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Abstract: We propose a quantum walk model to investigate the propagation of ideas in a network
and the formation of agreement in group decision making. In more detail, we consider two different
graphs describing the connections of agents in the network: the line graph and the ring graph.
Our main interest is to deduce the dynamics for such propagation, and to investigate the influence
of compliance of the agents and graph structure on the decision time and the final decision. The
methodology is based on the use of control-U gates in quantum computing. The original state of the
network is used as controller and its mirrored state is used as target. The state of the quantum walk
is the tensor product of the original state and the mirror state. In this way, the proposed quantum
walk model is able to describe asymmetric influence between agents.

Keywords: quantum walk; group decision making; idea propagation; social network

1. Introduction

The investigations of group decision making and social networks have regularly
attracted contributions from applied mathematicians, psychologists, and social scientists
over the last several decades. Graph theory and matrix algebra have natural applications
to such investigations; for example, see the early monograph by Harary, Norman, and
Cartwright [1]. Classic problems of interest include comparative static analyses of social
network structures [2,3], functional implications of network structures [4], and numerical
taxonomies of nodes [5,6]. Much ongoing interest is focusing on dynamic models of
structural change [7–11] and on a broad range of dynamic processes unfolding over static
networks; examples include the study of social learning [12,13], opinion formation [14,15],
and information propagation [4,8,16]. The study of dynamic models directly addresses one
of the key problems of the field, which is to understand the implications of social structures
for relevant dynamical states of the network.

Many classical random walk models have been developed for human networks (see
the survey of Masuda et al. [17]). Propagation of ideas in social network and discussions
in group decision making involves human cognition. Numerous empirical findings in
cognitive psychology and behavioral sciences have exhibited anomalies with respect to
the classical benchmark defined by Kolmogorovian probability axioms and the rules of
Boolean logic, suggesting a whole new scope of research: the development of models for
decision-making based on the quantum formulation of probability theory [18–22]. In order
to account for the quantum feature of human cognition and decision making, a quantum
walk model is proposed in this work to model the formation of agreement in group decision
making and the propagation of ideas in social network.

Various quantum walk models have been proposed for information propagation in
network and decision making [23–26]. Cabello et al. [27] ] proposed a quantum model
for social network. Their quantum model can model the agent connections with various
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properties (such as hobby, relationship, etc.). However, their quantum model cannot model
the dynamic information exchange between agents. Mutlu and Garibay [28] ] proposed a
quantum-like approach for the analysis of social contagion dynamics with heterogeneous
adoption thresholds. Khrennikov [29] proposed a social laser model for the bandwagon
effect. The variable investigated in their model is the fraction of individuals in the network
adopting an idea. Therefore, their models cannot model the fine-grained interaction
between two particular agents. Recently, Bagarello et al. propose a simple approach based
on ladder fermionic operators to investigate the spreading of news (may be true or biased
by agent) in a social network [30]. All the these previously proposed quantum walks have
the limitation that they are unable to model asymmetric transitions. The reason for such a
limitation is that all these quantum walks are directly based on the Schrodinger equation
or Heisenberg equation. Since the Hamiltonian (for continuous time quantum walks) is
Hermitian and the associated operator is unitary, the transitions modeled by these quantum
walks must be symmetric, that is, idea propagation from agent 1 to agent 2 is as easy as
that from agent 2 to agent 1. However, idea propagations in practical social networks are
always asymmetric. For example, a stubborn person may easily persuade an open-minded
person, but an open-minded person may not persuade a stubborn person. The quantum
walk model proposed in this work overcomes the limitation of symmetry by lifting the
state of the social network into a higher dimensional state (tensor product of the original
state and its mirrored state) and applying controlled-operator on the lifted state, where the
original state works as controller and the mirrored state works as target. In this way, local
transition in the target can be asymmetric, although the global transition in the lifted state
is still symmetric.

In this paper, we propose a lifted quantum walk model for formation of agreement
in group decision making and idea propagation in the social network. In Section 2, we
introduce the basics of quantum computing and develop the unitary operator driving the
lifted quantum walk model using control-U gates. In Section 2.3, we give the initialization,
iteration, and stopping rule of the quantum walk. In Section 3, we develop the lifted
quantum walk specifically for a network with connections in a ring graph. In Section 4, we
give numerical results for idea propagation in a line graph and formation of agreement and
interference effect in group decision making. Finally, we present our concluding remarks
and share some of our ideas for future work in Section 5.

2. Quantum Walk for Asymmetric Propagation

Suppose A1, A2, A3 are agents and each agent may or may not be infected (by an
idea) and one agent can spread the infection to another, but also an agent can remove an
infection. Let z be A3’s state, y be A2’s state, and x be A1’s state. Each agent has two states,
namely, 0 (not infected) and 1 (infected). A1 interacts with A2 and A2 interacts with A3:

A1 ←→ A2 ←→ A3

2.1. States of the Network and the Quantum Walk

The global state of the 3-agent network is denoted by zyx. Since each agent has two
states, the network has eight states. Viewing zyx as an integer in binary number system,
we can represent zyx with its corresponding decimal form plus 1:

1 2 3 4 5 6 7 8
000 001 010 011 100 101 110 111

We encode the local state of an agent with one qubit and encode the global state of the
network with the tensor products of the qubits of all agents. Specifically, we encode 0 as
|0〉 and encode 1 as |1〉. |0〉 and |1〉 can be represented by basis vectors in the Hilbert space
C2, where C is the set of all complex numbers:

|0〉 =
[

1
0

]
, |1〉 =

[
0
1

]
. (1)
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Then |zyx〉 = |z〉 ⊗ |y〉 ⊗ |x〉 is a basis vector of C8. For example,

|6〉 = |101〉 = |1〉 ⊗
[

1× |1〉
0× |1〉

]
= |1〉 ⊗

[
0 1 0 0

]T
=
[
0 0 0 0 0 1 0 0

]T .

It would be clear from context whether |1〉means [0 1]T or |001〉 . (Note the superscript T
denotes transpose and not conjugate transpose).

We model each agent as a quantum subsystem and model the communication of ideas
among the agents as interaction among the quantum subsystems. In quantum physics, the
interaction among the subsystems is accounted in the Hamiltonian of the total system. In
quantum computing, the interaction among qubits is implemented by exerting a quantum
gate (represented by a unitary operator) on the joint state (tensor product of all qubits).
Let the superposition state spanned by the basis |zyx〉 be |ψ〉. In order to account for
the asymmetric interaction between the agents, the quantum walk is not run directly on
the network, but rather, on the tensor product of the network and a mirror of itself, that
is, the superposition state of the quantum walk is |ψ〉 ⊗ |ψ′〉, which is represented as a
64× 1 vector. The mirror system |ψ′〉 is used as reference for the control gates. This is
the so-called lifting operation [31,32], where each state is lifted to a higher-dimension
state. In the case of idea propagation, we model idea as a state superpositioned over |1〉
(accepting the idea) and |0〉 (rejecting the idea). Although interactions between agents
often involves information exchange, we do not explicitly model information as a state.
Agent interactions are considered in the unitary operators and information exchange is
also implicitly considered in the unitary operators.

2.2. Control-U Gate

The quantum model performs the asymmetric transitions by using a collection of
control-U gates (If condition is present, then apply the U gate to the action). To form the
control-U gate, we need the following two measurement operators for the local state of a
single agent:

M0 =

[
1 0
0 0

]
, M1 =

[
0 0
0 1

]
. (2)

Throughout this work, In is an n× n identity matrix.
Let |αC〉 = c0|0〉+ c1|1〉 be the control qubit and |αT〉 be the n-qubit target state. The

control-U gate for the (n + 1)-qubit state |αC〉 ⊗ |αT〉 is M0 ⊗ I2n + M1 ⊗U, where U is
a 2n × 2n unitary matrix. This control-U gate simply transforms

[
c0|αT〉 c1|αT〉

]T into[
c0|αT〉 c1U|αT〉

]T , as is shown below.

(M0 ⊗ I2n + M1 ⊗U)(|αC〉 ⊗ |αT〉) =
[

c0|αT〉
0n×1

]
+

[
0n×1

c1U|αT〉

]
=

[
c0|αT〉

c1U|αT〉,

]
(3)

where 0n×1 is a n × 1 zero vector. When |αC〉 = |0〉, that is, c0 = 1, c1 = 0, it happens
that

[
c0|αT〉 c1|αT〉

]T =
[
c0|αT〉 c1U|αT〉

]T . When |αC〉 = |1〉, that is, c0 = 0, c1 = 1, the
control-U gate simply transforms |1〉 ⊗ |αT〉 into |1〉 ⊗U|αT〉. The U gate is turned off
when |αC〉 = |0〉 and is fully turned on when |αC〉 = |1〉.

If we want the U gate to be turned off when |αC〉 = |1〉 and fully turned on when
|αC〉 = |0〉, then the control-U gate for |αT〉 ⊗ |αC〉 should be M0 ⊗U + M1 ⊗ I2n .

Similarly, the control-U gate for the (n + 1)-qubit state |αT〉 ⊗ |αC〉 is I2n ⊗ M0 +
U ⊗ M1 where |0〉 turns U off and |1〉 turns U fully on. To see this, suppose |αT〉 =[
t0 t1 · · · t2n

]T and U|αT〉 =
[
t′0 t′1 · · · t′2n

]T . Then

(I2n ⊗M0 + U ⊗M1)(|αT〉 ⊗ |αC〉) =
[
c0t0 c1t′0 c0t1 c1t′1 · · · c0t2n c1t′2n

]T . (4)
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When |αC〉 = |0〉, that is, c0 = 1, c1 = 0, it happens that [c0t0 c1t′0 c0t1 c1t′1 · · ·
c0t2n c1t′2n ]T =

[
t0 0 t1 0 · · · t2n 0

]T = |αT〉 ⊗ |0〉. When |αC〉 = |1〉, that is,

c0 = 0, c1 = 1, it happens that
[
c0t0 c1t′0 c0t1 c1t′1 · · · c0t2n c1t′2n

]T = [0 t′0 0 t′1 · · ·
0 t′2n ] = U|αT〉 ⊗ |1〉. The U gate is turned off when |αC〉 = |0〉 and is fully turned on when
|αC〉 = |1〉. If we want the U gate to be turned off when |αC〉 = |1〉 and fully turned on
when |αC〉 = |0〉, then the control-U gate for |αT〉 ⊗ |αC〉 should be U ⊗M0 + I2n ⊗M1.

Let |αT1〉 be an m-qubit state and |αT2〉 be an n-qubit state. Let the 2m × 2m unitary
matrix U1 be the control operator for |αT1〉 and the 2n × 2n unitary matrix U2 be the control
operator for |αT2〉. The control-U gate for the (m + n + 1)-qubit state |αT1〉 ⊗ |αC〉 ⊗ |αT2〉
is I2m ⊗M0 ⊗ I2n + U1 ⊗M1 ⊗U2 where |0〉 turns U off and |1〉 turns U1 and U2 fully on.
To see this, suppose |αT1〉 =

[
t0 t1 · · · t2m

]T and U1|αT1〉 =
[
t′0 t′1 · · · t′2m

]T . Then

(I2m ⊗M0 ⊗ I2n + U1 ⊗M1 ⊗U2)(|αT1〉 ⊗ |αC〉 ⊗ |αT2〉)

=|αT1〉 ⊗
[

c0
0

]
⊗ |αT2〉+ (U1|αT1〉)⊗

[
0
c1

]
⊗ (U2|αT2〉)

=
[
c0t0|αT2〉 c1t′0U2|αT2〉 c0t1|αT2〉 c1t′1U2|αT2〉 · · · c0t2n |αT2〉 c1t′2n U2|αT2〉

]T
.

(5)

The unitary operator driving the quantum walk is proposed in the block diagonal
form:

U = diag(
[
U1 U2 · · · U8

]
), (6)

where each Ui is an 8× 8 matrix. The basis of |ψ〉 ⊗ |ψ′〉 is |xyz〉 ⊗ |x′y′z′〉. We label |xyz〉
so that it ranges from |1〉 to |8〉 and label |x′y′z′〉 so that it ranges from |1′〉 to |8′〉. Then
|xyz〉 ⊗ |x′y′z′〉 ranges from |1〉 ⊗ |1′〉, |1〉 ⊗ |2′〉, ..., to |8〉 ⊗ |8′〉, with the only nonzero
entry 1 moving down the column. To see the intricate operation of U on |ψ〉 ⊗ |ψ′〉, we
write |ψ〉 ⊗ |ψ′〉 also in a block form:

|ψ〉 ⊗
∣∣ψ′〉 = 8

∑
i=1

ci|i〉 ⊗
8

∑
j=1

dj
∣∣j′〉 = 8

∑
i=1

8

∑
j=1

cidj|i〉 ⊗
∣∣j′〉 = [b1 b2 · · · b8

]T , (7)

where bi =
[
cid1 cid2 · · · cid8

]T
= ci ∑8

j=1 dj|j′〉 = ci|ψ′〉. Then

U|ψ〉 ⊗
∣∣ψ′〉 = [U1b1 U2b2 · · · U8b8

]T
=
[
c1U1|ψ′〉 c2U2|ψ′〉 · · · c8U8|ψ′〉

]T . (8)

We can see |ψ〉 (corresponding to the original network) works as the controller and the
proposed Ui mainly operates on |ψ′〉 (corresponding to the mirror network). For example,
ci = 0 simply turns off Ui while ci 6= 0 turns on and adjusts Ui.

To see the effects of Ui on |ψ′〉, it is more convenient to view |ψ′〉 as a 3-qubit superpo-
sition state spanned by |z′y′x′〉, noting the following fact:

(U ⊗V ⊗W)(|α〉 ⊗ |β〉 ⊗ |γ〉) = (U|α〉)⊗ (V|β〉)⊗ (W|γ〉). (9)

Each Ui is constructed based on the two-dimensional rotation matrix:

Uθ =

[
cos θ − sin θ
sin θ cos θ,

]
(10)

where θ is the rotation angle. We will add subscript to θ to indicate which agent is infected.
For example, θx indicates that the rotation is operated on |x〉 and θyx indicates that the
rotation of counteraction is operated on |y〉 controlled by |x〉.The compositions of each Ui
are introduced as follows.
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2.2.1. U1

U1 is controlled by the original |ψ〉 through c1, the coefficient of |000〉. U1 is constructed
as follows:

UX = I4 ⊗Uθx (11)

UY = I2 ⊗Uθy ⊗ I2 (12)

UZ = Uθz ⊗ I4 (13)

U1 = UZ ·UY ·UX . (14)

UX rotates the third qubit by angle θx and leaves the first two qubits intact, that is, UX only
infects A1 mirror by a small amount. Similarly, UY only infects A2 mirror by angle θy and
UZ only infects A3 mirror by angle θz. Therefore, U1 infects all agent mirrors incrementally.
Therefore, U1 infects all agent mirrors incrementally, simultaneously, and independently.

2.2.2. U2

U2 is controlled by the original |ψ〉 through c2, the coefficient of |001〉. U2 is constructed
as follows:

UY = I2 ⊗ (I2 ⊗M0 + Uθy ⊗M1) (15)

UX = I2 ⊗ (M0 ⊗Uθx + M1 ⊗ I2) (16)

U2 = UX ·UY. (17)

UY rotates the second qubit by angle θy under the control of the third qubit and leaves
the first qubit intact, that is, UY only infects A2 mirror by the full prescribed amount if A1
mirror is infected (in state |1〉). Similarly, UX only infects A1 mirror by the full prescribed
amount if A2 mirror is not infected at all. Therefore, U2 is the interaction between A1 mirror
and A2 mirror. Note that the order is important: A1 mirror firstly controls the infection of
A2 mirror and then A2 mirror controls the infection of A1 mirror, which conforms to the
setting that the propagation is initiated at A1 mirror. First, A2 mirror is slightly infected
if A1 mirror is infected (in state |1〉), which is a natural step. Then, A1 mirror is slightly
infected if A2 mirror is not infected at all. This tricky setting implies that failure to persuade
another person would strengthen the idea in your own mind. U2 describes the influence
exerted by A1 mirror on A2 mirror and the counteraction received by A1 mirror from
A2 mirror, since only A1 is infected in its controller |001〉 and A1 can only communicate
with A2.

2.2.3. U3

U3 is controlled by the original |ψ〉 through c3, the coefficient of |010〉. U3 is constructed
as follows:

UY = I2 ⊗ (M0 ⊗ I2 + M1 ⊗Uθx ) (18)

UZ = (I2 ⊗M0 + Uθz ⊗M1)⊗ I2 (19)

UYx = I2 ⊗ (Uθyx ⊗M0 + I2 ⊗M1) (20)

UYz = (M0 ⊗Uθyz + M1 ⊗ I2)⊗ I2 (21)

U3 = UYx ·UYz ·UZ ·UY. (22)

Firstly, UY incrementally infects A1 mirror if A2 mirror is infected (in state |1〉). Secondly,
UZ incrementally infects A3 mirror if A2 mirror is infected (in state |1〉). Thirdly, UYz incre-
mentally infects A2 mirror if A3 mirror is not infected at all. Fourthly, UYx incrementally
infects A2 mirror if A1 mirror is not infected at all. U3 describes the influence exerted by
A2 mirror on the other two neighbors and the counteraction received by A2 mirror from
the other two neighbors, since only A2 is infected in its controller |010〉.
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2.2.4. U4

U4 is controlled by the original |ψ〉 through c4, the coefficient of |011〉. U4 is constructed
as follows:

UY = (M0 ⊗Uθy + M1 ⊗ I2)⊗ I2 (23)

UZ = (I2 ⊗M0 + Uθz ⊗M1)⊗ I2 (24)

U4 = UY ·UZ. (25)

Firstly, UZ incrementally infects A3 mirror if A2 mirror is infected (in state |1〉). Then, UY
incrementally infects A2 mirror if A3 mirror is not infected at all. U4 describes the influence
exerted by A2 mirror on A3 mirror and the counteraction received by A2 mirror from A3
mirror, since only A3 is not infected in its controller |011〉 and A3 can only communicate
with A2.

2.2.5. U5

U5 is controlled by the original |ψ〉 through c5, the coefficient of |100〉. U5 is constructed
as follows:

UY = (M0 ⊗ I2 + M1 ⊗Uθy)⊗ I2 (26)

UZ = (Uθz ⊗M0 + I2 ⊗M1)⊗ I2 (27)

U5 = UZ ·UY. (28)

Firstly, UY incrementally infects A2 mirror if A3 mirror is infected (in state |1〉). Then, UZ
incrementally infects A3 mirror if A2 mirror is not infected at all. U5 describes the influence
exerted by A3 mirror on A2 mirror and the counteraction received by A3 mirror from
A2 mirror, since only A3 is infected in its controller |100〉 and A3 can only communicate
with A2.

2.2.6. U6

U6 is controlled by the original |ψ〉 through c6, the coefficient of |101〉. U6 is constructed
as follows:

UX = I2 ⊗ (I2 ⊗M0 + Uθx ⊗M1) (29)

UZ = (M0 ⊗ I2 + M1 ⊗Uθz)⊗ I2 (30)

UXy = I2 ⊗ (M0 ⊗Uθxy + M1 ⊗ I2) (31)

UZy = (Uθzy ⊗M0 + I2 ⊗M1)⊗ I2 (32)

U6 = UZy ·UXy ·UZ ·UX . (33)

Since only A2 is not infected at all in its controller |101〉, A2 mirror receives the idea from
the two neighbors and then counteracts the two neighbors. Unlike the classical if-control,
where the action happens only if the “if” is true, quantum if-control can superpose the
action of both “if” and “else”. In other words, quantum if-control allows half-true-half-false.

2.2.7. U7

U7 is controlled by the original |ψ〉 through c7, the coefficient of |110〉. U7 is constructed
as follows:

UX = I2 ⊗ (M0 ⊗ I2 + M1 ⊗Uθx ) (34)

UY = I2 ⊗ (Uθy ⊗M0 + I2 ⊗M1) (35)

U7 = UY ·UX . (36)

Since only A1 is not infected at all in its controller |110〉 and A1 can only communicate with
A2, A1 mirror receives the idea from A2 mirror and then counteracts A2 mirror.
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2.2.8. U8

U8 is controlled by the original |ψ〉 through c8, the coefficient of |111〉. U8 is simply
constructed as U8 = I8 since all agents are infected in the controller |111〉 and the idea
propagation has come to an end.

2.2.9. Summary

U1 represents the idea initialization, rotating each agent to infected state (|1〉) regard-
lessly. U2 - U7 represents the interaction between agents. An infected agent (|1〉) would
first try to infect an uninfected agent (|0〉) and then the uninfected agent (|0〉) would try to
disinfect the infected agent (|1〉). We will furthermore let the positive rotation angle from
|0〉 to |1〉 have larger absolute value than the negative rotation angle from |1〉 to |0〉. With
these settings, the infected agent has advantages over the uninfected agent and thus the
network will sooner or later be infected.

2.3. Initialization, Iteration and Stopping Rule

The initial state of the network is |000〉, that is, all agents being uninfected. The original
network works as a controller and the mirrored network is the target to be controlled. We
use subscript uppercase C to denote the states of the original network and use subscript
uppercase T to denote the states of the mirrored network. Thus the initial state of the
quantum walk is ψ0 = αC ⊗ αT and ρ0 = ψ0 · ψ†

0 , where the superscript † means taking
transpose and complex conjugate and αC = αT = [1 0 0 0 0 0 0 0]T , that is, both the original
network and the mirrored network start from the all-uninfected state. The outer product
ρ0 of a superposition state with its Hermitian is called density operator.

We are interested in how long it takes for a new idea to prevail in the network. Thus
the stopping state is |111〉, that is, all agents being infected. When this state (denoted by
subscript lowercase s) is reached, the quantum walk is stopped; Otherwise the quantum
walk continues. We use subscript lowercase c to represent the states allowing the quantum
walk to continue. The measurement operator to get the stopping state is thus

Ms = diag(
[
0 0 0 0 0 0 0 1

]
). (37)

Correspondingly, the measurement operator to get the states to continue, is Mc = I8 −Ms.
Suppose we have physical systems A and B, whose state is described by a density

operator ρAB. The reduced density operator for system A is defined by

ρA ≡ TrB(ρ
AB), (38)

where TrB is a map of operators known as the partial trace over system B. The partial trace
is defined by

TrB(|a1〉〈a2| ⊗ |b1〉〈b2|) ≡ |a1〉〈a2|Tr(|b1〉〈b2|), (39)

where |a1〉 and |a2〉 are any two vectors in the state space of A, and |b1〉 and |b2〉 are any
two vectors in the state space of B. The trace operation appearing on the right hand side is
the usual trace operation for system B, so Tr(|b1〉〈b2|) = 〈b2|b1〉.

2.3.1. First Step

ρT(1) = TrC(U · ρ0 ·U†) (40)

pc(1) = Tr(Mc · ρT(1) ·Mc) (41)

ρc(1) =
Mc · ρT(1) ·Mc

pc(1)
(42)

Pc(1) = pc(1) (43)

Ps(1) = 1− pc(1). (44)
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Equation (40) applies the first transition on the composite state ρ0 of the original network
(controller) and the mirror network (target), and then reduces the resulting state to the
state consisting only of the target state by taking partial trace over the control state. pc(1)
is the probability to continue the quantum walk when the reduced/target/mirror state is
measured and the resulting state is just ρc(1). Thus Pc(1) and Ps(1) are the probabilities to
continue and stop the quantum walk at the first step, respectively.

2.3.2. Iteration

Given a very small ε > 0, for t > 1, while ∑t
τ=1 Ps(τ) < 1− ε, using lifting operation

ρ(t− 1) = ρc(t− 1)⊗ ρc(t− 1) (45)

ρT(t) = TrC(U · ρ(t− 1) ·U†) (46)

ps(t) = Tr(Ms · ρT(t) ·Ms) (47)

pc(t) = Tr(Mc · ρT(t) ·Mc) (48)

ρc(t) =
Mc · ρT(t) ·Mc

pc(t)
(49)

Pc(t) = Pc(t− 1) · pc(t) (50)

Ps(t) = Pc(t− 1) · ps(t). (51)

The state ρc(t − 1) from the last step is a reduced state. Thus, Equation (45) lifts it by
taking tensor product with itself to apply operator U. Equation (46) applies U to ρ(t− 1)
and reduces it again to the target state by taking partial trace over the controller state.
In each time step, we lift the state to higher dimension, apply U to the lifted state, and
then reduce the state to the original dimension. Lifting the state and applying the higher
dimension U consisting of various controlled-gate allow us to model the asymmetric
interactions between agents. Then we have to reduce the state to the original dimension
since the state of the network is in the original dimension and various probabilities must be
calculated in the original dimension. pc(t) and ps(t) are the probabilities to continue and
stop the quantum walk when the reduced/target/mirror state is measured, respectively.
The resulting continuing state is just ρc(t). Thus Pc(t) and Ps(t) are the probabilities to
continue and stop the quantum walk at step t, respectively. The iteration implies that the
quantum walk satisfies the Markov property, that is, the state at step t + 1 only depends on
the state at step t.

Theorem 1. Given any ε > 0, there exists an integer t such that ∑t
τ=1 Ps(τ) ≥ 1− ε if for some

δ > 0, pc(τ) > 1− δ only for finitely many τ. ∑t
τ=1 Ps(τ) = 1 if pc(t) = 0.

Proof.

Ps(1) + Ps(2) + Ps(3) + Ps(4) + · · ·+ Ps(t)

=1− pc(1) + pc(1)(1− pc(2)) + pc(1)pc(2)(1− pc(3))

+pc(1)pc(2)pc(3)(1− pc(4)) + · · ·+ pc(1)pc(2) · · · pc(t− 1)(1− pc(t))

=1− pc(1) + pc(1)− pc(1)pc(2) + pc(1)pc(2)− pc(1)pc(2)pc(3)

+pc(1)pc(2)pc(3)− pc(1)pc(2)pc(3)pc(4) + · · · − pc(1)pc(2) · · · pc(t− 1)pc(t)

=1− pc(1)pc(2) · · · pc(t− 1)pc(t).

Since 0 ≤ pc(τ) ≤ 1 for each τ and for some δ > 0, pc(τ) > 1− δ only for finitely many τ,
there exists an integer t such that pc(1)pc(2) · · · pc(t− 1)pc(t) < ε.

U is an incremental infection operator by construction, so the quantum walk will stop,
that is, almost all agents will be infected, in finite number of steps. Thus Pr(quantum walk
stops in finite steps) = 1. Suppose the quantum walk stops in N steps. Even if we do not
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know N, we can keep on summing Ps(τ) since we know it will sum up to more than 1− ε
in finite summations.

3. Ring Graph of Agent Connections
3.1. Three Agents

This is actually a complete graph where each agent can communicate with the other
two agents. Such a ring graph has more connections than the previous line graph. The U2,
U4, U5, and U7 gates are different for these two graphs, while the other Ui’s are the same.

In the line graph, A1 can only infect A2. In the ring graph, A1 can infect both A2 and
A3. Three options exist: A1 can infect A2 and A3 simultaneously (e.g., by giving a lecture),
A1 can infect A2 first and then infect A3, and A1 can infect A3 first and then infect A2.
Three options also exist in the reverse way. Typically, a person can only listen to one person
speaking. However, two people disinfects one person simultaneously is still possible. For
example, two people can jointly write one letter to a person. Here we only consider the
most common scene: One person gives a presentation to two people, but the two people
give their respective feedback in order.

1. U2.
UYZ = I4 ⊗M0 + Uθy ⊗Uθz ⊗M1 (52)

UXy = I2 ⊗ (M0 ⊗Uθxy + M1 ⊗ I2) (53)

UXz = M0 ⊗ I2 ⊗Uθxz + M1 ⊗ I4 (54)

U2 = UXz ·UXy ·UYZ (55)

Here A2 gives feedback first before A3 does.
2. U4.

UYz = (M0 ⊗Uθy + M1 ⊗ I2)⊗ I2 (56)

UZy = (I2 ⊗M0 + Uθz ⊗M1)⊗ I2 (57)

UXz = M0 ⊗ I2 ⊗Uθx + M1 ⊗ I4 (58)

UZx = I4 ⊗M0 + Uθz ⊗ I2 ⊗M1 (59)

U4 = UZx ·UXz ·UYz ·UZy (60)

Here A2 interacts with A3 and then A1 interacts with A3.
3. U5.

UY = (M0 ⊗ I2 + M1 ⊗Uθy)⊗ I2 (61)

UX = M0 ⊗ I4 + M1 ⊗ I2 ⊗Uθx (62)

UZy = (Uθzy ⊗M0 + I2 ⊗M1)⊗ I2 (63)

UZx = Uθzx ⊗ I2 ⊗M0 + I4 ⊗M1 (64)

U5 = UZx ·UX ·UZy ·UY (65)

Here A2 interacts with A3 and then A1 interacts with A3.
4. U7.

UXy = I2 ⊗ (M0 ⊗ I2 + M1 ⊗Uθxy) (66)

UXz = M0 ⊗ I4 + M1 ⊗ I2 ⊗Uθxz (67)

UY = I2 ⊗ (Uθy ⊗M0 + I2 ⊗M1) (68)

UZ = Uθz ⊗ I2 ⊗M0 + I4 ⊗M1 (69)

U7 = UZ ·UXz ·UY ·UXy. (70)

Here A2 interacts with A3 and then A1 interacts with A3.
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3.2. More than Three Agents

With n agents, there are 2n basis states for the network and 2n × 2n basis states for
the lifted network. The unitary operator driving the quantum walk is still in the block
diagonal form:

U = diag(
[
U1 U2 · · · U2n ,

]
) (71)

where each Ui is an 2n × 2n matrix. In the ring graph, Ak can only communicate with Ak−1
and Ak+1 for k > 1. A1 can only communicate with A2 and An. An can only communicate
with A1 and An−1.

The basis state for the network is |bn · · · b2b1〉, where each bi ∈ {0, 1} is the local state
of Ai. Ui is determined by the corresponding |bn · · · b2b1〉. We assume interaction only
exists between two connecting agents with different ideas. We further assume that the
infected agent firstly tries to infect the non-infected neighbors and then the neighbors
counteract. Take the five-agent basis state |01101〉, for example. Interactions exist between
A5 and A4, A3 and A2, A2 and A1. The basis states with the least interaction are the all-zero
state and the all-one state. The basis states with the most interaction are |0101 · · ·〉 and
|1010 · · ·〉.

Let θij and φij be the rotation angles of the operators for agent Ai being infected by Aj
and for Ai being counteracted (typically disinfected) by Aj, respectively. Then θ1 represents
amount of infection and θ2 represents amount of counteraction (typically disinfection).
Algorithm 1 shows how to generate Ui. In Algorithm 1, if both Ak−1 and Ak+1 are lectured
by Ak, Ak−1 gives feedback first and then Ak+1 gives feedback for 1 < k < n. However,
this order can be readily altered. In Algorithm 1, interactions between agents with lower
index take place before those between agents with higher index. Again this order can be
readily altered. Note that Algorithm 1 is not for the all-zero state and the all-one state. The
U1 for the all-zero state is

U1 =
n⊗

k=1

Uθk , (72)

where Uθk is the initial infection amount for Ak.
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Algorithm 1: Generating Ui for n-agent ring network (n > 3)
input :A zero-one n−bit sequence bn · · · b2b1 representing the basis state for the network, θij and φij
output :U corresponding to bn · · · b2b1

if b1 == 1 then
if b2 == 0 then

UL ← Uθ2,1 ;
V ← I2n−2 ⊗M1 ⊗Uφ1,2 + I2n−2 ⊗M0 ⊗ I2;

else
UL ← I2;
V ← 1;

if bn == 0 then
UR ← Uθn,1 ;
W ← M1 ⊗ I2n−2 ⊗Uφ1,n + M0 ⊗ I2n−1 ;

else
UR ← I2;
W ← 1;

U ← V ·W · (I2n−1 ⊗M0 + UR ⊗ I2n−3 ⊗UL ⊗M1);

for k← 2 to n− 1 do
if bk == 1 then

if bk+1 == 0 then
UL ← I2n−k−1 ⊗Uθk+1,k ;
// Note that I0 = 1, I0 ⊗U = U
V ← I2n−k−1 ⊗M1 ⊗ I2k + I2n−k−1 ⊗M0 ⊗Uφk,k+1 ⊗ I2k−1 ;

else
UL ← I2n−k ;
V ← 1;

if bk−1 == 0 then
UR ← Uθk−1,k ⊗ I2k−2 ;
W ← I2n−k+1 ⊗M1 ⊗ I2k−2 + I2n−k ⊗Uφk,k−1 ⊗M0 ⊗ I2k−2 ;

else
UR ← I2k−1 ;
W ← 1;

U ← V ·W · (I2n−k ⊗M0 ⊗ I2k−1 + UL ⊗M1 ⊗UR) ·U;

// Similar steps for bn, not listed here
· · · ;

4. Results and Discussions

Sections 4.1–4.3 consider the network in line graph connection. Sections 4.4–4.6
considers the network in ring graph connection.

4.1. No Disinfection

Let θx = 0.05 and θy = θz = 0.01 for U1. Then A1 is more easily infected than A2 and
A3 since A1 is the starting point of the propagation. Let θx = 0.01 and θy = 0.05 for U2.
Then , θx = θz = 0.05 and θyx = θyz = 0.01 for U3, θz = 0.05 and θy = 0.01 for U4, θz = 0.01
and θy = 0.05 for U5, θx = θz = 0.025 and θxy = θzy = 0.01 for U6, θx = 0.05 and θy = 0.01
for U7. With these settings, the first one to talk, whether she tries to infect or disinfect, has
more influence than the second one to talk. Thus the influence of the sender has on the
receiver is always more powerful than the counteraction of the receiver has on the sender.
Note that the sender may send infection or disinfection.

We take ε = 0.01 in the stopping rule. The probability of stopping the quantum walk,
that is, to reach the all-infected state, Ps(t), and the mean number of agents affected, at
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each time step until the quantum walk stops is shown in Figure 1. The time evolution
curves have many sharp oscillations, indicating many back-and-forth arguments in the
network. It takes 1139 steps to stop the quantum walk. Ps(t) is very low, smaller than 0.012,
in each step. Ps(t) rises rapidly to the peak value at the 24th step, and then drops rapidly.
After 400 steps, Ps(t) just decreases slowly. The propagation of idea is fast only at the very
beginning and is slow afterwards. Note that ρc(t) represents the state of the social network
and its diagonal elements are the probabilities of getting the basis state. Thus the (1, 1)
entry of ρc(t) is the probability that the network is in non-infected state (|000〉) at step t,
(2, 2) entry is the probability of only A1 is infected (|001〉), and so forth. The mean number
of agents affected at step t is [0 1 1 2 1 2 2 3]diag(ρc(t)) where diag(ρc(t)) is the column
vector formed by diagonal entries of ρc(t). The mean number oscillates much in the first
200 steps and goes to a steady value of 1.27 after 600 steps. Table 1 lists the probabilities of
each state at the last step. The distribution is quite uniform. Note that the probability of all
infected (000) is 0 since ρc(t) is obtained by projection removing 000 in Equation (49).

Figure 1. The probability of stopping the quantum walk and the mean number of agents affected at
each step until the quantum walk stops. Ps(t) can be viewed as a probability density function whose
support is a subset of the time domain. Ps(t) is the probability that the quantum walk stops at time
t. Summing Ps(τ) up to time t is the probability mass function that the quantum walk stops before
time t. Note that Ps(1140) = 0 does not mean that the quantum walk stops at t = 1140. Instead, it
means that the quantum walk must not stop at t = 1140 (must stop before t = 1140 actually).

Table 1. Probabilities of each state at the last step.

State 000 001 010 011 100 101 110 111

Pr 0.1525 0.1442 0.1295 0.1379 0.1484 0.1439 0.1436 0

4.2. Stubborn Conservative Guy in the Middle

Consider the following case: A2 is conservative and stubborn while A1 and A3 are
open-minded and compliant. Thus it is easier for A2 to persuade A1 than it is for A1 to
persuade A2.

Set θx = θz = 0.05 and θy = 0.01 for U1.
Set θy = 0.01 and θx = −0.02 for U2. Thus it is easier for A2 to disinfect A1 than it is

for A1 to infect A2.
Set θx = θz = 0.02 and θyx = θyz = −0.01 for U3. If A2 is infected, he can infect his two

neighbors powerfully. If A1 and A3 are not infected at all, they can slightly disinfect A2.
Set θz = 0.02 and θy = −0.01 for U4. If A2 is infected, he can infect A3 powerfully. If

A3 is not infected at all, she can slightly disinfect A2.
Set θy = 0.01 and θz = −0.02 for U5. If A3 is infected, she can infect A2 slightly. If A2

is not infected at all, he can disinfect A3 powerfully.
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Set θx = θz = 0.01 and θxy = θzy = −0.02 for U6. If A2 is not infected at all, he
can disinfect his two neighbors powerfully. If A1 and A3 are infected, they can slightly
infect A2.

Set θy = −0.01 and θx = 0.02 for U7. Thus it is easier for A2 to infect A1 than it is for
A1 to disinfect A2.

The probability of stopping the quantum walk and the mean number of agents affected
at each step of the stubborn-middle network is shown in Figure 2. Note that the horizontal
axis is in log scale since it takes much longer to stop the quantum walk than in the last
subsection (5762 vs. 1139). Ps(t) with a stubborn guy in the middle (Figure 2) is much
lower than that without a stubborn guy in the middle (Figure 1), since the infection rate
is much slower (smaller rotation angle). The mean number of infected in Figure 2 is also
smaller than that in Figure 1 in initial stages, but it catches up in later stages. This indicates
that the stubborn guy in the middle acts as a barrier to idea propagation only at the initial
stages but accelerate the propagation after he is persuaded, since the middle guy is hard to
be persuaded by neighbors (small controlled rotation by neighbors) and is influential over
neighbors (large controlled rotation by the middle guy).

Figure 2. The probability of stopping the quantum walk and the mean number of agents affected at
each step of the stubborn-middle network.

The results demonstrate that the proposed model is able to model asymmetric interac-
tions between agents with a stubborn guy in the middle. Next we will further demonstrate
this by applying the proposed quantum walk to asymmetric interactions between agents
with a compliant guy in the middle.

4.3. Compliant Open-Minded Guy in the Middle

Consider the following case: A2 in this subsection is more compliant and open-minded
than A2 in the last subsection.

Set θx = θy = θz = 0.05 for U1. Here the three agents are equally open-minded.
Set θy = 0.02 and θx = −0.01 for U2. Thus it is easier for A1 to infect A2 than it is for

A2 to disinfect A1.
Set θx = θz = 0.02 and θyx = θyz = −0.01 for U3. If A2 is infected, he can infect his two

neighbors powerfully. If A1 and A3 are not infected at all, they can slightly disinfect A2.
Set θz = 0.02 and θy = −0.01 for U4. If A2 is infected, he can infect A3 powerfully. If

A3 is not infected at all, she can slightly disinfect A2.
Set θy = 0.01 and θz = −0.02 for U5. If A3 is infected, she can infect A2 slightly. If A2

is not infected at all, he can disinfect A3 powerfully.
Set θx = θz = 0.02 and θxy = θzy = −0.01 for U6. If A2 is not infected at all, he

can slightly disinfect his two neighbors. If A1 and A3 are infected, they can infect A2
powerfully.

Set θy = −0.01 and θx = 0.02 for U7. Thus it is easier for A2 to infect A1 than it is for
A1 to disinfect A2.
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The probability of stopping the quantum walk and the mean number of agents affected
at each step of the compliant-middle network is shown in Figure 3. Ps(t) with a compliant
guy in the middle (Figure 3) is slightly lower than that in the no-disinfection case (Figure 1),
but it takes much longer to stop the quantum walk, since the infection rate is much lower.
The lower infection rate is not exactly due to smaller rotation angles. Instead, it is due
to disinfection (negative rotation angle) compared to the no-disinfection case. The mean
number of infected in Figure 3 is less oscillatory and smaller than that in Figure 1 in
initial stages, but it catches up in later stages. This indicates that the compliant guy in the
middle facilitates idea propagation throughout the quantum walk. The smooth propagation
brought by the middle guy can be explained as follows. Although the compliant guy is
not very influential over neighbors (large controlled rotation by the middle guy) and thus
does not accelerate the propagation after he is persuaded, but the middle guy is easily
persuaded by neighbors (small controlled rotation by neighbors).

Figure 3. The probability of stopping the quantum walk and the mean number of agents affected at
each step of the compliant-middle network.

The results in the previous three subsections demonstrate that the proposed model is
able to model asymmetric interactions between agents with various personalities commu-
nicating in a line graph structure. Next we will further demonstrate this by applying the
proposed quantum walk to asymmetric interactions between agents communicating in a
ring graph structure

4.4. Ring Graph

Set all θij = 0.05 and all φij = −0.01. The probability of stopping the quantum walk
and the mean number of agents affected at each step of the quantum walk on the ring
graph are shown in Figure 4. As the size of the network increases, Ps(t) drops more rapidly
in the first few steps but drops more slowly in later steps, and it takes longer for the new
idea to prevail the whole network. This can be explained by the fact that each agent is
initially exposed to the new idea (see Equation (72)) and thus larger networks have more
agents initializing the propagation, but it still takes longer time for more agents to end
at the same basis state. The mean numbers of infected evolving with time with different
network size has the same pattern: oscillating in the first few steps and then converge in
later steps. The oscillation in the larger network is less intensive since larger population
provides larger buffer and thus there is less back-and-forth changes of minds. With one
agent added, the increase in the mean number of infected from 3 to 4 is larger than that
from 4 to 5. This can also be explained by the fact that adding an agent is adding an idea
initiator and messenger.
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Figure 4. The probability of stopping the quantum walk and the mean number of agents affected at
each step of the quantum walk on the ring graph.

Up to this point, we apply the proposed quantum walk model to idea propagation in
a social network of agents with various personalities. In such a setting, all agents have the
same initial state (not knowing the new idea) and the same final state (accepting the new
idea). Next we apply the proposed quantum walk model to group decision making in the
next subsection.

4.5. Reaching Agreement

In group decision making, the group members have different ideas initially. After
the group discussion, an agreement is reached. Consider a binary group decision making
problem where each group member’s local state is either 1 or 0, for example, agreeing on
passing the proposal or disagreeing. Suppose the decision can be made only if the group
has reached an agreement, that is, all members are 1 or all members are 0. The special case
of all members having the same initial state is trivial since no discussion is needed and
the decision can be made immediately. The goal of this subsection is to investigate the
influence the initial distribution of tendencies of the group members on the final decision.

The initial state of the network is no longer |00 · · · 0〉. Actually the initial state is the
influencing factor that we want to investigate. Take a 3-member group as example. If A1
and A2 is completely sure of option 1 while A3 is completely sure of option 0, then the
initial state is |011〉. This is a special case of all agents being completely sure of one option.
Actually an agent may not be completely sure. In this case, the initial local state of the
agent is a superposition state over |0〉 and |1〉. Then the initial state of the n-agent network
is the tensor product of the initial local states of the agents:

αC = αT =
n⊗

k=1

αk(0), (73)

where
αk(t) = ck(t)|0〉+ dk(t)|1〉 (74)

is the local state of Ak. Again we lift the network by tensor product with its mirror so
that one works as controller and the other works as target. The initial control state and
the initial target state are the same. The initial state of the quantum walk is still given by
ψ0 = αC ⊗ αT and ρ0 = ψ0 · ψ†

0 .
We are also interested in how long it takes for a group to reach agreement. Note

that now we have two stopping states, namely, |00 · · · 0〉 and |11 · · · 1〉. All the group
members take the same option. When either state is reached, the quantum walk is stopped;
Otherwise the quantum walk continues. The measurement operator to get the stopping
state is thus

Ms = diag(
[
1 0 · · · 0 1

]
) (75)
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Correspondingly, the measurement operator to get the states to continue, is Mc = I2n −Ms
for an n-member group.

The first step of the quantum walk is still given by Equations (40)–(44) and the iteration
is still given by Equations (45)–(51). These equations are valid for n-agent networks.

In the new idea propagation setting, U1 controlled by |00 · · · 0〉 just infects each agent
by a small amount. Let n be the number of agents In the group decision making setting,
we set U1 = I2n since the group members have initial opinions related to the decision and
there is no need to initialize.

In group decision making, besides the time to stop the quantum walk (resp. to
make the decision), we are also interested in the final state (resp. which decision is to be
made). Suppose the quantum walk stops at step t f . Let ρT(t) and ps(t) be as given by
Equations (46) and (47), respectively. Then the final state is

ρ f =
Ms · ρT(t f ) ·Ms

ps(t f )
(76)

The probability to reach an agreement of taking option i (i = 0, 1) is

Pi = Tr(Mi · ρ f ·Mi), (77)

where M0 is 2n× 2n matrix with all entries zero except (1, 1) entry being 1 and M1 is 2n× 2n

matrix with all entries zero except (2n, 2n) entry being 1.
Consider a 5-member group with connections in a ring shape. The initial state con-

figurations in the group are shown in Figure 5 where the solid circle represents a member
initially completely sure of taking option 1 and the hollow circle represents a member
initially completely sure of taking option 0. Besides these four initial configurations, we
consider one more configuration, called Initial 5. In Figure 5a, let the solid circle and
the hollow circle represent the state

√
0.2|0〉 +

√
0.8|1〉 and the state

√
0.9|0〉 +

√
0.1|1〉,

respectively. Thus three members are 80% sure of taking option 1 while two agents are 10%
sure of taking option 1.

(a) Initial 1 (b) Initial 2 (c) Initial 3 (d) Initial 4
Figure 5. The initial state configurations in the 5-member group (Solid: option 1; Hollow: option 0).

Set al.l θij = 0.05 and all φij = −0.05. Thus, all members are equally powerful in
persuading the neighbors and equally likely to be persuaded by neighbors. The probability
of stopping the quantum walk and the mean number of agents affected at each step of the
quantum walk on the 5-member ring graph with various initial state configurations are
shown in Figure 6. The quantum walk has certain ergodicity properties: Ps(t) and mean
number of infected member (taking option 1) are different in the first tens of steps but they
coincide after 100 steps. The final state is superpositioned over |00000〉 and |11111〉. The
probability to take option 1 (measurement result being |11111〉) is 0.7488, the same for all
these initial configurations. This can be explained by the mechanism of Algorithm 1: In
each time step, the interaction occurs in order clockwise (See Figure 5) between two agents.
The interactions do not occur simultaneously. What’s more, the interaction always starts
from the top solid node in Figure 5 influencing the hollow node on the right side. The
agent who first talks has advantage over those who talk later. Therefore, the advantage of
talking first and the discussion procedure dominate the effect of initial opinions.
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Figure 6. The probability of stopping the quantum walk and the mean number of agents affected at
each step of the quantum walk on the 5-member ring graph with various initial state configurations.

4.6. Interference Effects

One important reason for exploring quantum networks is that they can produce inter-
ference effects when comparing a system that is disturbed by measurements to a system
that is not. To see the interference effect in the quantum walk on social network, again
take the 5-member group decision making ring network as example. Note that although
Equation (42) and Equation (49) perform measurements, they do not produce interference
effects on the intermediate states since they do not affect a particular intermediate state.
We can let the quantum walk evolve until the stopping criterion is reached. We can also
measure the quantum walk in the half-way before the stopping criterion is reached and
then let the quantum walk evolve again for the next half. Such an intermediate measure-
ment is of practical significance. In the middle of the group discussion, each member may
be asked to vote. This voting is not used for group decision making, but rather used as
an indication of agreement. Note that we can measure at any intermediate step to see the
interference effect. Measure at exactly half-way is just one of the many options.

Consider the configuration of Initial 5 in the last subsection. Without half-way mea-
surement, we let the quantum walk evolve for 50 steps. To see the interference effect, we
measure the quantum walk half-way. At the 25th step, we only measure A1 and A2. Then
the local states of A1 and A2 collapse to basis states (|1〉 = |00〉, |2〉 = |01〉, |3〉 = |10〉,
|4〉 = |11〉) while the other agents’ states are still superpositioned. We can measure them
with four measurement operators: I8 ⊗ Mi, where Mi is a 4× 4 matrix with all entries
zero except the ith diagonal entry being 1 for i = 1, 2, 3, 4. The probability to get |i〉 is
Tr((I8 ⊗Mi) · ρT(25) · (I8 ⊗Mi)). Then we let the quantum walk evolve for the remaining
25 steps. The probability of stopping the quantum walk and the mean number of agents
affected at each step of the quantum walk on the 5-member ring graph with various results
of half-way measurement on A1 and A2 are shown in Figure 7. With half-way measure-
ment, the measured agents are forced to make a decision and a new path of quantum walk
is produced. Four possible new paths of quantum walk can be produced for four possible
results of measurement. The partially collapsed new paths deviate from the original fully
superpositioned path. Due to the ergodicity of the proposed quantum walk, all paths
will eventually converge to the same path. If the group discussion can go on without
time constraint, then interference effects would not affect the final decision. However,
with constraint on discussion time, interference effect cannot be ignored. At the 25th step,
the probabilities of A1 and A2 choosing 00, 01, 10, 11 are the 1st, 2nd, 3rd, 4th entry of
u = [0.1870, 0.2479, 0.2719, 0.2932], respectively. At the 50th step, the probability of all
members choosing option 1 for the four new quantum walks are 1st, 2nd, 3rd, 4th entry
of v = [0.2378, 0.8038, 0.6974, 0.8033], respectively. According to classical probability, the
probability for the group to choose option 1 at the 50th step is u · v = 0.6689. However, the
probability for the group to choose option 1 without half-way measurement at the 50th step
is 0.7602. This violation of the classical Bayes rule is the so-called quantum interference
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effect. The reason for the interference effect is that the quantum state evolution is based on
amplitude instead of amplitude magnitude squared (probability).

Figure 7. The probability of stopping the quantum walk and the mean number of agents affected
at each step of the quantum walk on the 5-member ring graph with various results of half-way
measurement on A1 and A2.

5. Conclusions

In this paper, we have shown how a quantum walk model can be used to describe the
spreading of ideas in a network and the formation of agreement in group decision making.
In particular, we have considered networks where connections between agents are in a
line graph and in a ring graph. The analysis was based on the use of controlled unitary
operators in quantum computing where the original network is used as controller and the
mirror network is used as target. We have also discussed the interference effects when two
agents are forced to make decisions in the half-way and how this modifies the probability
of choosing a particular final option.

Our analysis opens the way to many possible applications, from the application of
different stopping rules, to the possibility of modeling special classes of agents (e.g., the
so-called influencers) in the network. These are only a few of the possible extensions of the
ideas discussed here.
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