are referred to as DV bound and NWJ bound,
respectively. Several variants of these bounds have been reviewed in [9]. Variational
bounds are tight, and the estimators proposed in [1,4,10,11] leverage this property and use
neural networks to approximate the bounds and correspondingly the desired information
measure. These estimators were shown to be consistent (i.e., the estimation converges
asymptotically to the true value) and suitably estimate MI and CMI when the samples are
independently and identically distributed (i.i.d.). However, in several applications such
as time series analysis, natural language processing, or estimating information rates in
communication channels with feedback, there exists a dependency among samples in the
data. In this paper, we investigate analytically the convergence of our neural estimator and
verify the performance of the method in estimating several information quantities.

Consider several random processes such that their realizations are dependent in time.
In addition to common information-theoretic measures such as MI and CMI, more complex
quantities can be studied that are paramount in representing these processes. For instance,
the (temporal) causal relationship between two random processes has been expressed with
quantities such as directed information (DI) [12,13] and transfer entropy (TE) [14]. Both
DI and TE have a variety of applications in different areas. In communication systems,
DI characterizes the capacity of a channel with feedback [15], while it has several other
applications in venues including portfolio theory [16], source coding [17], and control
theory [18] where DI is exploited as a measure of privacy in a cloud-based control setup.
Additionally, DI was introduced as a measure of causal dependency in [19] which led
to a series of works in that direction with applications in neuroscience [20,21] and social
networks [22,23]. TE is also a well-celebrated measure in neuroscience [24,25], and the
physics community [26,27] to quantify causality for time series. In this paper, we investigate
capability of the neural estimator proposed in [11] to be used when the samples in the data
are not generated independently.

Conventional approaches to estimate KL-divergence and MI such as nearest neighbor
methods can be used for non-i.i.d. data; for example to estimate DI [28] and TE [29,30].
However, it is possible to leverage the benefits of neural estimators highlighted in [1] even
though the data are generated from a source with dependency among its realizations. In a
recent work [31], the authors estimate TE using the neural estimator for CMI introduced
in [4]. Additionally, recurrent neural networks (RNN) are proposed in [32] to capture
the time dependency to estimate DI. However, showing convergence of these estimators
requires further theoretical investigation. Although the neural estimators are shown to be
consistent in [1,4,11] for i.i.d. data, the extension of the proofs to dependent data needs to be
addressed. In [32], the authors address the consistency of the estimation of DI by referring
to universal approximation of RNN [33] and Breiman’s ergodic theorem [34]. Because
RNNs are more complicated to be implemented and tuned, in this paper, we assume simple
feed-forward neural networks, which were also proposed in [1,4,11] and in this paper. A
conventional step to go beyond i.i.d. processes is to investigate stationary and ergodic
Markov processes which have numerous applications in modeling real-world systems.
Many convergence results for i.i.d. data such as the law of large numbers can be extended
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to ergodic processes; however, this generalization is not always trivial. The estimator
proposed in [11] exhibits major improvements in estimating the CMI. Nevertheless, it is
based on a k-nearest neighbors (k-NN) sampling technique which makes the extension of
the convergence proofs to non-i.i.d. data more involved. The main contribution of this
paper is to provide convergence results and consistency proofs for this neural estimator
when the data are stationary and ergodic Markov.

The paper is organized as follows. Notations and basic definitions are introduced in
Section 2. Then, in Section 3, the neural estimator and procedures are explained. Addi-
tionally, the convergence of the estimator is studied when the data are generated from a
Markov source. Next, we provide simulation results in Section 4 for synthetic scenarios and
verify the effectiveness of our technique in estimating CMI and DI. Finally, we conclude
the paper in Section 5 and suggest potential future directions.

2. Preliminaries

We begin by describing the notation used throughout the paper, and the main defini-
tions are explained afterwards. Then we review variational bounds which are the basis of
our neural estimator.

2.1. Notation

Random variables and their realizations are denoted by capital and lower case letters,
respectively. Given two integers i and j, a sequence of random variables Xi, Xi+1, . . . , Xj is

shown as X j
i , or simply X j when i = 1. For a stochastic processes Z, a randomly generated

sample is denoted by random variable Z. We indicate sets with calligraphic notation
(e.g., X ). The space of d-dimensional real vectors is shown as Rd. The probability density
function (PDF) of a random variable X at X = x is denoted by pX(x) or equivalently
p(x), and the distribution of X, by PX or simply P. The PDF of multiple random variables
X1, . . . , Xi is pX1 ...Xi (x1, . . . , xi) and for simplicity it is represented by p(x1, . . . , xi) in the
paper. For the distribution P, EP[·] denotes the expectation with respect to its density p(·).
All the logarithms are in base e.

The convergence of the sequence Xn almost surely (or with probability one) to X is
denoted by Xn

a.s.→ X and is defined as:

P

(
lim

n→∞
Xn = X

)
= 1.

2.2. Information Measures

The information-theoretic quantities of interest for this work can be written in terms
of a KL-divergence, and the available neural estimators originally aim to estimate this
quantity. For a random variable X with support X ⊆ Rd, the KL-divergence between two
PDFs p(x) and q(x) is defined as:

D(p(x) ‖ q(x)) := EP

[
log

p(X)

q(X)

]
. (1)

Then, CMI can be defined using KL-divergence as below:

I(X; Y|Z) := D(p(x, y, z) ‖ p(x|z)p(y, z)). (2)

where Y and Z are random variables with support on Y and Z , which are subsets of Rd. In
this paper, we are focused on extending the estimators for CMI with non-i.i.d. data, where
samples in time-series data might not be independently and identically distributed (e.g., gen-
erated from a Markov process); nonetheless, our method and consistency proofs are fairly
general and can be applied for estimating KL-divergence as well. Consider a sequence of ran-
dom samples {(Xi, Yi, Zi)}n

i=1 generated from the joint process (X, Y, Z), where the samples
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are not necessarily i.i.d.. A simple step toward this extension is to verify that the previous
neural estimators, e.g., [11], can be used to estimate I(X; Y|Z), where (X, Y, Z) ∼ p(x, y, z)
and the processes (X, Y, Z) are Markov, as in the following assumption.

Assumption 1. (X, Y, Z) are jointly stationary and ergodic 1-st order Markov with marginal
density p(x, y, z). The extension of the results to d-th order Markov is straightforward.

To explore further in generalizing the neural estimators, it is possible to investigate
their capability for information measures that rely on dependent random variables. Con-
sider the pairs {(Xi, Yi)}n

i=1 to be samples of the processes (X, Y). If the generated samples
are dependent in time, it is possible to measure the causal relationship between the pro-
cesses with quantities such as DI and TE, defined as below:

I(Xn → Yn) :=
n

∑
i=1

I(Xi; Yi|Yi−1) (3)

TX→Y(i) := I(Xi−1
i−J ; Yi|Yi−1

i−L), (4)

where J and L are parameters of the TE that determine the length of memory to consider
for X and Y, respectively. Both quantities are functions of the CMI and Figure 1 visualizes
the corresponding variables in each CMI term for DI and TE. In particular, each CMI term
in (3) quantifies the amount of shared information between Xi and Yi conditioned on Yi−1,
i.e., it excludes the effect of the causal history of Y. In a general form, to express the causal
effect of the process X on Y conditioning causally on Z, DI is normalized with respect to n
which is defined below and denoted as directed information rate (DIR):

I(X→ Y ‖ Z) := lim
n→∞

1
n

I(Xn → Yn ‖ Zn)

= lim
n→∞

1
n

n

∑
i=1

I(Xi; Yi|Yi−1, Zi).
(5)

By assuming the processes to be Markov, (5) can be simplified (see [23,35,36]). To be explicit,
if both (X, Y, Z) and (Y, Z) are stationary and ergodic 1-st order Markov, from (5) the DIR
can be simplified as:

I(X→ Y ‖ Z) = I(X2; Y2|Y1, Z2), (6)

where the CMI is with respect to the stationary density p(x2, y2, z2) of the Markov model.
To generalize this approach, let us define the maximum Markov order (omax) of a set of
processes to be the minimum number o such that the Markov order of the joint random
variables of any subset of the processes is less than or equal to o. So if omax = l for (X, Y, Z),
then from (5) we can simplify the DIR term as:

I(X→ Y ‖ Z) = I(Xl+1; Yl+1|Yl , Zl+1). (7)

The following example shows how DIR can be computed for a linear data model, and em-
phasizes on the difference when DIR is conditioned causally on another process.
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Y1 . . . Yi−1 Yi

X1 . . . Xi−1 Xi

Time

Yi−L . . . Yi−1 Yi

Xi−J . . . Xi−1 Xi

Time

Figure 1. The memory considered for conditional mutual information terms in directed information
(left) and transfer entropy (right) at time instance i. To compute directed information (left), the effect of
Xi (i.e., Xi and all its past samples) on Yi is considered, while the history of Yi is excluded. However,
for transfer entropy (right), the effect of Xi−1

i−J (i.e., the previous J samples before Xi) on Yi is accounted
for, while we exclude the history of Yi. Note that the length of memories (J and L) for transfer entropy
may differ.
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Figure 1. The memory considered for conditional mutual information terms in directed information
(left) and transfer entropy (right) at time instance i. To compute directed information (left), the effect
of Xi (i.e., Xi and all its past samples) on Yi is considered, while the history of Yi is excluded. However,
for transfer entropy (right), the effect of Xi−1

i−J (i.e., the previous J samples before Xi) on Yi is accounted
for, while we exclude the history of Yi. Note that the length of memories (J and L) for transfer entropy
may differ.

Example 1. Consider the following linear model where {Wi}∞
i=1, {W ′i }∞

i=1, and {W ′′i }∞
i=1 are

uncorrelated white Gaussian noises with variances σ2
x ,σ2

y , and σ2
z respectively:





Xi = Wi

Yi = a Yi−1 + Zi−1 + W ′i
Zi = Xi + W ′′i

for some |a| < 1, and (X0, Y0, Z0) are distributed according to the stationary distribution of the
processes X, Y, and Z. This model holds in Assumption 1 and omax = 1, so I(X → Y) can be
computed as:

I(X→ Y) = I(X2
1 ; Y2|Y1) =

1
2

log
(

1 +
σ2

x
σ2

y + σ2
z

)
,

while from (7):

I(X→ Y ‖ Z) = I(X2
1 ; Y2|Y1, Z2

1) = 0. (8)

As emphasized earlier, (7) holds when (X, Y, Z) and (Y, Z) are Markov with order l.
Then the CMI estimators can be used potentially to estimate the DIR. However, the consis-
tency of the estimation still needs to be investigated since the samples are not independent.
Before introducing our technique, we review the basics for estimating information measures
with neural networks.

2.3. Estimating the Variational Bound

The estimators proposed in [1,4,11] are all based on tight lower bounds on the KL-
divergence, such as the DV bound, introduced in [7]:

D(p(x) ‖ q(x)) ≥ sup
f∈F

EP
[

f (X)
]
− logEQ

[
exp( f (X))

]
, (9)

where p and q are two PDFs defined over X with corresponding distributions P and Q,
respectively, and F is any class of functions such that f : X → R, and the two expectations
exist and are finite. Consider a neural network with parameters θ ∈ Θ, then F can be to
the class of all functions constructed with this neural network by choosing different values
for the parameters θ. In more details, let f (x) to be the end-to-end function of a neural
network with parameters θ ∈ Θ and the optimization in the right hand side (RHS) of (9) is
equivalent to optimizing over Θ (as performed in [1]). Nevertheless, we can leverage from
the fact that the DV bound is tight when the function is chosen as:

f ∗(x) = log
p(x)
q(x)

∀x ∈ X . (10)
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Thus, the neural network can approximate f ∗(x) directly and the lower bound can be
computed accordingly (as performed in [4,11]).

Definition 1. For the PDFs p(x, y, z) and p(x|z)p(y, z), define the corresponding distributions
on X ×Y ×Z to be P̃ and Q̃, respectively.

Since the CMI can be stated as a KL-divergence (2), the DV bound can be defined for
CMI as bellow:

I(X; Y|Z) ≥ sup
f∈F

EP̃
[

f (X, Y, Z)
]
− logEQ̃

[
exp( f (X, Y, Z))

]
, (11)

and the bound is tight by choosing

f ∗(x, y, z) = log
p(x, y, z)

p(x|z)p(y, z)
∀x, y, z ∈ X ×Y ×Z . (12)

The main barrier to compute this bound for f ∗(x, y, z) is that the densities are unknown.
This challenge is addressed in [4,11] by proposing neural classifiers that can approximate
f ∗(x, y, z) without knowing the densities. Below we review the steps of the estimation
technique provided in [11]:

(1) Construct the joint batch, containing samples generated according to p(x, y, z).
(2) Construct the product batch, containing samples generated according to p(x|z)p(y, z).
(3) Train the neural network with a particular loss function, which we explain later,

to approximate f ∗(x, y, z), i.e., the density ratio of p(x,y,z)
p(x|z)p(y,z) .

(4) Compute (11) using the batches and the approximated function.

To show the consistency of the estimation with this approach, it is crucial to verify
if the empirical average with respect to each sample batch converges asymptotically to
the corresponding expectations. Additionally, the neural network should be designed and
trained to be capable of approximating the density ratio. For i.i.d. data samples, the authors
in [4,11] provided the proofs in the form of concentration bounds. In this paper, we extend
these proofs for non-i.i.d. data by providing convergence results for the special case of
stationary and ergodic Markov processes. In the remainder of the paper, we denote the
data by {(Xi, Yi, Zi)}n

i=1 which are consecutive samples of the stationary Markov processes
(X, Y, Z) with marginal PDF p(x, y, z).

3. Main Results

In this section, we describe our proposed neural estimator in detail. To create the
batches, the estimator is equipped with a k-NN sampling block such that the empirical
average over the samples converges to the expected mean. Next, we describe the roadmap
to show the convergence of the estimation to the true value (i.e., consistency analysis).

3.1. Batch Construction

To create the joint batch it is sufficient to take (Xi, Yi, Zi) randomly from the available
data. Below we define the joint batch formally using an auxiliary random variable that indi-
cates whether an instance is selected or not (see also Algorithm 1 for the implementation).
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Algorithm 1: Construction of the joint batch

1 Function CreateJointBatch(Data = {(xi, yi, zi)}n
i=1, α):

2 Initialize Bα
joint

3 for i = 1, . . . , n do
4 wi ← Draw a random sample from a Bernoulli distribution with parameter α

5 if wi = 1 then
6 Add (xi, yi, zi) to Bα

joint

7 end
8 end
9 return Bα

joint

Definition 2 (Joint batch). Let Wi ∼ Ber(α) for i = 1, . . . , n be independent random variables,
and Iα,n(Wn) := {i | i ∈ {1, . . . , n}, Wi = 1}. Then Bα

joint is defined as

Bα
joint := {(Xi, Yi, Zi) | i ∈ Iα,n}, (13)

where we use Iα,n to simplify the notation.

Please note that by the law of large numbers, the length of the joint batch is asymp-
totically αn. Next, to construct the product batch we use the method based on the k-NN
technique, which is introduced in [11]. Below we define our method denoted by isolated
k-NN technique, and explain how the product batch is constructed (see also Algorithm 2).

Algorithm 2: Construction of the product batch

1 Function CreateProdBatch(Data = {(xi, yi, zi)}n
i=1, α′, s, k):

2 Initialize Bα′ ,s
prod, Iα′ ,s, I c

α′ ,s

3 for i = 1, . . . , s do
4 wi ← Draw a random sample from a Bernoulli distribution with parameter α′

5 if wi = 1 then
6 Add i to Iα′ ,s
7 end
8 end
9 I c

α′ ,s ← {1, . . . , n} \ Iα′ ,s

10 Z c ← [zl | l ∈ I c
α′ ,s]

11 for i ∈ Iα′ ,s do
12 A = List of k nearest neighbors of zi in the set Z c

13 for j ∈ A do
14 Add (xj, yi, zi) to Bα′ ,s

prod
15 end
16 end
17 return Bα′ ,s

prod

Definition 3 (Product batch). For s < n, let Wi ∼ Bernoulli(α′) for i = 1, . . . , s be independent
random variables, and

Iα′ ,s(W
s) := {i | i ∈ {1, . . . , s}, Wi = 1} & I c

α′ ,s(W
s) := {1, . . . , n} \ Iα′ ,s(W

s).
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Then for any ζ ∈ Z and given the data {(xi, yi, zi)}n
i=1, define Aα′ ,k,n,s(ζ, zn, ws) as the set of

indices of the k nearest neighbors of ζ (by Euclidean distance) among {zi} for i ∈ I c
α′ ,s(w

s).
Formally, let π : {1, . . . , n − s} → I c

α′ ,s(W
s) be a bijection such that ‖ζ − zπ(1)‖2 ≤ . . . ≤

‖ζ − zπ(n−s)‖2. Then, Aα′ ,k,n,s(ζ, zn, ws) := {π(1), . . . , π(k)}. So the product batch can be
defined as:

Bα′ ,s
prod :=

{
(Xj(i), Yi, Zi) | i ∈ Iα′ ,s(W

s), j(i) ∈ Aα′ ,k,n,s(Zi, Zn, Ws)
}

. (14)

Hereafter we use Iα′ ,s, I c
α′ ,s, and Aα′(ζ) instead as the remaining parameters can be understood

from the context. We refer to this sampling technique as isolated k-NN in the sequel. An example
is also provided in Figure 2 for the case of k = 2.
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Algorithm 1: Construction of the joint batch

1 Function CreateJointBatch(Data = {(xi, yi, zi)}n
i=1, α):

2 Initialize Bα
joint

3 for i = 1, . . . , n do
4 wi ← Draw a random sample from a Bernoulli distribution with parameter α

5 if wi = 1 then
6 Add (xi, yi, zi) to Bα

joint
7 end
8 end
9 return Bα

joint

X Y Z

xi yi zii

*xj1j1

*xj2j2

Data

X Y Z

zixj1 yi

zixj2 yi

Bα′ ,s
prod

Figure 2. Construction of the product batch from the data set which is expressed as the left table. Let
wi = 1, and the z component of the rows denoted with ‘∗’ (indexed with j1 and j2) are in the k nearest
neighborhood of zi for k = 2. So we pack the triples (xj1 , yi, zi) and (xj2 , yi, zi) in the product batch as
in the right table.
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s) := {1, . . . , n} \ Iα′ ,s(W

s).

Then for any ζ ∈ Z and given the data {(xi, yi, zi)}n
i=1, define Aα′ ,k,n,s(ζ, zn, ws) as the set of indices of the k206

nearest neighbors of ζ (by Euclidean distance) among {zi} for i ∈ I c
α′ ,s(w

s). Formally, let π : {1, . . . , n− s} →207

I c
α′ ,s(W

s) be a bijection such that ‖ζ − zπ(1)‖2 ≤ . . . ≤ ‖ζ − zπ(n−s)‖2. Then, Aα′ ,k,n,s(ζ, zn, ws) :=208

{π(1), . . . , π(k)}. So the product batch can be defined as:209

Bα′ ,s
prod :=

{
(Xj(i), Yi, Zi) | i ∈ Iα′ ,s(W

s), j(i) ∈ Aα′ ,k,n,s(Zi, Zn, Ws)
}

. (14)

Hereafter we use Iα′ ,s, I c
α′ ,s, andAα′(ζ) instead as the remaining parameters can be understood from the context.210

We refer to this sampling technique as isolated k-NN in the sequel. An example is also provided in Figure 2 for211

the case of k = 2.212

Remark 1. Here we emphasize that the isolated indices are selected from the first s indices of samples while the213

neighbors can be searched among all n indices of data except the ones in Iα′ ,s(ws). Additionally, note that the214

Figure 2. Construction of the product batch from the data set which is expressed as the left table. Let
wi = 1, and the z component of the rows denoted with ‘*’ (indexed with j1 and j2) are in the k nearest
neighborhood of zi for k = 2. So we pack the triples (xj1 , yi, zi) and (xj2 , yi, zi) in the product batch as
in the right table.

Remark 1. Here we emphasize that the isolated indices are selected from the first s indices of
samples while the neighbors can be searched among all n indices of data except the ones in Iα′ ,s(ws).
Additionally, note that the length of the product batch is α′sk asymptotically as n→ ∞ because sk
also tends to ∞ as we see later in the assumptions of Proposition 2.

3.2. Training the Classifier

As explained earlier, the optimal function for a tight lower bound on the CMI is
obtained by the density ratio and to compute that we use the functional approximation
power of neural networks. Consider a feedforward neural network with the last layer
equipped with the sigmoid function. The network is parameterized with θ ∈ Θ ⊆ Rh

where h is the number of parameters, and the neural network function is denoted by
ωθ : X × Y ×Z → [0, 1]. For an input (X, Y, Z) of the network, let C ∈ {0, 1} denote the
class of the input which determines that the tuple is generated according to p(x, y, z) or
p(x|z)p(y, z). To be explicit, the input is either picked from the joint batch (class C = 1)
or the product batch (class C = 0), and the goal is to learn the network parameters such
that it can distinguish the class of new (unseen) queries. Let the loss function be the
binary cross-entropy function. So for ω to be any function with inputs (x, y, z) and ranging
between [0, 1], the expected loss is defined as:

L(ω) := −E
[
C log ω(X, Y, Z) + (1− C) log(1−ω(X, Y, Z))

]
. (15)

It is well-established that by minimizing L(ω), the solution ω∗ would represent the probabil-
ity of classifying the input in the class C = 1 given the input data, i.e.,P

(
C = 1|x, y, z

)
. In fact,
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as shown in [11] (Lemma 1) if the prior distribution on the classes is unbiased, by taking the
derivative in (15) we have:

Γ(x, y, z) =
p(x, y, z)

p(x|z)p(y, z)
=

ω∗(x, y, z)
1−ω∗(x, y, z)

. (16)

So from (12) the optimal function can be expressed with Γ(x, y, z) as:

f ∗(x, y, z) = log Γ(x, y, z) ∀x, y, z ∈ X ×Y ×Z . (17)

Therefore, by training the neural network, we can approximate the optimal function
f ∗(x, y, z) and estimate the lower bound for CMI.

Consider the neural network ωθ , then the empirical loss function is defined as:

Lemp(ωθ) := − 1

2
∣∣∣Bα

joint

∣∣∣
∑

(X,Y,Z)∈Bα
joint

log ωθ(X, Y, Z)

− 1

2
∣∣∣Bα′ ,s

prod

∣∣∣
∑

(X,Y,Z)∈Bα′ ,s
prod

log(1−ωθ(X, Y, Z)),
(18)

and the optimal parameters are obtained by solving the following problem:

θ̂ := arg min
θ

Lemp(ωθ). (19)

Consequently, we can approximate the density ratio Γ(x, y, z) from (16):

Γ̂(x, y, z) =
ωθ̂(x, y, z)

1−ωθ̂(x, y, z)
. (20)

To avoid having boundary values (i.e., ωθ̂(x, y, z) close to zero or 1), the output of the
neural network is clipped between [τ, 1− τ] for some small τ > 0.

Remark 2. Please note that Γ̂(x, y, z) approximates the density ratio, if the batch sizes
∣∣∣Bα

joint

∣∣∣ and∣∣∣Bα′ ,s
prod

∣∣∣ are balanced. Otherwise, (20) requires a correction coefficient (see [11]). To fulfill this, given
the number of samples n, one can choose the parameters such that αn = α′sk. Then, by the law of
large numbers, the batches will asymptotically be balanced.

3.3. Estimation of the DV Bound

The final step in the estimation of CMI is to compute the lower bound (11) empirically
using Γ̂(x, y, z). So by substituting the expectations with empirical averages with respect to
samples in the joint and the product batch, the CMI estimator is defined as:

În
DV(X; Y|Z) :=

1∣∣∣Bα
joint

∣∣∣
∑

(x,y,z)∈Bα
joint

log Γ̂(x, y, z) + log
1∣∣∣Bα′ ,s

prod

∣∣∣
∑

(x,y,z)∈Bα′ ,s
prod

Γ̂(x, y, z). (21)

In practice, to mitigate the induced inaccuracy due to sampling from the original data,
the training and estimation is repeated for several sampling trials. The steps for imple-
menting the estimator are described in Algorithm 3. In the next part, we provide the
convergence results for our estimator to validate substitution of the expectations in (11)
with empirical averages with respect to the joint and the product batch. Then we show the
convergence of the overall estimation to the true CMI value.
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Algorithm 3: Estimation of CMI
Input: Data = {(xi, yi, zi)}n

i=1, α, α′, s, k, T
Output: Estimation of I(X; Y|Z)

1 for t = 1, . . . , T do
2 Bα

joint ← CreateJointBatch(Data, α) ; // Algorithm 1

3 Bα′ ,s
prod ← CreateProdBatch(Data, α′, s, k) ; // Algorithm 2

4 Bα
joint, train,Bα

joint, eval ← Split the batch Bα
joint into train and evaluation sets

5 Bα′ ,s
prod, train,Bα′ ,s

prod, eval ← Split the batch Bα′ ,s
prod into train and evaluation sets

6 Initialize the network ωθ

7 θ̂ ←Train the network ωθ using Bα
joint, train, Bα′ ,s

prod, train with corresponding labels 1, 0 respectively

8 În,(t)
DV (X; Y|Z)← Compute (21) according to ωθ̂ and the data Bα

joint, eval, B
α′ ,s
prod, eval

9 end

10 return În,T
DV(X; Y|Z) := 1

T ∑t În,(t)
DV (X; Y|Z)

3.4. Consistency Analysis

The consistency of our neural estimator (i.e., showing that the estimator converges
to its true value) is based on the universal functional approximation power of neural
networks and concentration results for the samples collected in the joint batch and in
the product batch using the isolated k-NN. Informally, Hornik’s functional approximation
theorem [37] guarantees that feedforward neural networks are capable of fitting any
continuous function. So depending on the true density of the data, there exists a choice of
parameters θ̃ that enables approximating the desired function with any arbitrary accuracy.
Next, we show that the empirical loss function Lemp(ωθ) is concentrated around its mean
L(ωθ) for any θ. Combining these tools, we are able to minimize the empirical loss function
as in (19) and we expect θ̂ to be close to θ̃ asymptotically; thus, eventually Γ̂(x, y, z) properly
approximates Γ(x, y, z). Additionally, the empirical computation of the DV bound is
concentrated around the expected value which concludes the consistency of the end-to-end
estimation of the CMI.

In this paper, we put the main focus on extending the concentration results provided
in [11] (Proposition 1) with Markov assumption on data. Although conventionally many
asymptotic results for i.i.d. data are assumed to hold for Markov data as well, the required
extensions here are more involved due to the additional complexity of the k-NN method.
In the following, we first show the convergence of the empirical average for the joint batch,

∣∣∣Bα
joint

∣∣∣
−1

∑(X,Y,Z)∈Bα
joint

g(X, Y, Z)→ EP̃[g(X, Y, Z)],

where g(·) is any measurable function such that the expectation exists and is finite. As
the product batch collects samples corresponding to the k nearest neighbors, convergence
results for nearest neighbor regression are invoked to show that the empirical average for
the product batch converges to the expectation with respect to the product distribution Q̃,

∣∣∣Bα′ ,s
prod

∣∣∣
−1

∑(X,Y,Z)∈Bα′ ,s
prod

g(X, Y, Z)→ EQ̃[g(X, Y, Z)].

Then, we conclude the consistency of the overall estimation.

3.4.1. Convergence for the Joint Batch

One well-known extension to the law of large numbers for non-i.i.d. processes is
Birkhoff’s ergodic theorem, and is the basis of our proof to show the following proposition
on the convergence of the sample average over the joint batch.
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Proposition 1. Consider the sequence of random variables {(Xi, Yi, Zi)}n
i=1 generated under

Assumption 1. Consider the distribution P̃ in Definition 1, for any measurable function g(·) such
that EP̃

[
g(X, Y, Z)

]
exists and is finite,

1∣∣∣Bα
joint

∣∣∣
∑

(X,Y,Z)∈Bα
joint

g(X, Y, Z) a.s.→ EP̃
[
g(X, Y, Z)

]
. (22)

Proof. See Appendix A.

3.4.2. Convergence for the Product Batch

From Definition 3, the empirical summation over all samples in the product batch is
equivalent to averaging

∣∣Iα′ ,s
∣∣ times k-NN regressions. Considering a sequence of pairs

{(Ui, Vi)}n
i=1 generated from stationary ergodic processes (U, V), the k-NN regression

denotes the problem of estimating m(u) := E[V|U = u] with mn(u) := 1
k(n) ∑

k(n)
j=1 Vrj where

rj refers to the j-th nearest neighbor of u among U1, . . . , Un. This problem has been well
studied when the pairs (Ui, Vi) are generated i.i.d.. For example in [38], the authors show
the convergence of mn(u) as:

P

(∫ ∣∣mn(u)−m(u)
∣∣ p(u)du ≥ ε

)
≤ exp(−n a ε2), (23)

for some positive constant a, when k(n) → ∞ and k(n)
n → 0. However, if the pairs

are not independent, convergence results require a more advanced condition denoted
geometric φ-mixing condition or geometric ergodicity condition [39,40]. As argued in [39],
the geometric ergodicity is not a restrictive statement and holds for a wide range of
processes (see also [41]). For instance, linear autoregressive processes are geometrically
ergodic [41] (Ch. 15.5.2). Below we review the φ-mixing condition.

Definition 4 (φ-mixing condition). A process U is φ-mixing if for a sequence {φn}n∈N of positive
numbers satisfying φn → 0 as n→ ∞, for any integer i > 0 we have:

∣∣P(A ∩ B)− P(A)P(B)
∣∣ ≤ φiP(A), (24)

for all n > 0 and all sets A and B which are members of σ(U1, . . . , Un) and σ(Un+i, Un+i+1, . . . ),
respectively. If {φn} is a geometric sequence, U is called geometrically φ-mixing.

To show the convergence of the empirical average over the product batch, we make
the following assumptions.

Assumption 2. The sequence {(Xi, Yi, Zi)}n
i=1 is geometrically φ-mixing.

Assumption 3. We assume that Y and Z are compact.

Proposition 2. Let the sequence of random variables {(Xi, Yi, Zi)}n
i=1 be generated under

Assumptions 1–3, and we choose k(n) and s(n) such that:

s(n)k(n) = n

k(n)→ ∞

s(n)→ ∞

k(n)/(log n)2 → ∞.

(25)
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Consider Q̃ defined in Definition 1. Then, for any function g(·) such that EQ̃
[
g(X, Y, Z)

]

exists and is finite, and additionally,
∣∣g(x, y1, z)− g(x, y2, z)

∣∣ < Lg
∣∣y1 − y2

∣∣ ∀x ∈ X , z ∈ Z , y1, y2 ∈ Y , (26)

where Lg > 0 is the Lipschitz constant, we have that:

1∣∣∣Bα′ ,s
prod

∣∣∣
∑

(X,Y,Z)∈Bα′ ,s
prod

g(X, Y, Z) a.s.→ EQ̃
[
g(X, Y, Z)

]
. (27)

Proof. See Appendix B.

Remark 3. Examples of choices for k(n) and s(n) satisfying (25) are for instance k(n) = n
1
2 and

k(n) = (log n)2+ε for some ε > 0. Please note that in [11], the consistencies are shown when
k(n) = Θ(n

1
2 ). However, the convergence result in [11] (Theorem 1) is an explicit bound, so the

condition on k(n) can be relaxed (choosing a smaller k(n)) when we are only interested in the
asymptotic behavior.

3.4.3. Convergence of the Overall Estimation

To complete our analysis on the consistency of the neural estimator, it is required to
show that the loss function is properly approximated and it converges to the optimal loss
as n increase. The following assumptions on the neural network and the densities enable
us to show this convergence.

Assumption 4. For a network ωθ parameterized with θ ∈ Θ, the assumption holds if Θ is closed,
Θ ⊆ {θ|‖θ‖2 ≤ K} for some constant K > 0 and ωθ is B-Lipschitz, for some constant B > 0 ,
regarding θ, for all (x, y, z), i.e.,

|ωθ1(x, y, z)−ωθ2(x, y, z)| ≤ B‖θ1 − θ2‖2, ∀θ1, θ2 ∈ Θ, (x, y, z) ∈ X ×Y ×Z .

Assumption 5. There exist 0 < pmin < pmax < ∞ such that for all x, y, z ∈ X × Y × Z ,
the values of p(x, y, z) and p(x|z)p(y, z) are both in the interval [pmin, pmax], and it holds that

pmin

pmax + pmin
≥ τ, (28)

to guarantee that τ ≤ ω∗ ≤ 1− τ.

The following theorem concludes the consistency of the end-to-end estimator.

Theorem 1. Let Assumptions 1, 2, 3, 4, and 5 hold and k(n) and s(n) satisfy (25). Then the CMI
estimator În

DV(X; Y|Z) (defined in (21)), converges strongly to I(X; Y|Z), i.e.,

În
DV(X; Y|Z) a.s.→ I(X; Y|Z). (29)

Proof. See Appendix D.

In the next section, we apply our estimator in several synthetic scenarios to verify its
capability in estimating CMI and DI.

4. Simulation Results

In this section, we experiment with our proposed estimator of CMI and DI in the
following auto-regressive model which is widely used in different applications, including
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wireless communications [42], defining causal notions in econometrics [43], and modeling
traffic flow [44], among others:




Xi

Yi

Zi


 = A




Xi

Yi

Zi


+ B




Xi−1

Yi−1

Zi−1


+




Nx
i

Ny
i

Nz
i


, (30)

where A and B are 3× 3 matrices and the rest of variables are d-dimensional row vectors.
A models the instantaneous effect of Xi, Yi, and Zi on each other and its diagonal elements
are zero, while B models the effect of previous time instance. Nx

i , Ny
i , and Nz

i (denoted
as noise in some contexts) are independent and generated i.i.d. according to zero-mean
Gaussian distributions with covariance matrices σ2

x Id, σ2
y Id, and σ2

z Id, respectively (i.e.,
the dimensions are d and components are uncorrelated). Please note that this model
fulfills Assumptions 1 and 2 by setting appropriate initial random variables. Although
the Gaussian random variables do not range in a compact set and thus, Assumption 3
does not hold, we could use truncated Gaussian distributions. Such adjustment does not
significantly change the statistics of the generated dataset since the probability of finding a
value far away from the mean is negligible.

In the following section, we test the capability of our estimator in estimating both
conditional mutual information (CMI) and directed information (DI). In both cases, n
samples are generated from the model and the estimations are performed according to
Algorithms 1 and 2. Then according to Algorithm 3, the joint and product batches are
split randomly in half to construct train and evaluation sets. Then the parameters of
the classifier are trained with the train set and the final estimation is computed with the
evaluation set (Codes are available at https://github.com/smolavipour/Neural-Estimator-
of-Information-non-i.i.d, accessed on 20 May 2021).

To verify the performance of our technique, we also compared it with the approach
taken in [4,31] which is as follows. Conditional mutual information can be computed by
subtracting two mutual information terms, i.e.,

I(X; Y|Z) = I(X; Y, Z)− I(X; Z). (31)

So instead of estimating the CMI term directly, one can use a neural estimator such as
the classifier based estimator in [4] or the MINE estimator [1], and estimate each MI term
in (31) to estimate the CMI. In what follows, we refer to this technique as MI-diff since it
computes the difference between two MI terms.

4.1. Estimating Conditional Mutual Information

In this scenario, we estimate I(X1; Y1|Z1) when A and B are chosen to be:

A =




0 1 0
0 0 0
0 0 0


, B =




0 1 0
0 0 1
0 0 0


.

Then from (30), the CMI can be computed as below:

I(X1; Y1|Z1) = h(X1|Z1)− h(X1|Y1, Z1)

= h(Y0 + Y1 + Nx
1 |Z1)− h(Y0 + Nx

1 |Y1, Z1)

= h(Y0 + Y1 + Nx
1 )− h(Y0 + Nx

1 )

=
d
2

log
(

1 +
σ2

y + σ2
z

σ2
x + σ2

y + σ2
z

)
.

(32)

Each estimated value is an average of T = 20 estimations, where in each round
the batches are re-selected while having a fixed dataset. This procedure is repeated for

https://github.com/smolavipour/Neural-Estimator-of-Information-non-i.i.d
https://github.com/smolavipour/Neural-Estimator-of-Information-non-i.i.d
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10 Monte Carlo trials and the data are re-generated for each trial. The hyper-parameters
and settings of the experiment are provided in Table 1. In Figure 3, the CMI is estimated
(as În,T

DV(X1; Y1|Z1) in Algorithm 3) with n = 2 × 104 samples with dimension d = 1
when σy = 2, σz = 2 and by varying σx. It can be observed that the estimator can
properly estimate the CMI while the variance of the estimation is also small. The latter
can be inferred from the shaded region, which indicates the range of estimated CMI for
a particular σx over all Monte Carlo trials. Next, the experiment is repeated for d = 10
and the results are depicted in Figure 4, where we compare our estimation of CMI with
the MI-diff approach, which is explained in (31) and each MI term is estimated with the
classifier-based estimator proposed in [4]. It can be observed that the means of both
estimators are similar; nonetheless, estimating the CMI directly is more accurate and has
less variation compared to the MI-diff approach. Additionally, our method is faster since
it computes the information term only once, while in the MI-diff approach, two different
classifiers are trained to estimate each MI term.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

0.10

0.15

0.20

0.25

0.30

0.35

Es
tim

at
ed

 C
M

I

True value
Estimated CMI

Figure 3. Estimated CMI for AR-1 model in (30) using n = 2× 104 samples with d = 1. The shaded
region shows the range of the estimated values over the Monte Carlo trials.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

Es
tim

at
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 C
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Estimated CMI (our method)
Estimated CMI (MI-diff)

Figure 4. Estimated CMI for AR-1 model in (30) using n = 2× 104 samples with d = 10. The shaded
region shows the range of the estimated values over the Monte Carlo trials. Blue shades correspond
to estimation with our method, yellow shades correspond to estimation with MI-diff approach and
the green shade is the overlap of the areas.
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Table 1. Hyper-parameters.

Hidden units 64
Hidden layers 2 (64 × 64)

Activation ReLU
τ 10−3

Optimizer Adam
Learning rate 10−3

Epochs 200

4.2. Estimating Directed Information

DI can explain the underlying causal relationship among processes. This notion has
wide applications in various areas. For example, consider a social network where the
activities of users are monitored (e.g., the messages times as studied in [23]). The DI
between these time-series data expresses how the activity of one user can affect the activity
of the others. In addition, to such data analytic applications, DI characterizes the capacity
of communication channels with feedback and by estimating the capacity, rates and powers
of transmission can be adjusted in radio communications (see for example [32]). Now in
this experiment, consider a network of three processes X, Y, and Z, such that the time-series
data are modeled with (30) with d = 1 where

A = 0, B =




0 0 0
b1 0 0
0 b2 0


. (33)

In this model, where the relations are depicted in Figure 5, the process X is affecting Y
with a delay and similarly the signal of Y appears on Z in the next time instance while an
independent noise is accumulated on both steps. The DIR from X→ Y in this network can
be computed as follows:

I(X→ Y) = lim
n→∞

1
n

n

∑
i=1

I(Xi; Yi|Yi−1)

= lim
n→∞

1
n

n

∑
i=1

H(Yi|Yi−1)− H(Yi|Xi, Yi−1)

= lim
n→∞

1
n

n

∑
i=1

H(Yi)− H(Yi|Xi−1)

=
1
2

log

(
1 +

b2
1σ2

x
σ2

y

)
.

(34)
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Figure 5. Causal relationship of the processes.
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Y Z
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Y Z

(b)
Figure 6. Graphical representation of the causal influences between the processes.

Similarly, for the link Y→ Z, we have:387

I(Y→ Z) =
1
n

n

∑
i=1

I(Yi; Zi|Zi−1)

=
1
n

n

∑
i=1

H(Zi|Zi−1)− H(Zi|Yi, Zi−1)

=
1
n

n

∑
i=1

H(Zi)− H(Zi|Yi−1)

=
1
2

log

(
1 +

b2
1 b2

2 σ2
x + b2

2 σ2
y

σ2
z

)
. (35)

Next we can compute the true DIR for the link X→ Z as:388

I(X→ Z) = lim
n→∞

1
n

n

∑
i=1

I(Xi; Zi|Zi−1)

= lim
n→∞

1
n

n

∑
i=1

H(Zi|Zi−1)− H(Zi|Xi, Zi−1)

= lim
n→∞

1
n

n

∑
i=1

H(Zi)− H(Zi|Xi−2)

=
1
2

log

(
1 +

b2
1 b2

2 σ2
x

b2
2 σ2

y + σ2
z

)
. (36)

Note that the DIR corresponding to other links (i.e., the above links in the reverse direction) is zero by389

similar computations. Suppose we represent the causal relationships with a directed graph, where a390

link between two nodes exists if the corresponding DIR is non-zero. Then according to (34), (35), and391

(36), the causal relationships are described with the graph of Figure 6a.392

In order to estimate the DIR, note that the processes are Markov and the maximum Markov order393

(omax) for the set of all processes is omax = 2 according to (30) and (33). Hence by (7), we can estimate394

DIR with the CMI estimator. For instance the DIR for processes (X, Y) can be obtained by:395

În
DV(X→ Y) := În

DV(X3; Y3|Y2),

where the right hand side is computed similar to (21). We performed the experiment with n = 2e5396

samples of dimension d = 1 generated according to the model (30) and (33) with b1 = 1, b2 = 2, σx = 3,397

σy = 2, and σz = 1, while the settings of the neural network were chosen as in Table 1. The estimated398

Figure 5. Causal relationship of the processes.
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Similarly, for the link Y→ Z, we have:

I(Y→ Z) =
1
n

n

∑
i=1

I(Yi; Zi|Zi−1)

=
1
n

n

∑
i=1

H(Zi|Zi−1)− H(Zi|Yi, Zi−1)

=
1
n

n

∑
i=1

H(Zi)− H(Zi|Yi−1)

=
1
2

log

(
1 +

b2
1 b2

2 σ2
x + b2

2 σ2
y

σ2
z

)
.

(35)

Next we can compute the true DIR for the link X→ Z as:

I(X→ Z) = lim
n→∞

1
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n

n
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n

n

∑
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1
2

log

(
1 +

b2
1 b2

2 σ2
x

b2
2 σ2

y + σ2
z

)
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(36)

Please note that the DIR corresponding to other links (i.e., the above links in the reverse
direction) is zero by similar computations. Suppose we represent the causal relationships
with a directed graph, where a link between two nodes exists if the corresponding DIR
is non-zero. Then according to (34)–(36), the causal relationships are described with the
graph of Figure 6a.
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Figure 6. Graphical representation of the causal influences between the processes using pairwise
directed information (a), and causally conditioned directed information (b).

To estimate the DIR, note that the processes are Markov and the maximum Markov
order (omax) for the set of all processes is omax = 2 according to (30) and (33). Hence by (7),
we can estimate DIR with the CMI estimator. For instance the DIR for processes (X, Y) can
be obtained by:

În
DV(X→ Y) := În

DV(X3; Y3|Y2),

where the right hand side is computed similar to (21). We performed the experiment with
n = 2× 105 samples of dimension d = 1 generated according to the model (30) and (33)
with b1 = 1, b2 = 2, σx = 3, σy = 2, and σz = 1, while the settings of the neural network
were chosen as in Table 1. The estimated values are stated in Table 2. It can be seen that the
bias of the estimator is fairly small while the variance of the estimations is negligible. This
is inline with the observations in [11] when estimating CMI for i.i.d. case.
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Table 2. True and estimated DIR.

True DIR Estimation with Our Method (Mean ± Std)

I(X→ Y) 0.59 0.57± 0.00
I(X→ Z) 0.57 0.55± 0.00
I(Y→ Z) 1.99 1.92± 0.01
I(Y→ X) 0 0.00± 0.00
I(Z→ X) 0 0.00± 0.00
I(Z→ Y) 0 0.00± 0.00

Although I(X→ Z) > 0, intuitively X is only affecting Z causally through Y, which
suggests that I(X → Z ‖ Y) = 0. This event is referred to as proxy effect when studying
directed information graph (see [45]). In fact the graphical representation of causal rela-
tionships can be simplified using the notion of causally conditioned DIR as depicted in
Figure 6b. To see this formally, note that from (30) it yields that:

I(X→ Z ‖ Y) = lim
n→∞

1
n

n

∑
i=1

I(Xi; Zi|Yi, Zi−1)

= lim
n→∞

1
n

n

∑
i=1

H(Zi|Yi, Zi−1)− H(Zi|Xi, Yi, Zi−1)

= lim
n→∞

1
n

n

∑
i=1

H(Zi|Yi−1)− H(Zi|Yi−1)

= 0.

(37)

Considering omax = 2, the causally conditioned DIR terms can be estimated with our CMI
estimator according to (7); for instance,

În
DV(X→ Y ‖ Z) := În

DV(X3; Y3|Y2, Z3).

The estimation results are provided in Table 3 for all the links, where for each link we
averaged over T = 20 estimations (as in Algorithm 3); then the procedure is repeated for
10 Monte Carlo trials in which we generate a new dataset according to the model.

Table 3. True and estimated DIR.

True DIR Estimation with Our Method (Mean ± Std)

I(X→ Y ‖ Z) 0.59 0.57± 0.00
I(X→ Z ‖ Y) 0 0.00± 0.00
I(Y→ Z ‖ X) 1.42 1.52± 0.01
I(Y→ X ‖ Z) 0 0.01± 0.00
I(Z→ X ‖ Y) 0 0.01± 0.00
I(Z→ Y ‖ X) 0 0.01± 0.00

In this experiment, we did not explore the effect of higher dimensions for data,
although one should note that for the causally conditioned DIR estimation, with d = 1
the neural network is fed with data of size 9. Nevertheless, the performance of higher
dimensions for this estimator with i.i.d. data has been studied in [11] and the challenges of
dealing with high dimensions when data has dependency can be considered to be a future
direction of this work. Additionally, although the information about omax may not always
be available in practice, it can be approximated by data-driven approaches similar to the
method described in [45].
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5. Conclusions and Future Directions

In this paper, we explored the potentials of a neural estimator for information measures
when there exist time dependencies among the samples. We extended the analysis on the
convergence of the estimation and provided experimental results to show the performance
of the estimator in practice. Furthermore, we compared our estimation method with a
similar approach taken in [4,31] (which we denoted as MI-diff), and demonstrations on
synthetic scenarios show that the variances of our estimations are smaller. However, the
main contribution is the derivation of proofs of convergence when the data are generated
from a Markov source. Our estimator is based on a k-NN method to re-sample the dataset
such that the empirical average over the samples converges to the expectation with certain
density. The convergence result derived for the re-sampling technique is stand-alone and
can be adopted in other sampling application.

Our proposed estimator can be used potentially in the areas of information theory,
communication systems, and machine learning. For instance, the capacity of channels
with feedback can be characterized with directed information and estimated with our
estimator and can be investigated as a future direction. Furthermore, in machine learning
applications where the data has some form of dependency (either spatial of temporal),
regularizing the training with information flow requires the estimator of information to
capture causality which is considered in our technique. Finally, information measures can
be used in modeling and controlling a complex system and the results in this work can
provide meaningful measures such as conditional dependence and causal influence.
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Appendix A. Proof of Proposition 1

To show the convergence stated in the Proposition, let us first introduce the following
lemma which is a variant of Birkhoff’s ergodic theorem for the case where the samples are
not necessarily subsequent.

Lemma A1. Let Un be n observations of a stationary and ergodic Markov process where Ui ∈ U
and U ⊆ Rd. Then if E[g(U)] exists and is finite,

1
|Iα,n| ∑

j∈Iα,n

g(Uj)
a.s.→ E[g(U)], (A1)

where Iα,n is defined in Definition 2 and the empirical average is considered to be zero when
|Iα,n| = 0.

Proof. Consider W1, . . . , Wn generated i.i.d. and Wi ∼ Bernoulli(α). From the definition of
Iα,n, we can write the summation equivalently as

∑
j∈Iα,n

g(Uj) =
n

∑
i=1

Wi g(Ui). (A2)

Since the Wi’s are independent of g(Ui), the pairs (Wi, g(Ui)) are also stationary and
ergodic Markov, so from Birkhoff’s ergodic theorem,

1
n

n

∑
i=1

Wi g(Ui)−E
[
Wg(U)

] a.s.→ 0, (A3)

and since E
[
Wg(U)

]
= E[W]E

[
g(U)

]
= αE

[
g(U)

]
,

1
n

n

∑
i=1

Wi g(Ui)
a.s.→ αE

[
g(U)

]
. (A4)

On the other hand, from the strong law of large numbers:

|Iα,n|
n

=
1
n

n

∑
i=1

Wi
a.s.→ α. (A5)

From (A4) and (A5), and since the summation in (A5) is bounded,

1
|Iα,n| ∑

j∈Iα,n

g(Uj)
a.s.→ E

[
g(U)

]

and the proof is complete.

Using Lemma A1, the proof of Proposition 1 becomes trivial by letting Ui = (Xi, Yi, Zi)
since the triple is a sample of a jointly stationary ergodic Markov process. Noting that

|Iα,n| =
∣∣∣Bα

joint

∣∣∣ concludes the proof of the Proposition.

Appendix B. Proof of Proposition 2

To show the convergence of the empirical average over samples in the product batch,
we begin by reviewing convergence results for k-NN regression.
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Lemma A2 ([39] (Theorem 2-a)). Consider the sequence {(Ui, Vi)}n
i=1 is stationary and geomet-

rically φ-mixing (see Definition 4). If k(n)
n → 0 and k(n)

(log n)2 → ∞, then

sup
u

∣∣mn(u)−m(u)
∣∣ a.s.→ 0. (A6)

Now to extend Lemma A2 to the case where the samples are randomly selected for
the regression, we show the following lemmas.

Lemma A3. Let {(Xi, Yi, Zi)}n
i=1 be generated under Assumptions 1–3. If k(n)

n → 0 and
k(n)

(log n)2 → ∞, and for any y ∈ Y , EPX|Z
[
g(X, y, Z) | Z = z

]
exists and is finite, then we have that,

for all y:

sup
z

∣∣∣g̃(y, z)−EPX|Z
[
g(X, y, Z) | Z = z

]∣∣∣ a.s.→ 0, (A7)

where

g̃(y, z) :=
1

k(n)

k(n)

∑
j=1

g(Xrj , y, z),

and rj refers to the index of the j-th nearest neighbor of z among {Zi}n
i=1.

Proof. The proof follows directly from Lemma A2 as y is fixed in (A7).

Lemma A4. Let {(Xi, Yi, Zi)}n
i=1 be generated under Assumptions 1–3. Then, if k(n) and s(n)

fulfill the assumptions in (25), and for any y ∈ Y , EPX|Z
[
g(X, y, Z) | Z = z

]
exists and is finite,

for all y:

sup
z

∣∣∣ḡ(y, z, Ws(n))−EPX|Z
[
g(X, y, Z) | Z = z

]∣∣∣ a.s.→ 0, (A8)

where

ḡ(y, z, Ws(n)) :=
1

k(n) ∑
l∈Aα′ ,k(n),n,s(n)(z,Zn ,Ws(n))

g(Xl , y, z), (A9)

and Aα′ ,k(n),n,s(n)(z, Zn, Ws(n)) and Ws(n) are defined in Definition 3.

Proof. See Appendix C.

Lemma A5. For the sequence {(Xi, Yi, Zi)}n
i=1 defined in Lemma A4:

∣∣∣ḡ(Ys(n), Zs(n), Ws(n))−EPX|Z

[
g(X, Y, Z) | Y = Ys(n), Z = Zs(n)

]∣∣∣ a.s.→ 0, (A10)

where s(n) < n and the convergence occurs according to the random variables Ys(n), Zs(n), Ws(n),
and the sequence.

Proof. To simplify the notation, we use ḡ(y, z) instead of ḡ(y, z, Ws(n)) in this proof. Since
Y is compact, for any ε > 0, there exist M finite balls with radius ε/Lg and centers ỹj for
j = 1, . . . , M, that cover Y . Then, from the triangle inequality, we have:

P

(
lim

n→∞
sup
y,z

∣∣∣ḡ(y, z)−EPX|Z [g(X, y, Z) | Z = z]
∣∣∣ ≤ 2ε

)

≥ P
(

lim
n→∞

sup
y,z

∣∣∣∆(1)(y, z)
∣∣∣+
∣∣∣∆(2)(y, z)

∣∣∣+
∣∣∣∆(3)(y, z)

∣∣∣ ≤ 2ε

)
, (A11)
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where

∆(1)(y, z) := ḡ(y, z)− ḡ(ỹj, z) (A12)

∆(2)(y, z) := ḡ(ỹj, z)−EPX|Z [g(X, ỹj, Z) | Z = z] (A13)

∆(3)(y, z) := EPX|Z [g(X, ỹj, Z) | Z = z]−EPX|Z [g(X, y, Z) | Z = z], (A14)

and ỹj is the center of the ball containing y. Note that

lim
n→∞

sup
y,z

(∣∣∣∆(1)(y, z)
∣∣∣+
∣∣∣∆(2)(y, z)

∣∣∣+
∣∣∣∆(3)(y, z)

∣∣∣
)

≤ lim
n→∞

sup
y,z

∣∣∣∆(1)(y, z)
∣∣∣+ lim

n→∞
sup
y,z

∣∣∣∆(2)(y, z)
∣∣∣+ lim

n→∞
sup
y,z

∣∣∣∆(3)(y, z)
∣∣∣ (A15)

≤ 2ε + lim
n→∞

sup
y,z

∣∣∣∆(2)(y, z)
∣∣∣ , (A16)

where (A16) follows from (26) and the radius of the balls being ε/Lg. Thus (A11) yields:

P

(
lim

n→∞
sup
y,z

∣∣∣ḡ(y, z)−EPX|Z [g(X, y, Z) | Z = z]
∣∣∣ ≤ 2ε

)

≥ P
(

lim
n→∞

sup
y,z

∣∣∣∆(2)(y, z)
∣∣∣ ≤ 0

)

≥ P
(

lim
n→∞

max
ỹj

sup
z

∣∣∣∆(2)(ỹj, z)
∣∣∣ ≤ 0

)
(A17)

= P

(
max

ỹj
lim

n→∞
sup

z

∣∣∣∆(2)(ỹj, z)
∣∣∣ ≤ 0

)
(A18)

≥ 1−
M

∑
j=1
P

(
lim

n→∞
sup

z

∣∣∣∆(2)(ỹj, z)
∣∣∣ > 0

)
(A19)

= 1, (A20)

where (A17) holds by the definition (A13), (A18) follows since ỹj is independent of n, and
the last step is due to Lemma A4. Finally since (A20) holds for any ε > 0 , according to [46]
(Prop 1.13) it is concluded that:

P

(
lim

n→∞
sup
y,z

∣∣∣ḡ(y, z)−EPX|Z [g(X, y, Z) | Z = z]
∣∣∣ = 0

)
= 1. (A21)

Consider now the probability space (Ω,F ,P). For any y ∈ Y and z ∈ Z , ḡ(y, z) can
be expressed equivalently as ḡ(y, z; ψ) : Ω→ R. Consider the functions Ys(n)(ψ) : Ω→ Y
and Zs(n)(ψ) : Ω→ Z , then from (A21):

P

(
ψ ∈ Ω : lim

n→∞

∣∣∣ḡ(Ys(n)(ψ), Zs(n)(ψ); ψ)−EPX|Z [g(X, Y, Z) | Y = Ys(n)(ψ), Z = Zs(n)(ψ)]
∣∣∣ = 0

)

≥ P
(

ψ ∈ Ω : lim
n→∞

sup
y,z

∣∣∣ḡ(y, z; ψ)−EPX|Z [g(X, y, Z) | Z = z]
∣∣∣ = 0

)

= 1 ,

(A22)

which implies that:
∣∣∣ḡ(Ys(n), Zs(n), Ws(n))−EPX|Z

[
g(X, Y, Z) | Y = Ys(n), Z = Zs(n)

]∣∣∣ a.s.→ 0, (A23)
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and the proof of Lemma A5 is concluded.

Now that the required tools were introduced, we can continue the proof of Proposition 2.
From Definition 3 and (A9), the LHS of (27) can be expressed as below:

1

k(n)
∣∣∣Iα′ ,s(n)

∣∣∣
∑

(X,Y,Z)∈Bα′ ,s
prod

g(X, Y, Z) =
1∣∣∣Iα′ ,s(n)

∣∣∣

s(n)

∑
i=1

Wi ḡ(Yi, Zi, Ws(n)). (A24)

Let us define:

∆i := ḡ(Yi, Zi, Ws(n))−EPX|Z
[
g(X, Y, Z) | Y = Yi, Z = Zi

]
,

and from Lemma A5, we obtain that:
∣∣∣∆s(n)

∣∣∣ a.s.→ 0. (A25)

As a result we can show the following strong convergence:

P


 lim

n→∞

1
s(n)

s(n)

∑
i=1

Wi∆i = 0


 ≥ P

(
lim

n→∞
Ws(n)∆s(n) = 0

)
(A26)

≥ P
(

lim
n→∞

∣∣∣∆s(n)

∣∣∣ = 0
)

(A27)

= 1, (A28)

where (A26) holds since s(n)→ ∞ by (25) and using Cesáro mean ([47] (Theorem 4.2.3)),
(A27) holds since Ws(n) ∈ {0, 1}, and the equality in the last step follows from (A25). In
other words,

1
s(n)

s(n)

∑
i=1

Wi ḡ(Yi, Zi, Ws(n))− 1
s(n)

s(n)

∑
i=1

Wi EPX|Z
[
g(X, Y, Z) | Y = Yi, Z = Zi

] a.s.→ 0. (A29)

Next since the sequence {(Wi, Yi, Zi)}s(n)
i=1 is stationary and ergodic, using Birkhoff’s

ergodic theorem we have:

1
s(n)

s(n)

∑
i=1

Wi EPX|Z
[
g(X, Y, Z) | Y = Yi, Z = Zi

]

a.s.→ EPW PYZ

[
W EPX|Z

[
g(X, Y, Z) | Y, Z

]]
.

(A30)

As W is generated independently

EPW PYZ

[
W EPX|Z

[
g(X, Y, Z) | Y, Z

]]
= E[W]EQ̃

[
g(X, Y, Z)

]
. (A31)

To complete the proof, note that
∣∣∣Iα′ ,s(n)

∣∣∣
s(n)

a.s.→ E[W]. (A32)

Therefore, from (A24) and (A29)–(A32), and
∣∣∣Bα′ ,s

prod

∣∣∣ = k(n)
∣∣∣Iα′ ,s(n)

∣∣∣ we conclude that:

1∣∣∣Bα′ ,s
prod

∣∣∣
∑

(X,Y,Z)∈Bα′ ,s
prod

g(X, Y, Z) a.s.→ EQ̃
[
g(X, Y, Z)

]
, (A33)
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and the proof is complete.

Appendix C. Proof Lemma A4

According to Definition 3, the index set Iα′ ,s(n) is determined by the sequence Ws(n).

Therefore,Aα′ ,k(n),n,s(n)(z, Zn, Ws(n)) denotes the set of indices of the k(n) nearest neighbors
of z among {Zi | i ∈ I c

α′ ,s(n)}, unlike in Lemma A3 where the neighbors can be chosen
among the whole sequence {Zi}n

i=1. Hence, the first step is to verify the φ-mixing condition
for the isolated k-NN method where some indices are excluded. Intuitively, if {Xi, Yi, Zi}n

i=1
is φ-mixing, then the sequence {(Xi, Yi, Zi)}i∈I c

α′ ,s(n)
is also φ-mixing since the random jumps

make the asymptotic independence (see Definition 4) happen with a faster rate. Nonethe-
less, we can show that the sequence {(Xi, Yi, Zi)}i∈I c

α′ ,s(n)
satisfy the mixing condition for

Lemma A3 which is expressed in the following.
The basis of the proof for Lemma A2 and thus Lemma A3, is Collomb’s inequality [48]

(Theorem 2.2.1) which provides a concentration bound similar to Hoeffding’s inequality
for φ-mixing variables. For instance if U is a φ-mixing process where E[Ui] = 0, |Ui| ≤ a1,
E[U2

i ] ≤ a2, and E[|Ui|] ≤ a3, the inequality states that:

P



∣∣∣∣∣

n

∑
i=1

Ui

∣∣∣∣∣ > ε


 ≤ exp


3
√

en
φt

t
− a4ε + 6a2

4n

(
a2 + 4a1a3

t

∑
i=1

φi

)
, (A34)

for some integer t < n and real a4 such that a1a4t ≤ 1/4. In order to show a similar
inequality for {Ui}i∈I c

α′ ,s(n)
, we have that:

P




∣∣∣∣∣∣∣
∑

i∈I c
α′ ,s(n)

Ui

∣∣∣∣∣∣∣
> ε


 = P




∣∣∣∣∣∣

n

∑
i=1

Ui −
s(n)

∑
i=1

WiUi

∣∣∣∣∣∣
> ε




≤ P


∣∣∣∣∣

n

∑
i=1

Ui

∣∣∣∣∣ > ε/2


+P




∣∣∣∣∣∣

s(n)

∑
i=1

Wi Ui

∣∣∣∣∣∣
> ε/2


,

(A35)

where both terms in (A35) are bounded with exponential terms and can be dominated by
either of them. Thus, as n → ∞ and s(n) → ∞ (by assumption (25)) both terms tend to
zero and Collomb’s inequality applies to the summation over the sub-sequence of samples
remained after the isolation. In other words, the required mixing condition holds for
the new sequence {(Xi, Yi, Zi)}i∈I c

α′ ,s(n)
and the result in Lemma A2 can be extended to

this Lemma.
Next it remains to verify the conditions of Lemma A2 on k(n). From (25) we have,

k(n)∣∣∣I c
α′ ,s(n)

∣∣∣
≤ k(n)

n− s(n)
=

1
s(n)(1− 1

k(n) )

a.s.→ 0,

which yields that:

k(n)
(

log
∣∣∣I c

α′ ,s(n)

∣∣∣
)2 ≥

k(n)
(log n)2

a.s.→ ∞. (A36)
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Therefore, the conditions of Lemma A2 hold and from Lemma A3 it follows that for all
y ∈ Y :

sup
z

∣∣∣ḡ(y, z, Ws(n))−EPX|Z
[
g(X, y, Z) | Z = z

]∣∣∣ a.s.→ 0, (A37)

which concludes the proof of the Lemma.

Appendix D. Proof Theorem 1

Based on the universal functional approximation theory of neural networks [37],
ref. [4] (Lemma 4) implies that for any ε0 > 0, there exists θ̃ ∈ Θ such that:

∣∣L(ωθ̃)− L∗
∣∣ < ε0

2
, (A38)

where L∗ := L(ω∗) and L(ω) and ω∗ were defined in (15). Moreover, from Propositions 1
and 2, for any θ ∈ Θ, the empirical loss Lemp(ωθ) defined in (18) converges asymptotically
to the expected loss L(ωθ). This is obtained by letting g(x, y, z) = log(ωθ(x, y, z)) and
g(x, y, z) = log(1−ωθ(x, y, z)) in Propositions 1 and 2, respectively, and noting Remark 2.
Thus we have:

Lemp(ωθ)
a.s.→ L(ωθ). (A39)

Since Θ ⊂ Rh and ‖θ‖2 ≤ K, ∀θ ∈ Θ, Θ can be covered with finite N(Θ, r) number of balls
of radius r, where N(Θ, r) is bounded [49]:

N(Θ, r) ≤
(

2K
√

h
r

)h

. (A40)

Let {θ1, . . . , θN(Θ,r)} denote the centers of the covering balls. Let jn be the index of the ball
that θ̂ belongs to, then from the triangle inequality we have:∣∣∣Lemp(ωθ̂)− L(ωθ̂)

∣∣∣ ≤
∣∣∣Lemp(ωθ̂)− Lemp(ωθjn

)
∣∣∣+
∣∣∣Lemp(ωθjn

)− L(ωθjn
)
∣∣∣

+
∣∣∣L(ωθjn

)− L(ωθ̂)
∣∣∣

≤
∣∣∣Lemp(ωθjn

)− L(ωθjn
)
∣∣∣+ 2Br

τ

(A41)

where the second inequality holds due to the Lipschitz continuity of ωθ stated in Assumption 4.
From the union bound and for any ε′ > 0, we have:

P

(
lim

n→∞

∣∣∣Lemp(ωθ̂)− L(ωθ̂)
∣∣∣ > ε′

2

)

≤ N(Θ, r)P

(
lim

n→∞

∣∣∣Lemp(ωθjn
)− L(ωθjn

)
∣∣∣ > ε′

2
− 2Br

τ

)
(A42)

= 0, (A43)
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where (A42) holds due to (A41), applying a union bound over all centers θj, and choosing
r < ε′τ

4B , and the last step follows by exploiting the strong convergence in (A39). As a result,
with probability one:

lim
n→∞

L(ωθ̂) ≤ lim
n→∞

Lemp(ωθ̂) +
ε′

2
(A44)

≤ lim
n→∞

Lemp(ωθ̃) +
ε′

2
(A45)

= L(ωθ̃) +
ε′

2
(A46)

≤ L∗ + ε′, (A47)

where (A44) is obtained from (A43), and (A45) holds since θ̂ minimizes Lemp(ωθ), and (A46)
follows from (A39). Finally, the last step is derived using (A38) and choosing ε0 = ε′.

To conclude the proof, note that if Assumption 5 holds, from [4] (Lemma 6) and taking
similar steps as in [11] (Lemma 8), it is implied that for any given ε′ > 0, with probability
one as n→ ∞:

EP̃

[∣∣∣ω∗(X, Y, Z)−ωθ̂(X, Y, Z)
∣∣∣ | θ̂

]
≤ η,

EQ̃

[∣∣∣ω∗(X, Y, Z)−ωθ̂(X, Y, Z)
∣∣∣ | θ̂

]
≤ η,

(A48)

where η := (1− τ)pmax
√

2λε′/pmin, with λ being the Lebesgue measure corresponding
to X ×Y ×Z . Note that the expectations in (A48) are random variables due to θ̂. Let us
define In

DV(X; Y|Z) as:

In
DV(X; Y|Z) := EP̃

[
log Γ̂(X, Y, Z) | θ̂

]
− logEQ̃

[
Γ̂(X, Y, Z) | θ̂

]
. (A49)

Thus by the triangle inequality we have:
∣∣∣ În

DV(X; Y|Z)− I(X; Y|Z)
∣∣∣

≤
∣∣∣ În

DV(X; Y|Z)− In
DV(X; Y|Z)

∣∣∣+
∣∣In

DV(X; Y|Z)− I(X; Y|Z)
∣∣ .

(A50)

where În
DV(X; Y|Z) was defined in (21).

To bound the first term, note that by the triangle inequality
∣∣∣ În

DV(X; Y|Z)− In
DV(X; Y|Z)

∣∣∣ ≤ ∆DV + ∆′DV , (A51)

where

∆DV :=
∣∣∣∣
∣∣∣Bα

joint

∣∣∣
−1

∑X,Y,Z∈Bα
joint

log Γ̂(X, Y, Z)−EP̃

[
log Γ̂(X, Y, Z) | θ̂

]∣∣∣∣

and

∆′DV :=

∣∣∣∣∣log
∣∣∣Bα′ ,s

prod

∣∣∣
−1

∑X,Y,Z∈Bα′ ,s
prod

Γ̂(X, Y, Z)− logEQ̃

[
Γ̂(X, Y, Z) | θ̂

]∣∣∣∣∣ .

Since Γ̂(·) is bounded as:
τ

1− τ
≤ Γ̂(X, Y, Z) ≤ 1− τ

τ
,

by the Lipschitz continuity of log(·) it follows that:
∣∣∣ În

DV(X; Y|Z)− In
DV(X; Y|Z)

∣∣∣ ≤ ∆DV + ∆′′DV , (A52)



Entropy 2021, 23, 641 26 of 28

where

∆′′DV :=
1− τ

τ

∣∣∣∣∣
∣∣∣Bα′ ,s

prod

∣∣∣
−1

∑X,Y,Z∈Bα′ ,s
prod

Γ̂(X, Y, Z)−EQ̃

[
Γ̂(X, Y, Z) | θ̂

]∣∣∣∣∣ .

Both ∆DV and ∆′′DV converge strongly to zero from Propositions 1 and 2, respectively,
i.e., for any given ε > 0, we have that:

P

(
lim

n→∞
∆DV > ε/4

)
= 0,

P

(
lim

n→∞
∆′′DV > ε/4

)
= 0.

(A53)

To bound the second term in (A50), using the triangle inequality it yields that:

∣∣In
DV(X; Y|Z)− I(X; Y|Z)

∣∣ ≤
∣∣∣EP̃

[
log Γ̂(X, Y, Z)− log Γ(X, Y, Z) | θ̂

]∣∣∣

+
∣∣∣logEQ̃

[
Γ̂(X, Y, Z) | θ̂

]
− logEQ̃

[
Γ(X, Y, Z)

]∣∣∣ .
(A54)

Thus from (A48) and the Lipschitz continuity of Γ, Γ̂, and log(·), it follows that:

P

(
lim

n→∞

∣∣∣EP̃

[
log Γ̂(X, Y, Z)− log Γ(X, Y, Z) | θ̂

]∣∣∣ > η

τ(1− τ)

)
= 0, ]

P

(
lim

n→∞

∣∣∣logEQ̃

[
Γ̂(X, Y, Z) | θ̂

]
− logEQ̃

[
Γ(X, Y, Z)

]∣∣∣ > η

τ2

)
= 0.

(A55)

Then combining (A50) and (A52)–(A55), it is concluded that with probability one as n→ ∞
∣∣∣ În

DV(X; Y|Z)− I(X; Y|Z)
∣∣∣ ≤ ∆DV + ∆′′DV +

η

τ(1− τ)
+

η

τ2 (A56)

≤ ε

4
+

ε

4
+

ε

2
= ε, (A57)

where the last step holds by choosing η = τ2(1 − τ) ε
2 , and ε′ and ε0 accordingly. In

other words,
În
DV(X; Y|Z) a.s.→ I(X; Y|Z),

and the proof of Theorem 1 is completed.
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