
entropy

Article

FTRLIM: Distributed Instance Matching Framework for
Large-Scale Knowledge Graph Fusion

Hongming Zhu 1 , Xiaowen Wang 1 , Yizhi Jiang 1 , Hongfei Fan 1 , Bowen Du 1,2,* and Qin Liu 1,*

����������
�������

Citation: Zhu, H.; Wang, X.; Jiang, Y.;

Fan, H.; Du, B.; Liu, Q. FTRLIM:

Distributed Instance Matching

Framework for Large-Scale

Knowledge Graph Fusion. Entropy

2021, 23, 602. https://doi.org/

10.3390/e23050602

Academic Editor: Donald J. Jacobs

Received: 18 April 2021

Accepted: 10 May 2021

Published: 13 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Software Engineering, Tongji University, Shanghai 201804, China;
zhu_hongming@tongji.edu.cn (H.Z.); 2110211@tongji.edu.cn (X.W.); 1931566@tongji.edu.cn (Y.J.);
fanhongfei@tongji.edu.cn (H.F.)

2 Department of Computer Science, University of Warwick, Coventry CV47AL, UK
* Correspondence: B.Du@Warwick.ac.uk (B.D.); qin.liu@tongji.edu.cn (Q.L.)

Abstract: Instance matching is a key task in knowledge graph fusion, and it is critical to improving
the efficiency of instance matching, given the increasing scale of knowledge graphs. Blocking
algorithms selecting candidate instance pairs for comparison is one of the effective methods to
achieve the goal. In this paper, we propose a novel blocking algorithm named MultiObJ, which
constructs indexes for instances based on the Ordered Joint of Multiple Objects’ features to limit the
number of candidate instance pairs. Based on MultiObJ, we further propose a distributed framework
named Follow-the-Regular-Leader Instance Matching (FTRLIM), which matches instances between
large-scale knowledge graphs with approximately linear time complexity. FTRLIM has participated
in OAEI 2019 and achieved the best matching quality with significantly efficiency. In this research,
we construct three data collections based on a real-world large-scale knowledge graph. Experiment
results on the constructed data collections and two real-world datasets indicate that MultiObJ and
FTRLIM outperform other state-of-the-art methods.

Keywords: knowledge graph; instance matching; blocking algorithm; FTRL

1. Introduction

Knowledge graphs have the strong expressive ability and modeling flexibility as
semantic networks. Many knowledge graphs have been published for a variety of practical
needs, such as DBpedia [1], Freebase [2], YAGO [3], and IMDb (http://www.imdb.com,
accessed on 9 December 2020). The idea of knowledge graph is widely used in intelligent
question answering [4], recommendation systems [5], semantic search [6], and other fields.
However, due to the lack of unified presentation standards for data and information,
and/or the differences in the methods of obtaining data [7], the relevant knowledge
of the same entity in the real world is represented in various forms among different
knowledge graphs. It is not conducive to knowledge sharing between different domains
and applications.

Instance matching (IM) is defined as establishing a specific type of semantic link be-
tween instances. The semantic link is called the identity link represented by the owl:sameAs.
IM is also known as entity alignment [8], record linkage [9], duplicate detection [10], or co-
reference resolution [11]. It allows us to explicitly link two instances that refer to the same
entity in the real world. When merging different knowledge graphs, instance matching is
adopted to achieve consistency and integrity.

Instance matching has attracted attentions since 2009 [12], but the realization of the
ultimate solution is still an open research problem. As the scale of the built knowledge
graphs increases, the efficiency and cost requirements of instance matching methods be-
come more strict. Matching instances between knowledge graphs corresponds to the Clique
problem in graph theory, which is an NP-complete problem [13,14]. The Clique problem
is to find cliques in an undirected graph, where a clique is a completed subgraph. Briefly,

Entropy 2021, 23, 602. https://doi.org/10.3390/e23050602 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-5795-5279
https://orcid.org/0000-0003-1880-7921
https://orcid.org/0000-0002-9409-521X
https://orcid.org/0000-0002-0352-9730
https://orcid.org/0000-0002-3755-4870
https://orcid.org/0000-0002-9352-1694
https://www.mdpi.com/article/10.3390/e23050602?type=check_update&version=1
https://doi.org/10.3390/e23050602
https://doi.org/10.3390/e23050602
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://www.imdb.com
https://doi.org/10.3390/e23050602
https://www.mdpi.com/journal/entropy

Entropy 2021, 23, 602 2 of 27

consider two knowledge graphs to form one graph, where vertices are instances from the
two knowledge graphs, and the edges are identity links. Then, a clique represents a set
of instances that point to the same real-world entity. Instance matching is the problem
to list all such cliques. Earlier published methods [12,15] are not suitable for processing
large-scale knowledge graphs containing tens of thousands of instances, mainly because
these frameworks usually require the pair-by-pair comparison among instances from dif-
ferent knowledge graphs. To our best knowledge, there are mainly two approaches to
matching instances between large-scale knowledge graphs. (i) The blocking algorithm can
be adopted to reduce the searching space. This type of approach divides instances into
overlapping blocks and executes the matching process only within blocks. ServOMap [16],
VMI [17], RiMOM-IM [18], ScLink [19] and other frameworks [20] leverage such approach.
(ii) The distributed architecture can be utilized to provide sufficient computing resources.
The distributed file system can be used to store large knowledge graphs. The distributed
computing model, such as MapReduce [21], allows the instance matching process to be di-
vided into multiple matching tasks that can be executed by multiple workers. Frameworks
that adopt this include LINDA [14], BIGMAT [22], etc.

There exist challenges to be solved in the field of large-scale instance matching. (i) A
large number of candidate instance pairs need to be compared during the matching process,
which has an adverse impact on the matching efficiency. Although blocking algorithms can
reduce the number of candidate pairs, existing blocking algorithms adopted by conven-
tional frameworks [16–18] prefer to achieve high recall by replicating instances to multiple
blocks. The redundancy of instances leads to the generation of extra candidate pairs, which
increases the matching time. (ii) It is difficult to achieve a reasonable balance between
matching efficiency and matching quality. Although standalone frameworks [18,20,23] can
obtain high-quality matching results, they have high requirements for time and computing
resources to match large-scale knowledge graphs. Meanwhile, several distributed frame-
works [14,22] have been proposed and claimed to be able to process large-scale knowledge
graphs efficiently, but their matching quality can be further improved.

To tackle the above challenges, we propose a novel blocking algorithm MultiObJ to
select candidate pairs effectively. The proposed algorithm constructs inverted indexes for
instances based on the ordered joint of multiple objects’ features. The results of the joint
serve as evidence for blocking. Only instances from different knowledge graphs within
the same block can form candidate pairs. Based on the proposed algorithm, we design a
distributed instance matching framework FTRLIM (code: https://github.com/TOJSSE-
iData/ftrlim, accessed on 12 May 2021). It firstly adopts MultiObJ to select candidate
pairs. Then, it calculates the similarity of objects under pre-aligned predicates to generates
similarity vectors for candidate pairs based on the attributes and relationships of instances.
The FTRLIM framework models the problem of instance matching as logistic regression and
leverages the online logistic regression model FTRL [24] to determine whether candidate
pairs are matched. The framework is implemented in a distributed architecture and scales
well. In addition, we construct three data collections based on real-world data with different
scales and levels of heterogeneity for comprehensive evaluation. The constructed data
collections can be used as benchmarks to provide a quantitative evaluation of blocking
algorithms and instance matching frameworks in further researches.

FTRLIM has participated in the competition of SPIMBENCH Track at OAEI 2019 and
outperformed other state-of-the-art frameworks. This paper further evaluates the MultiObJ
blocking algorithm and the FTRLIM framework on the three constructed data collections
and two real-world datasets. Compared with RIMOM-IM’s method [18], experiment results
show that MultiObJ generates much fewer candidate pairs (1/819 ∼ 1/6 of RIMOM-IM’s)
and brings a distinguished matching efficiency improvement for the FTRLIM framework.
Evaluation results of matching quality show that FTRLIM achieves the same level of F1-
score as the best one among more than ten advanced frameworks. Besides, FTRLIM has
the capability to match instances between knowledge graphs containing more than 600, 000

https://github.com/TOJSSE-iData/ftrlim
https://github.com/TOJSSE-iData/ftrlim

Entropy 2021, 23, 602 3 of 27

instances with satisfied quality and efficiency. The time cost of matching decreases as the
number of available cores in the distributed cluster increases.

The main contributions of our work can be summarized as:

• We propose a novel blocking algorithm MultiObJ, which divides instances into blocks
by utilizing the ordered joint of multiple objects’ features. The experiment results
indicate that the proposed algorithm can significantly reduce the number of candidate
instance pairs with only an inconspicuous effect on the matching quality.

• We design and implement a distributed instance matching framework FTRLIM for
large-scale knowledge graphs based on MultiObJ. FTRLIM is able to match instances
between large-scale knowledge graphs efficiently. It mines matched instances using
the online logistic regression model follow-the-regular-leader (FTRL). The experiment
results show that FTRLIM overall outperforms other state-of-the-art frameworks on
real-world datasets and has excellent scalability and efficiency.

• We construct three data collections with golden-standards based on a real-world
large-scale knowledge graph. Knowledge graphs in these three data collections are
constructed with different scales and levels of heterogeneity to meet various evaluation
purposes. We evaluate MultiObJ and FTRLIM on these three data collections and two
real-world datasets. The constructed data collections and experiment results can be
replicated by others and provide a potential baseline for further research.

The rest of this paper is organized as follows. In Section 2, we review related work.
We formally describe the instance matching problem in Section 3. In Section 4, we describe
the detailed working principle and process of the FTRLIM framework. We analyze the
time complexity of our framework in Section 6. Experiments and analyses are performed
in Section 5. In Section 7, we summarize this paper.

2. Related Work

The term knowledge graph (KG) has been widely used since Google published their
work in 2012 [25]. Recently, Färber et al. use KG to describe any Resource Description
Framework (RDF) graph [26]. RDF is an infrastructure that is designed for encoding,
exchanging and reusing structural data [27]. It has been widely used in different domains
to store and share knowledge. The European Bioinformatics Institute (EBI) develops
the EBI RDF platform [28] for describing, publishing and linking life science data. The
Open European Nephrology Science Center leverages the RDF model to share and search
medical data among research groups [29]. The GEOLink [30] database provides geoscience
metadata repositories in RDF format and allows users to perform seamlessly query and
reasoning. Recently, the team of Ali develop frameworks that treat the data from social
networks into structural data for traffic event detection and condition analysis [31] and for
intelligent healthcare monitoring [32].

Although RDF is a standard language for describing resources on the network, the
description could be subjective and be various in different applications, which creates
obstacles to knowledge sharing in the same domain or even across domains. One of the
ways to overcome the obstacle is instance matching. Many methods have been proposed to
complete the instance matching task. Several state-of-the-art instance matching methods
evolve from ontology matching methods, such as LogMap [33], AML [34], RiMOM-IM [18],
and Lily [35]. The first three frameworks adopt the idea of bootstrapping and iteratively
discover more matched instance pairs based on pairs that are already matched. PARIS [23]
adopts a similar idea and models the probability that two instances can match. It is able
to match both schema and instances. Lily [35] focuses more on ontology matching and
manual adjustments are required when completing the instance matching task. VMI [17]
and VDLS [20] model the instance matching problem as a document matching problem and
build vectors for instances based both on their local information and their neighbors’ infor-
mation. They determine whether two instances are matched by calculating the similarity
between their vectors. SERIMI [36] selects the most discriminative attribute of instances by

Entropy 2021, 23, 602 4 of 27

computing the entropy of each attribute and builds the pseudo-homonyms sets of instances.
They complete the class-based disambiguation of instances by their set similarity function.

Researchers have been exploring applying machine learning and deep learning meth-
ods to the solution of instance matching problems. Supervised learning-based meth-
ods [37–39] have been applied in instance matching problem, which consider instance
matching a binary classification problem. These methods require labeling instances to train
the model. Among them, TrAdaBoost [38] adopts the transfer learning algorithm to obtain
training data, which reduces the manual work of labeling. Moreover, rather than training
models to match instances, MDedup [40] trains models for discovering the matching de-
pendencies (MDs) to select matched instances, where MD is one of the relaxed forms [41,42]
of functional dependency [43] in data mining. Semi-supervised learning methods [44,45],
unsupervised learning methods [46,47] and self-supervised learning model [48] are also in-
troduced into the field of instance matching. Besides, works on representation learning for
matching instances are gradually emerging [49–51]. These methods firstly embed instances
in each graph into different low-dimensional dense semantic spaces separately. Then, they
align the spaces according to the pre-matched instances to find more matched instance
pairs. There are also frameworks designed for training and evaluating the embedding
models, such as Reference [52–54]. Compared with other works, the FTRL model is more
lightweight, and it can give the probability that two instances are matched. We introduce
FTRL in more detail in Section 4.3.

How to deal with large-scale data has become an inevitable problem in instance
matching. As described in Section 1, the instance matching problem corresponds to the
NP-complete Clique problem. The most popular solution for large-scale IM is blocking.
This approach divides similar instances into blocks and limits the comparison within blocks.
There are views that blocking-based instance matching is the best approach for efficient
matching [55]. Some blocking algorithms require manual works [56]. Moreover, automated
blocking algorithms are applied by different instance matching frameworks [16–18,34].
These methods generate inverted indexes for instances by analyzing their attributes or
types. Blocks are generated according to these indexes. The blocking approach can split
the large-scale instance matching task into multiple subtasks. Therefore, it is usually
performed as the first step of large-scale instance matching methods. A more detailed
survey is presented in Papadakis’s research [57]. The most similar blocking method to us
may be the one proposed in Reference [18]. This method distinguishes the objects related
to different predicates and regards the instance pair with a unique index, i.e., the unique
pair, as a matched pair. The obvious difference is that we also consider the correlation
among different predicates, which further reduces the overlap between blocks. We use
the features of the object rather than always using the entire object to construct block keys,
which improves the robustness. Moreover, we only consider unique pairs as a special type
of candidate pairs, rather than directly as matched pairs, to improve the precision.

Adopting the distributed architecture is another way to perform large-scale instance
matching. The LINDA framework [14] performs instance matching by considering joint
evidence for instances and adopts a distributed version of the algorithm. MSBlockSlicer [58]
pays attention to the problem of load imbalance and adopts a block slice strategy to balance
the load of each worker in the distributed cluster. The BIGMAT framework [22] applies the
affinity-preserving random walk algorithm to express IM as a graph-based node ranking
and selection problem in the constructed candidate association graph and selects matching
results through a distributed architecture. Our framework leverages the proposed blocking
algorithm to divide the matching task into multiple logistic regression tasks that can be
executed distributionally. We also introduce the load balancing mechanism to make full
use of cluster resources.

As the number of proposed methods increases, researchers construct the Ontology
Alignment Evaluation Initiative (OAEI) to evaluate these methods. The evaluation is
carried out based on multiple tracks. The SPIMBENCH Track is one of the newest tracks

Entropy 2021, 23, 602 5 of 27

for instance matching evaluation. FTRLIM was evaluated on this track in 2019 and out-
performed other state-of-the-art frameworks.

3. Problem Formulation
3.1. Knowledge Graph

A knowledge graph is a finite set of pieces of knowledge presented as RDF triples. An
RDF triple is described in the form of 〈s, p, o〉, where s, p, o represent subject, predicate, and
object, respectively. A subject is a certain instance. A predicate specifies an attribute of the
subject when the object is literal text, while it defines a relationship between the subject
and the object if the object is an instance. Let the instance set be I, the predicate set be P,
and the literal set be L, and the knowledge graph is defined as

KG = {〈s, p, o〉|s ∈ I, p ∈ P, o ∈ I ∪ L}.

There are two types of p in the 〈s, p, o〉 triple. Let Op denote the set of o who makes
〈∗, p, o〉 a valid triple, where ∗ is a certain instance. When Op is a finite set, p is an
enumerative predicate; when it is an infinite set, p is a diverse predicate. The predicate type
determines the strategy of constructing indexes for the instances, which will be introduced
in Section 4.1.

3.2. Instance Matching

We use capital letters S and T as subscripts to indicate the data source, where S for
source KG and T for target KG. It is the same as the succeeding text. When given the
source knowledge graph KGS and the target knowledge graph KGT , instance matching task
requires to identify all instance pairs 〈i, j〉 that satisfy 〈i, owl:sameAs, j〉, where i ∈ IS, j ∈ IT .
A pair of instances that meet the condition is called to be matched. In this paper, we believe
that the matching process follows two assumptions.

Assumption 1. PS ∩ PT 6= ∅.

This assumption can be interpreted from two perspectives: (1) The source knowledge
graph and the target knowledge graph have predicates describing the same attribute or
relationship of the instances. (2) These predicates are aligned, which means the description
of the same aspect of the instances in different KGs is given through exactly the same
predicate. The method of aligning predicates has been widely studied in the field of
ontology matching since 2003 [59]. We believe that this assumption can be satisfied in the
field of instance matching.

Assumption 2. In the target knowledge graph, at most, one instance matches the instance in the
source knowledge graph, and vice versa.

Our work focuses on matching instances between non-homologous KGs. It means
that instances in the same knowledge graph should be different from each other.

FTRLIM regards IM as a logistic regression problem, where the regression values are
the similarity scores of instance pairs. The function that indicates the similarity between
instance i ∈ IS and j ∈ IT is defined as Sim(i, j, KGS, KGT), in which the value range is
[0, 1]. The larger the similarity is, the more likely the two instances will be matched. A
formal description of instance matching is defined as follows. For instances i ∈ IS, j ∈ IT , i
and j are matched if and only if:

Sim(i, j, KGS, KGT) ≥ Sim(i, k, KGS, KGT), ∀k ∈ IT

Sim(i, j, KGS, KGT) ≥ Sim(k, j, KGS, KGT), ∀k ∈ IS

Sim(i, j, KGS, KGT) ≥ θ

, (1)

where θ is a manually set threshold.

Entropy 2021, 23, 602 6 of 27

4. The FTRLIM Framework

This section introduces the detailed working process of FTRLIM. The proposed frame-
work consists of four major components: Blocker, Comparator, FTRL Trainer, and Matcher.
The overview of the FTRLIM’s workflow is presented in Figure 1. Blocker obtains instance
pairs to be compared, which adopts the proposed MultiObJ blocking algorithm to reduce
the number of candidate pairs. Comparator is responsible for generating similarity vectors
for each instance pair. FTRL Trainer takes similarity vectors and their scores as inputs
to train the FTRL model, while Matcher adopts the trained model to determine whether
instances are matched. The training process is optional because FTRLIM allows users to
load a pre-trained model. The framework is implemented in a distributed architecture.

Matcher

0.8

0.9

0.3

Model Prediction

…
…

Trainer

1.0

1.0

0.0

0.0

Manually ScoringTrain

Comparator

…
…

A

X

Similarity Vector Generation

Blocker: MultiObJ Blocking

B C

Z

A

X

C

X

A

Y

C

Y

B

Z

C

Z

A X

C Y

B Z

Matched Instances
FTRL

Model

HDFS

Save / Load

Source KG

A

B

C
p

p

q

q

p

Target KG

X

Z

Y

p

p

q

q

p

q

A

Y X

C

A B C

X Y Z

A X

0.0 ~ 1.0

instances in source KG

instances in target KG

instance pair

similarity vector

data flow

optional data flow

configuration

similarity calculation

similarity score

predicates

objects

p
q

Figure 1. Workflow of the proposed FTRLIM framework for large-scale instance matching.

4.1. Blocker

Identifying matched instance pairs by performing comparisons between every two in-
stances is time and space-consuming. To solve this problem, FTRLIM adopts the MultiObJ
blocking algorithm to efficiently select candidate instance pairs that are more likely to be
matched. This work is done by Blocker.

The basic idea of the MultiObJ blocking algorithm is to construct indexes for each
instance by leveraging features of the related objects. When constructing indexes, the
interactions among different predicates of the instance should also be considered. Features
of the objects under different predicates should be jointed to form the indexes of the
instance, which allows instances to be fine-grained divided. This idea is intuitive: In the
real world, researchers can use multiple attributives when describing an instance. The
more attributives there are, the easier it is for others to locate the instance.

The MultiObJ blocking algorithm accepts triples of knowledge from both source KG
and target KG and a predefined list of predicates P as the inputs, and it gives candidate
instance pairs and unique instance pairs as the outputs. It includes three phases: Initial-
ization, Indexing, and Candidate Pair Generation. In the Initialization phase, MultiObJ first
creates the candidate pair set C, the unique pair set U, the index table K, and the inverted
index table B. The index table K is prepared for storing indexes of instances, while the
inverted index table B is prepared for storing the mapping from a certain index to instances.
Then, it allocates a common initial inverted index kinit for all instances that belong to either
source or target KG and updates K and B, which leads to all instances are under the same
block at the very beginning. In the Indexing phase, the algorithm sequentially extracts
the features of related objects according to the predefined predicate list P and constructs

Entropy 2021, 23, 602 7 of 27

inverted indexes for the instances. The instances with the same index are divided into
the same block. As the iteration deepens, the large block will be subdivided into multiple
small blocks. The processing of instances in which the objects are missing is also supported.
The Candidate Pair Generation phase is responsible for combining instances from different
knowledge graphs in the same block into candidate instance pairs.

The core phase of the algorithm is the Indexing phase, which includes three subphases:
Explicit Indexing, Unique Pair Generation, and Index Inference. The algorithm processes
each predicate p in the predefined predicate list P iteratively. Each iteration owns two
additional predicate-specified tables: the indexing table Kp and the inverted indexing table
Bp. These two tables are used for storing provisional results that are passed to K and B
at the end of each iteration. The MultiObJ algorithm aims at leveraging object features of
instances to divide blocks. It extracts object features, builds inverted indexes for instances
in the Explicit Indexing phase, and utilizes the unique information among these features to
generate unique pairs in the Unique Pair Generation phase. However, instances may have no
corresponding object under certain predicates. MultiObJ infers possible features of these
instances in the Index Inference phase. The following paragraphs will introduce the details
of the algorithm.

We name the initial index and the indexes generated for the instance i in the previous
iteration as the pre-index of the instance i. The object set of i under the predicate p is noted
as i[p]. In the Explicit Indexing phase, all instances are divided into two parts depending
on whether i[p] exists with the function devideByObjectMissing. This phase concentrates
on building indexes for instances with i[p]. In this phase, the features of the object o
are extracted with the function extractObjectFeatureSet, where o ∈ i[p]. The strategies
of feature extraction will be introduced later. The algorithm concatenates the extracted
features with each pre-index of the instance i as the current indexes using the function
catPreIdxAndFeature, and records the result in Kp. The inverted index table Bp is also
updated using the function updateInvertedIndexTable.

In the Unique Pair Generation phase, the algorithm aims to detect the unique instance
pairs. If and only if there is one pair of instances from different data sources with a certain
index, these two instances are considered a unique instance pair. When two instances
have the same index, and the index is unique in the source KG and the target KG, they
are the most likely to be matched intuitively. FTRLIM achieves this intuition by setting a
lower threshold for the unique pairs when determining whether two instances are matched,
which will be introduced later.

The lack of knowledge is considered in the Index Inference phase to avoid losing
candidate instance pairs as much as possible. If the expected object of instance s from the
source KG under the predicate p is missing, it means that the lack of knowledge occurs
in the source KG. MultiObJ will identify all the instances in the target KG that have the
same pre-index as s using the function getInstByPreIdx and use all their indexes generated
according to p as the index of s. Moreover, s is also indexed by a special string NULL to
indicate that it has no corresponding object under the predicate p. The same process is
performed on instances with missing objects in target KG. In this way, the instances without
object under p will have a wildcard as an index, so they can still form candidate pairs
with other instances. When an iteration ends, the current indexes for instances become
the new pre-indexes. The pseudo-code of the MultiObJ blocking algorithm are shown in
Algorithm 1.

Entropy 2021, 23, 602 8 of 27

Algorithm 1 MultiObJ

Input:
S source knowledge graph
T target knowledge graph
P list of predicates used to generate indexes

Output:
C candidate pair set
U unique pair set
Initialization

1: U ← ∅, C ← ∅, B← ∅, K ← ∅
2: for all i ∈ S ∪ T do
3: K[i].add(kinit)
4: B[kinit][i.kg].add(i)

Indexing
5: for all p ∈ P do
6: Kp ← ∅ Bp ← ∅

Explicit Indexing
7: for all G ∈ {S, T} do
8: Gv, Gn ← devideByObjectMissing(G, p)
9: for all i ∈ Gv do

10: Fp,i ← extractObjFeatureSet(i[p])
11: Kp[i]← catPreIdxAndFeature(K[i], Fp,i)
12: updateInvertedIndexTable(Bp, Kp[i])

Unique Pair Generation
13: for all k ∈ Bp.keys() do
14: if Bp[k][S].size() == Bp[k][T].size() == 1 then
15: U.add((Bp[k][S].get(), Bp[k][T].get()))

Index Inference
16: for all Gn, G′v ∈ {(Sn, Tv), (Tn, Sv)} do
17: for all i ∈ Gn do
18: Kn ← catPreIdxAndFeature(K[i], NULL)
19: for all j ∈ getInstByPreIdx(G′v, K[i]) do
20: kv ← catPreIdxAndFeature(K[i], Kp[j])
21: Kn.update(kv)
22: updateInvertedIndexTable(Bp, Kp[i])
23: Kp[i]← Kn
24: K ← Kp, B← Bp

Candidate Pair Generation
25: for all k ∈ B.keys() do
26: for all i ∈ B[k][S]× B[k][T] do
27: C.add(i, j)
28: return C, U

An example of the Indexing phase is given in Tables 1 and 2. Table 1 shows the
relationship between the object features, the current indexes and the pre-indexes of each
instance in an iteration. The current indexes of S3 and T3 are generated in the Index
Inference phase due to the lack of related objects. Table 2 shows the blocking results in this
case. It should be pointed out that 〈S4, T4〉 is a unique pair, while 〈S2, T3〉 and 〈S3, T3〉
are not. It is because the unique pair generation is completed before the Index Inference
phase. Such a setting can reflect that the inferred indexes are not so reliable as the directly
constructed indexes.

Entropy 2021, 23, 602 9 of 27

Table 1. An example of the Indexing phase.

Pre-Index Instance Feature Current Index

A S1 X A$X
A S2 Y A$Y
A S3 - AX, ANULL
B S4 X B$X
A T1 X A$X
A T2 X A$X
A T3 - AX, AY, A$NULL
B T4 X B$X

Table 2. An example of the blocking results.

Block Key Candidate Instance Pair

A$X 〈S1,T1〉, 〈S1,T2〉, 〈S1,T3〉, 〈S3,T1〉, 〈S3,T2〉, 〈S3,T3〉
A$Y 〈S2,T3〉
A$NULL 〈S3,T3〉
B$X 〈S4,T4〉

The 10th line of MultiObJ requires to extract objects’ features to construct instance
indexes with the function extractObjFeatureSet. Many methods have been proposed to
implement this function, such as extracting keywords with TF-IDF, extracting tokens with
q-grams, and use the first three to four letters as tokens [60]. We believe that different
feature extraction methods and indexing strategies should be adopted for texts with
different lengths and types. During our exploration of data, we have observed that the
objects corresponding to some predicates are always in a finite set, while others are not.
Specifically, we divide predicates into two types, the enumerative predicate (EP) and the
diverse predicate (DP). Objects of EP can form an enumerated set, while objects of DP are
variable with subjects. Considering about the subject of type people, predicate hasGender
is an enumerative predicate, while predicate hasName is a diverse predicate. Therefore,
there are two index construction strategies that can be applied. For enumerative predicates,
features of their corresponding objects are the objects themselves, which can be adopted as
the construction basis of instance indexes after the unified processing. This construction
strategy is called full index construction (FIC) strategy. For diverse predicates, keywords of
their corresponding objects can be extracted to form the features for constructing indexes.
This is the keyword index construction (KIC) strategy. Since EP is more reliable than DP,
applying the FIC strategy before the KIC strategy will reduce the chance of the instance
being incorrectly blocked in MultiObJ.

For the KIC strategy, we also design a new algorithm CombKey to deal with the
long text. It extracts more discriminative features of objects to generate blocks with lower
overlap. The algorithm first densely ranks the words in objects according to the word
frequency from low to high. Words with higher rank are considered as keywords. After
that, CombKey combines keywords in pairs as tokens according to the ranking. Since
the possibility of repeated words within an object is low, only word frequency is used as
the ranking indicator when considering the cost of calculating TF-IDF and other complex
indicators. The detail of the CombKey algorithm is shown in Algorithm 2. The CombKey
algorithm is designed for text in which the length is larger than a threshold, where the
threshold is 2 empirically. For shorter texts, each word can be used as an object feature to
improve robustness.

Entropy 2021, 23, 602 10 of 27

Algorithm 2 CombKey

Input:
i[p] object of instance i under predicate p
Cp word frequency counter of objects under predicate p
R maximum rank of words used for extracting features

Output:
Kp set of object features of instance i under predicate p

1: Kp ← ∅
2: Wp ← split(i[p])
3: Ri ← DenseRank(Wp, Cp, R)
4: if Ri.keys().size() == 1 then
5: for all w ∈ Ri[1] do
6: Kp.add(w)
7: else
8: for r ← 1, min(R− 1, Ri.keys().size()− 1) do
9: for all w ∈ Ri[r] do

10: for j← r + 1, min(R, Ri.keys().size()) do
11: for all ww ∈ Ri[j] do
12: Kp.add(concat(w, ww))
13: return Kp

Table 3 demonstrates an example of CombKey results on the Restaurant dataset with
R = 2. The format of the ID is KG-Instance. In CombKey, the names of the given instances
are split into words and counted globally. Then, CombKey densely ranks the words
referring to their frequency. In the end, CombKey combines words with different ranks as
objects’ features. Although the word ’club’ occurs in all instances’ names, CombKey avoids
regarding the single word as a feature and distinguishes the first two instances from the
last two instances.

Table 3. An example of the CombKey results on Restaurant dataset with R = 2.

ID hasName Word Count Dense Rank Features

1-45
manhattan
ocean club

manhattan: 3
ocean: 2

club: 4
21: 2

café: 1

manhattan(1), manhattan-club
ocean(1), club(2) ocean-club

2-45
manhattan
ocean club

manhattan(1), manhattan-club
ocean(1), club(2) ocean-club

1-23 21 club 21(1), club(2) 21-club
2-23 21 club 21(1), club(2) 21-club

Another example is given in Figure 1 to illustrate how the MultiObJ blocking algorithm
works. The algorithm leverages the objects’ features under the predicates p (the orange
arrow) and q (the blue arrow) in turn to construct indexes for the instances. The six instances
in Figure 1 have the same object under p so that they will be divided into the same block
first. Then, according to the object under q, instances A, X, and Y will be divided into one
new block, while instances B and Z will be divided into another block. Note that instance
C has no object under q. MultiObJ will check the indexes of instances X, Y, and Z as part
of the inference results of C’s indexes. This is because the three instances are in the same
block divided according to objects under p as C but are from the target KG. In this case, C
will be divided into both the block contains X and Y, and the block contains Z.

In a knowledge graph, if the number of instances with a certain index is much greater
than the number of instances with another one, the problem of data skew will occur and
affect the efficiency of subsequent calculations. We introduce the load balance mechanism
to avoid the problem of data skew. FTRLIM draws the FastAGMS draft [61] for the

Entropy 2021, 23, 602 11 of 27

distribution of indexes of instances, then estimates the workload of cores in the cluster and
reassigns the work to balance the load.

4.2. Comparator

To obtain the similarity of the pair of instances, all candidate pairs are sent to the
Comparator. The Comparator compares two instances under various predicates in different
ways. The edit distance similarity is calculated for textual instance attributes, while
the overlap similarity or the Jaccard similarity is calculated for instance relations. The
calculation results will be sorted in order to form the similarity vector. Formally, let the list
of predicates adopted by Comparator be 〈p1, p2, . . . , pn〉, then the similarity vector of the
two instances is

〈s1, s2, . . . , sn〉, si ∈ [0, 1], (i = 1, 2, . . . , n),

where si is the similarity of the two instances under the i-th predicate. Table 4 shows an
example of similarity vector generation. The listed instances are two documents. The
column Sim1 represents the edit distance similarity of their labels, and the column Sim2
represents the overlap similarity of sets of their authors.

Table 4. An example of the similarity vector generation.

ID hasLabel hasAuthor Sim1 Sim2 Similarity Vector

1-01 A Demo of Label A.B, C.D, E.F
0.727 0.500 〈0.727, 0.500〉

2-01 Another Demo of Label A.B, M.N

When calculating the similarity of instance pairs under a certain predicate, some
instances may have no corresponding objects due to the data flaws of the knowledge graph
itself. A naïve way to obtain the similarity is to assign it a default value 0. However, this
solution may confuse the difference between the lack of knowledge and the dissimilarity. To
differentiate the two cases more clearly, we use the ratio of the number of instances with
objects under a predicate to the total number of instances to represent the completeness
rate of this predicate. If most instances have objects under a predicate, an instance may be
more distinctive when its object is missing. Based on this consideration, we believe that the
higher the predicate’s completeness, the lower the similarity between the instance without
objects and other instances should be. Formally, we define the default similarity Simd for
instance pairs without attributes or relations as:

Simd = 1− 1
2
(
|IS,p|
|IS|

+
|IT,p|
|IT |

), (2)

where IS, IT indicate the instance sets of source and target knowledge graphs, and IS,p, IT,p

are the sets of instances with objects corresponding to the predicate p. The term |I∗,p |
|I∗ | is the

completeness of the predicate p in the source or target KG.

4.3. FTRL Trainer

As described in Section 3.2, FTRLIM treats IM as a logistic regression problem. We
innovatively introduce the FTRL model [24] to solve the problem. FTRL is an advanced
online logistic regression model with high precision and excellent sparsity. It is designed to
apply the logistic regression on large-scale datasets and online data streaming, which is a
difficult situation for the conventional batch learning model. FTRL also has a fast training
speed. Hence, we choose FTRL to discover matched instance pairs.

Let ~x be the similarity vector, and y be the label of ~x, the FTRL model gives the
predicted label ŷ of ~x with the sigmoid function:

ŷ =
1

1 + exp(−~wT ·~x) , (3)

Entropy 2021, 23, 602 12 of 27

where ~w is the weight vector of the FTRL model.
The loss function of the FTRL model is the binary cross-entropy loss, which is de-

fined as:
` = −(y log ŷ + (1− y) log(1− ŷ)). (4)

The formula of updating the FTRL model’s weight ~w at t-th iteration is

~w(t+1) = arg min
~w
{~g(1:t) · ~w + σ(1:t)

∥∥∥~w− ~w(s)
∥∥∥2

2
+ λ1‖~w‖1 +

1
2

λ2‖~w‖2
2}, (5)

where σ is defined as the learning-rate schedule such that σ(1:t) = 1/η(t), λ1 and λ2 are
hyperparameters, and ~g(1:t) is the sum of gradient up to the t-th iteration.

The FTRL model adopts per-coordinate learning rates instead of the global learning
rate. This approach is quite suitable for the logistic regression problem based on similarity
vectors. The coordinates, or dimensions, of the similarity vector, are relatively independent.
Therefore, it is more reasonable to use per-coordinate learning rates. In FTRL, the formula
for updating the learning rate in dimension i at t-th iteration is:

η
(t)
i =

α

β +
√

∑t
s=1 (g(s)i)2

, (6)

where α and β are hyperparameters.
We develop the FTRL Trainer component to train the FTRL model. It generates the

training set first. The training set is composed of instance pairs’ similarity vectors, as
well as their similarity scores. The FTRL Trainer will first apply the average function on
similarity vectors to obtain initial similarity scores. Then, it will select m instance pairs in
which the initial similarity scores are higher than a certain threshold and m ones in which
the initial similarity scores are lower than the threshold. These 2m instance pairs will be
scored by users. The similarity scores of matched pairs are considered to be 1, while others
are assigned 0.

After generating the training set, the FTRL Trainer component trains the FTRL model
according to the hyperparameters in the configuration file. The trained model is stored in
HDFS so that it can be re-adopted.

FTRLIM is designed with a user-feedback mechanism that allows users to correct the
matching results manually. The corrected results will be accepted by FTRL Trainer to adjust
the parameters of the FTRL model. Users are able to choose a batch of candidate instance
pairs and correct the similarity scores, or pick up a certain pair to correct. When updating
the FTRL model, since the number of unmatched pairs is much greater than the number of
actually matched pairs, the unmatched pairs are subsampled with probability p to avoid
the sample imbalance problem. The probability can be configured by the user.

4.4. Matcher

All candidate pairs will obtain their final similarity scores in this component. This
component loads a trained FTRL model and predicts similarity scores with Equation (3).
The similarity scores are in the interval [0, 1]. As defined in Section 3.2, only instance pairs
in which the scores are larger than the manually set threshold θ are possible to be matched.
In our experiments, we set θ = 0.5 for candidate pairs and θ = 0.4 for unique pairs to make
unique pairs more likely to be matched. The Matcher component selects only the one-to-one
matched pairs as the final matching results. Before being sent to the FTRL model, elements
of similarity vectors are unified from [0, 1] to [−1, 1] to satisfy the symmetry of Equation (3).

4.5. Configuration

FTRLIM allows users to customize their own FTRLIM framework using configuration
files. Users are able to set the attributes for index generation, the properties and relations for
comparison, the hyperparameters for the FTRL model, and many other detailed parameters.

Entropy 2021, 23, 602 13 of 27

5. Evaluation
5.1. Datasets
5.1.1. Benchmark Datasets

To be compared with other frameworks [12,14,20,22,23,36,48,62–66], we report the
experiment results on three benchmark datasets. We choose the A-R-S benchmark from
OAEI 2009 and the PR benchmark from OAEI 2010 to test FTRLIM. Besides, since FTR-
LIM participated in the SPIMBENCH Track at OAEI 2019, the evaluation results are also
reported.

The A-R-S benchmark includes three real-world datasets named eprints, rexa, and
dblp. These three datasets contain instances from the domain of scientific publications. IM
frameworks are required to match instances in which the class is ‘document’ or ‘person’.
We choose the larger two datasets, i.e., the rexa dataset and the dblp dataset, to conduct
experiments. Since our framework gives the one-to-one matched pairs as results, we
select 1308 one-to-one matched pairs as reference matching from the 1540 matched pairs
given by the OAEI gold standard. The PR benchmark includes three datasets: Person1,
Person2, and Restaurant. Among them, Person1 and Person2 are synthetic datasets, while
the data of Restaurant comes from two different real-world data sources. We choose the
real-world dataset Restaurant to evaluate our framework. The SPIMBENCH benchmark is
composed of two datasets with different scales. The SANDBOX dataset has a smaller scale
and has a gold standard, while the MAINBOX has a larger scale but the gold standard is
not accessible. IM frameworks are required to determine instances that refer to the same
real-world ’Creative Work’ in both datasets, respectively. The statistics of these benchmark
datasets are shown in Table 5, where the hash symbol (#) means ’the number of’, the
same below.

Table 5. Statistics of the benchmark datasets.

Benchmark Dataset # Source # Target # Gold Standard

A-R-S rexa-dblp 14,771 1,615,197 1308
PR Restaurant 113 752 89

SPIMBENCH
SANDBOX 349 354 299
MAINBOX 1759 1772 -

5.1.2. Constructed Datasets

In addition to the benchmark datasets, we construct three data collections based on
the knowledge graph provide by the PermID project. PermID is a project provided by
Refinitiv to identify entities in the financial field, which provides unique references for data
items, including organizations, funds, and individuals. It aims to help people in the field
deal with the problems caused by non-standard data. These three data collections are with
different scales and levels of heterogeneity to conduct a more comprehensive evaluation:
(i) To verify the effectiveness of blocking algorithms, the number of instances both in source
and target knowledge graphs should not be too large. Even if there are 5000 instances in
both graphs, the total number of instance pairs will be larger than 50002 = 25,000,000, which
could be a difficulty for comparative frameworks without the blocking step. (ii) To explore
the matching quality requires datasets that contain knowledge graphs with various and
relatively significant information differences. (iii) To evaluate the scalability and matching
efficiency of IM frameworks requires sufficiently large-scale datasets.

We extract three subgraphs from the PermID knowledge graph as three source graphs.
After preprocessing, we apply the domain-independent instance matching benchmark
generator, Lance [67], to generate target graphs for them. According to the number of
instances they have, the three source graphs together with their target graphs are divided
into 3 data collections: PermID-5k, PermID-20k, and PermID-L, which contains 5 thousand,
20 thousand and a larger number (more than 20 thousand) of instances, respectively
(code: https://github.com/TOJSSE-iData/permid-lance, accessed on 12 May 2021). The

https://github.com/TOJSSE-iData/permid-lance

Entropy 2021, 23, 602 14 of 27

data extracted from PermID is stored in RDF format, as is the data processed by the
Lance framework.

PermID-5k

The PermID-5k data collection contains one source knowledge graph and one target
knowledge graph. We extract the knowledge in the PermID project of approximately
5000 exchange-listed companies in the United States to form the source knowledge graph.
The extracted knowledge includes company name, headquarters address, official website
URL, and management personnel. When applying the Lance framework to generate
the target knowledge graph, we use the value-based transformation and structure-based
transformation [67] to simulate the difference in the construction of different knowledge
graphs in the real world. For the company name, person name, and address, we believe
that the main reasons for the difference are the spelling error, and the lack of knowledge,
while, for the official website URL, we believe that the difference is mainly due to the lack
of knowledge. The statistics of this dataset are shown in Table 6.

Table 6. Statistics of the PermID-5k data collection.

Knowledge Graph # Instance # Triple

Source 5562 31,614
Target 5416 31,572

PermID-20k

There is one source knowledge graph and five different target knowledge graphs in
this data collection. The source knowledge graph has 148, 342 triples of 21, 342 instances.
Each of the five target knowledge graphs has 20, 518 instances, but the numbers of triples
are various. These knowledge graphs involve various aspects of knowledge of exchange-
listed companies in different countries, including company name, country, headquarters
address, official website URL, and management personnel. We simulate the possible value
and structure problems that may exist in the real-world data, including the spelling error,
the recording error and the lack of knowledge. When generating target knowledge graphs,
we believe that the difference is mainly because of the recording error for the country where
the company belongs to. The idea of generating other aspects of knowledge is similar to
PermID-5k’s. We generate five target graphs by changing the proportion of value-based
transformation and structure-based transformation in the Lance configuration, which is
shown in Table 7. The source graph and any one of the five target graphs could be used
as an independent dataset to evaluate the matching quality of IM frameworks. Among
the five pairs of graphs, the target graph and source graph in PermID-20k-A are the most
similar, while the target graph and source graph in PermID-20k-E are the most different.

Table 7. Statistics of the PermID-20k data collection.

Dataset # Target Triple
Transformation Allocation

Value Structural

PermID-20k-A 120,295 0.2 0.15
PermID-20k-B 119,243 0.2 0.2
PermID-20k-C 119,243 0.25 0.2
PermID-20k-D 118,262 0.25 0.25
PermID-20k-E 118,262 0.3 0.25

PermID-L

The PermID-L data collection is constructed with the knowledge graph that contains
approximately 600,000 companies from different countries. The knowledge includes com-

Entropy 2021, 23, 602 15 of 27

pany name, country, headquarters address, and management personnel. The construction
of the target graph is similar to PermID-20k. We firstly generate the target graph based
on the extracted source graph. Then, we sample instances together with their knowledge
from these two graphs to construct graphs with various scales. The PermID-L collection
contains 5 pairs of source-target knowledge graphs, i.e., 5 datasets, in total. The statistical
results are shown in Table 8.

Table 8. Statistics of the PermID-L data collection.

Dataset
Source Target

Instance # Triple # Instance # Triple

PermID-L-40k 42,149 244,464 40,718 218,746
PermID-L-80k 83,326 472,458 80,499 453,763
PermID-L-150k 153,424 861,782 148,218 843,274
PermID-L-300k 321,244 1,740,178 309,942 1,679,394
PermID-L-600k 604,432 3,264,378 583,923 3,137,179

5.2. Evaluation Settings

Three groups of experiments are designed to evaluate the following hypothesis questions:

• Whether the MultiObJ blocking algorithm enables the instance matching for large-
scale knowledge graphs by reducing the number of candidate pairs with only a slight
impact on the matching quality?

• Would the FTRLIM framework achieve higher matching quality compared with
conventional frameworks?

• Would the FTRLIM framework has excellent scalability and matching efficiency com-
pared with the state-of-art frameworks?

The details of the experiments are illustrated in this section.
To evaluate the effectiveness of the MultiObJ blocking algorithm, we conducted

comparative experiments on the Restaurant dataset, the rexa-dblp dataset, and the PermID-
5k data collection. The Restaurant dataset is a small and simple real-world dataset, while
the rexa-dblp dataset is a large-scale and heterogeneous dataset. The PermID-5k data
collection contains knowledge graphs of the middle scale. Hence, the comparison evaluates
the proposed blocking algorithm under different situation. We choose the recently proposed
blocking algorithm by RiMOM-IM [18] (we call it RIMOM-IM-Blk, the same as below) as
the baseline to present MultiObJ’s ability to select fewer candidate pairs. We reproduced
the RIMOM-IM blocking algorithm because their open-source code is not available now.
Besides, versions of FTRLIM with and without the blocking algorithm are compared on
PermID-5k to test the affect of MultiObJ on the matching quality. We do not choose a larger
data collection, since it will take an unpredictably long time, as well as large memory for
the non-blocking version of FTRLIM to obtain the matching results.

To evaluate the matching quality of FTRLIM, we provide historical evaluation re-
sults and extended comparative experiment results. Firstly, we provide the results of the
SPIMBENCH Track at OAEI 2019. The evaluation results indicate that FTRLIM is able
to obtain higher matching quality than the state-of-the-art frameworks. Secondly, we
report the evaluation results on the benchmark datasets and the PermID-20k data collection
to evaluate the capability of FTRLIM more comprehensively. We choose more than ten
frameworks as comparative candidates, which includes both OAEI participants and other
state-of-the-art frameworks.

To evaluate the scalability and efficiency of FTRLIM, we conduct experiments on the
PermID-L collection. We change both the scale of the cluster and the scale of datasets in
our experiment. As a comparison, we duplicated the open-source code of the AML [34]
project to process the same datasets. We have also tried to find the code of other excellent
frameworks but have not found them yet.

Entropy 2021, 23, 602 16 of 27

For the evaluation metrics, we calculate the pair completeness (PC) and the pair
reduction rate (RR) following the previous works [18,60], which reflect the effectiveness
of the blocking algorithm. The metric PC indicates how blocking algorithms affect the
matching quality, while the metric RR shows the ability of the block algorithms to reduce
candidate pairs. Recall that IS and IT are the sets of instances contained in the source
knowledge graph S and the target knowledge graph T, respectively. Let BS,T be the set
of matchable pairs found by the blocking algorithm, CS,T be the set of candidate pairs
generated by the blocking algorithm, and MS,T be the set of actually matched pairs between
S and T. Ten PC and RR are defined as:

PC =
|BS,T |
|MS,T |

RR = 1− |CS,T |
|IS × IT |

.

We also adopt the precision, recall, F1-score and time cost as the metrics. Let Pf ramework
be the set of matched pairs found by the framework, TPf ramework be the set of actually
matched pairs in Pf ramework. The precision, recall, and F1-score are defined as:

precision =
|TPf ramework|
|Pf ramework|

recall =
|TPf ramework|
|MS,T |

F1-score = 2 ∗ precision ∗ recall
precision + recall

.

FTRLIM uses Apache Hive as the data warehouse, and all constructed data collections
are imported into Hive for storage before all experiments. Predicates in all the mentioned
datasets are aligned to fit Assumption 1 proposed in Section 3.2. FTRLIM includes the
operation of manually labeling, and the time of manual work is uncertain. Therefore, all
the statistics on time cost in our experiments do not include the time-consuming of manual
operations. When reporting the experiment results, we use bold font to mark the best
results over each metric. All the experiments are conducted on a Spark cluster with 48 cores
and 64 G RAM. The basic frequency of each core is 2.5 GHz.

5.3. Evaluation of the MultiObJ Blocking Algorithm

When experimenting with the Restaurant dataset, we use the predicate isInCity as EP
and hasName as DP to block the instances. We use the predicate hasType as EP, hasName
and hasLabel as DP to complete the blocking process on the rexa-dblp dataset. Since the
knowledge graphs in rexa-dblp are heterogeneous, the blocking algorithm of RIMOM-IM
will do a Cartesian product between sets of instances with the same type in different graphs
to generate candidate pairs. In this case, the algorithm will generate a huge amount of
candidates pairs. Therefore, we also report the results of the RIMOM-IM-Blk algorithm
after excluding instance type information for comparison. On PermID-5k, we regard the
predicate hasCompanyName as DP to block instances. The experiment results on these two
benchmark datasets are summarized in Table 9.

On the Restaurant dataset, both the MultiObJ blocking algorithm and the RIMOM-
IM-Blk algorithm achieve the PC of 1, but the RR of MultiObJ is 28% higher than that
of RIMOM-IM-Blk. On the rexa-dblp dataset, MultiObJ finds 14 fewer matchable pairs
than RIMOM-IM-Blk and has about 1% lower PC than the latter algorithm. However, the
number of candidate pairs generated by the proposed method is only 1/819 of RIMOM-
IM-Blk’s. When the type information is excluded, the number of instance pairs generated
by RIMOM-IM-Blk is still about 23 times that of MultiObJ, while PC is about 7% lower. On
the PermID-5k data collection, although RIMOM-IM-Blk has 3% higher PC than MultiObJ

Entropy 2021, 23, 602 17 of 27

has, its number of candidate pairs is 6 times that of MultiObJ. As we analyzed in Section 2,
MultiObJ can generate fewer candidate pairs due to the consideration of the interaction
between different predicates.

Table 9. The results of MultiObJ compared with RIMOM-IM-Blk.

Dataset Method # Instance Pair # Candidate Pair PC RR

Restaurant
RIMOM-IM-Blk

84,976
24,922 1.000 0.7067

MultiObJ 1097 1.000 0.9871

rexa-dblp

RIMOM-IM-Blk

23,858,074,887

8,706,076,913 0.998 0.6351

RIMOM-IM-Blk 244,137,613 0.920 0.9898
(without type)
MultiObJ 10,634,939 0.988 0.9996

PermID-5k
RIMOM-IM-Blk

30,123,792
155,746 0.993 0.9948

MultiObJ 25,382 0.960 0.9992

When conducting experiments on the PermID-5k data collection, we also compare
the matching quality between the version of FTRLIM with and without the MultiObJ
blocking algorithm. We use the company’s name, headquarters address, official website
URL, and employee name to generate similarity vectors. For the FTRL model, we set
λ1 = 0.5, λ2 = 1, α = 0.05, β = 1. The training set of the FTRL model is generated using
200 manually labeled samples. The experiment results are shown in Table 10.

Table 10. Evaluation results of the MultiObJ on PermID-5k.

Method Precision Recall F1-Score Time Cost (sec.)

FTRLIM 0.984 0.958 0.971 116
FTRLIM

0.977 0.999 0.988 2679
(without Blocker)

The FTRLIM framework achieves the precision of 0.984 and the recall of 0.958 in this
experiment, while the version without Blocker achieves the precision of 0.977, and the recall
of 0.999. The PC is 0.960, which means that the blocking algorithm proposed in this paper
will discard some pairs of instances with low similarity, even if they may refer to the same
entity in the real world. However, the MultiObJ blocking algorithm still has the ability to
achieve a high F1-score since its precision is high. Compared with the version without
Blocker, the number of candidate instance pairs is drastically reduced and RR reaches
0.999, which leads to a significant improvement in the matching efficiency of the FTRLIM
framework. The experiment results prove that the MultiObJ blocking algorithm can greatly
reduce the matching time while ensuring that the matching results are almost unaffected.

5.4. Evaluation of the Matching Quality

FTRLIM has taken part in the SPIMBENCH Track at OAEI 2019, and the results
of the track are shown in Table 11. The track has evaluated multiple frameworks on a
specific platform, and we have made appropriate adjustments to FTRLIM to meet the
requirements of the platform. Nevertheless, the results of the competition can reflect the
excellent performance of the FTRLIM framework to a certain extent. In SANDBOX, we got
the highest F1-score with the least time cost and achieved 1.00 on the recall. In the larger
MAINBOX, we also got the almost highest F1-score with the least time cost, and the recall
is as high as 0.998. The evaluation results prove that our framework can obtain a high
F1-score and has a low time complexity.

Entropy 2021, 23, 602 18 of 27

Table 11. Evaluation results of the SPIMBENCH Track, OAEI 2019.

Dataset Method Precision Recall F1-Score Time Cost (ms)

SANDBOX

LogMap [33] 0.938 0.763 0.841 6919
AML [34] 0.835 0.896 0.865 6223
Lily [35] 0.849 1.000 0.919 2032
FTRLIM 0.854 1.000 0.921 1474

MAINBOX

LogMap 0.893 0.709 0.791 26,920
AML 0.839 0.884 0.860 39,515
Lily 0.855 1.000 0.922 3667
FTRLIM 0.856 0.998 0.921 2155

In addition to OAEI 2019, we compare the FTRLIM framework with the OAEI partici-
pants [12,48,62–66] and other state-of-the-art frameworks [14,17,20,23,36] on the Restau-
rant dataset and the rexa-dblp dataset. We adopt the same configurations as described
in Section 5.3 to construct indexes for instances. For the Restaurant dataset, we generate
the similarity vectors with the restaurant’s name, phone number, and street information.
We only select 30 labeled samples to train the FTRL model since the Restaurant dataset is
relatively small. The hyperparameters of FTRL are set as λ1 = 0, λ2 = 0.5, α = 0.02, β = 1.
For the rexa-dblp dataset, we leverage the label of document, the name of person, and the
relation between person and document to generate the similarity vectors. We select 300
labeled samples to train the FTRL model, considering that the rexa-dblp is a large-scale
real-world dataset. The hyperparameters of FTRL are set as λ1 = 0.5, λ2 = 1, α = 0.1, β = 1.
The experiment results and the comparison with other frameworks are reported in Table 12.
We round the results to the nearest hundredth like the results given by OAEI.

Table 12. Evaluation results of FTRLIM and other methods.

Dataset Method Precision Recall F1-Score

Restaurant

RIMOM [62] 0.86 0.77 0.81
ASMOV [12] 0.70 0.70 0.70
LN2R [64] 0.76 0.75 0.75
CODI [66] 0.72 0.72 0.72
ObjectCoref [48] - - 0.90
PARIS [23] 0.95 0.88 0.91
SERIMI [36] 0.77 0.77 0.77
LINDA [14] 1.00 0.63 0.77
BIGMAT(RW) [22] - - 0.99
BIGMAT(APRW) - - 1.00
VDLS(α = 0) [20] - - 1.00
VDLS(α = 1) - - 0.98
FTRLIM 0.99 0.99 0.99

rexa-dblp

HMATCH(I) [63] 0.42 0.48 0.45
RIMOM [62] 0.80 0.72 0.76
FBEM [65] 0.99 0.12 0.21
VMI [17] 0.71 0.78 0.76
BIGMAT(RW) [22] - - 0.92
BIGMAT(APRW) - - 0.94
VDLS(α = 0) [20] - - 0.94
VDLS(α = 1) - - 0.97
FTRLIM 0.94 0.96 0.95

Entropy 2021, 23, 602 19 of 27

FTRLIM achieves very competitive results on the two real-world datasets. In the
relatively simple dataset Restaurant, FTRLIM obtains the F1-score of almost 1. Actually,
there is only one matched pair that FTRLIM has not found. In the more complex dataset
rexa-dblp, FTRLIM also obtains the F1-score that is almost the same as the best results. We
notice that some matchable pairs are lost during the blocking process, which slightly affects
the final matching results. FTRLIM does not exceed VDLS’s best results [20] on both of the
two datasets. However, from Reference [20], we find that, even on small datasets, such
as eprints-rexa, VDLS takes a long time to complete the matching task. FTRLIM makes a
trade-off between the matching quality and matching efficiency, and it has the ability to
match large-scale knowledge graphs more efficiently.

We also explore the effect of different levels of heterogeneity between knowledge
graphs on the PermID-20k data collection. In terms of the FTRLIM’s configuration, we
regard the predicate hasCountry as EP and the predicate hasCompanyName as DP to construct
instance indexes, and we use the company name, headquarters address, official website
URL, and employee name for generating the similarity vectors. For the initialization of the
FTRL model, we set λ1 = 0, λ2 = 0.5, α = 0.05, β = 0.5. The training set of the FTRL model
is generated using 200 labeled samples. The results are shown in Figure 2.

A(v=0.2 s=0.15) B(v=0.2 s=0.2) C(v=0.25 s=0.2) D(v=0.25 s=0.25) E(v=0.3 s=0.25)
Dataset

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Va
lu
e

0.975

0.958 0.957

0.925
0.914

0.928

0.904

0.888

0.835

0.777

0.951

0.930
0.921

0.877

0.840

Precision
Recall
F1-score

Figure 2. Evaluation Results of FTRLIM on PermID-20k. The level of heterogeneity increases from A
to E. The percentage of the transformation is marked in parentheses, and v indicates the value-based
transformation, while s indicates the structure-based transformation. See description of PermID-20k
in Section 5.1.2 for details.

Comparing the experiment results on PermID-20k-B and PermID-20k-C (or PermID-
20k-D and PermID-20k-E), it can be seen that the difference in data value will have a greater
impact on the recall than on the precision. We believe that the difference in data value results
in a greater impact on the index construction results. For example, when KIC strategy
is selected, some uncommon words that occur due to the spelling error will be selected
as keywords, causing the algorithm to generate wrong indexes for instances. Judging
from the overall experiment results, FTRLIM is better at coping with problems of data
value, such as the spelling error and the recording error, compared with problems of data
structure, such as the lack of knowledge. We argue that the lack of knowledge is a more
severe problem because the helpful information for matching instances may be missing
with the knowledge.

Entropy 2021, 23, 602 20 of 27

5.5. Evaluation of the Scalability and Efficiency

The scalability and efficiency of the distributed architecture adopted by FTRLIM are
verified in two groups of experiments on the PermID-L data collection.

In the first group of experiments, we verify the scalability of our framework with
the PermID-L-150k dataset. The FTRLIM framework is deployed on a distributed Spark
cluster. By adding or removing cores in the cluster, we conduct multiple experiments. We
report the time cost to demonstrate how the processing capacity of the FTRLIM framework
changes with the number of Spark cores.

The results of this group of experiment are shown in Figure 3. The time cost of the
framework to complete the matching decreases when the number of cores in the cluster
increases. Comparing the time cost when the number of cores is 8 and 36, it can be found
that the matching time has been reduced to 1/6, while the number of cores has only
increased to 4.5 times. This phenomenon occurs since when the number of cores is small,
although all the cores have been already performing computing tasks, there are still tasks
waiting to be processed. In a more general scenario, if the number of cores increases to n
times, the matching time should be no less than 1/n of the original because of the existence
of communication cost. The experiment results indicate that when the total amount of
data is fixed, adding cores to the cluster will improve the matching efficiency, which
demonstrates the excellent scalability of FTRLIM. The results also support the discussion
later in Section 6.

8 12 16 20 24 28 32 36
The Number of Cores

0

1000

2000

3000

4000

5000

Ti
m
e
C
os
t /
 se

c.

5343

3779

2335

1882

1567
1334

1103
889

Figure 3. The time cost of FTRLIM with changing the number of Spark cores on the PermID-L-
150k dataset.

Benefiting from the scalability, FTRLIM is able to match knowledge graphs with
different scales. The second group of experiment uses a configuration similar to Section 5.4.
The AML framework [34] is selected to process the same data as a control.

The results are shown in Table 13. The FTRLIM framework can overcome the chal-
lenges brought by the growth of data scale. The time cost of FTRLIM is linearly positively
related to data size. Even though the data size increases to 15 times, the time cost increases
only by 2 times approximately. However, for the AML framework, we have not obtained
valid results on the PermID-L-300k dataset or larger datasets due to the long time cost
and high memory requirement. The results show that the distributed FTRLIM framework
can process data with different sizes relatively stably and demonstrate the efficiency of
FTRLIM in the large-scale data processing.

Entropy 2021, 23, 602 21 of 27

Table 13. Evaluation results of changing data size.

Dataset Method Precision Recall F1-Score Time Cost (sec.)

PermID-L-40k
AML [34] 0.918 0.819 0.866 875
FTRLIM 0.959 0.887 0.922 644

PermID-L-80k
AML 0.908 0.804 0.853 1942
FTRLIM 0.940 0.863 0.900 723

PermID-L-150k
AML 0.903 0.777 0.836 >3600
FTRLIM 0.936 0.854 0.893 1044

PermID-L-300k
AML - - - -
FTRLIM 0.933 0.850 0.890 1445

PermID-L-600k
AML - - - -
FTRLIM 0.927 0.833 0.878 2034

6. Discussion

In this section, we discuss the time complexity of each component of FTRLIM, fo-
cusing on the analysis of the MultiObJ blocking algorithm. We also explain how the time
performance of the FTRLIM framework changes when the number of Spark cores in the
distributed cluster changes.

For the source and target knowledge graph to be matched, we assume that the number
of instances in each graph is N. Instances from the two graphs will form unique and
candidate instance pairs via the MultiObJ blocking algorithm in Blocker. The inputs of
MultiObJ are the source knowledge graph S, the target knowledge graph T, and an ordered
list of predicates P. The algorithm generates the candidate pair set C and the unique pair
set U.

The first phase of the MultiObJ blocking algorithm is Initialization. In this phase, the
algorithm first creates and initializes required data structures C, U, K, and B. For each
instance, the algorithm records the initial index kinit of the instance in the table K and
records the instance corresponding to the initial index in the table B. In this phase, the
algorithm needs to traverse all instances, so the time complexity is O(N).

The second phase of MultiObJ is Indexing, including Explicit Indexing, Unique Pair
Generation, and Index Inference. The algorithm will go through the loop and construct
indexes for instances according to each predicate in the input P in turn. Let l be the
number of loops the algorithm has reached, where l ranges from 1 to |P|. As mentioned
in Section 4.2, objects corresponding to the predicate may be missing, and the degree of
missing objects is described with the completeness rate. Let the average completeness rate
over all predicates in P of the source and target knowledge graph be δ, in which the range
is [0, 1]. For an instance in the l-th loop, we use El

e and El
r to represent the expectation of

the number of indexes obtained in the Explicit Indexing phase and in the Indexing Reasoning
phase, respectively. And we use El

g to indicate the expectation of the number of indexes
obtained during the entire Indexing phase. E0

e and E0
g are assigned 1 since the only index

of an instance before the Indexing phase is the kinit. The number of distinct indexes is the
same as the number of blocks. The expectation of it in the l-th loop is denoted as El

u. In
the following analysis, we first give the time complexity of each phase represented by
these expectations and then give the final time complexity representation by deducing the
relationship between them.

At the phase of Explicit indexing, line 8 of Algorithm 1 divides all instances into four
sets, Sv, Sn, Tv, and Tn, depending on whether corresponding objects of the instance under
predicate p are missing. The subscript v indicates the set contains instances in which
the corresponding objects are not missing, while the subscript n indicates the opposite
condition. Therefore, for the number of elements in each set, we have |Sv| = |Tv| = δN and
|Sn| = |Tn| = (1− δ)N. This step needs to be completed by traversing all the instances,

Entropy 2021, 23, 602 22 of 27

so the time complexity is O(N). The number of executions of the loop at line 9 is δN. The
algorithm extracts features of objects at line 10, and the time complexity of this step is O(1),
regardless of the index construction strategy. For the FIC strategy, the object feature Fp,i of
an instance is exactly the object under p, so the complexity is O(1). For the KIC strategy,
we need to count the word frequency on all objects under p in the two knowledge graphs
and store the results in HDFS. The time complexity of the statistics is O(N). However, in
practice, the statistics should be carried out in preprocessing. If we assume that the average
length of each word is 8 letters, storing a letter requires 2 bytes, storing the word frequency
requires 4 bytes, then storing the word frequency of 106 words only requires about 20MB.
For Spark cores, the time-consuming of reading such word frequency tables from HDFS is
negligible. Therefore, after the word frequency table is constructed, the time complexity of
identifying the corresponding word frequency could be O(1). In Algorithm 2, experience
has shown that the number of construction results generally does not exceed 5, so it can be
regarded as a constant, which means the time complexity of using KIC strategy to generate
Fp,i is also O(1). For each instance, the number of Fp,i in each loop is denoted as v. The
line 11 of MultiObJ constructs El

e indexes for each instance, in which the time complexity is
O(El

e). And we have that
El

e = v · El−1
g . (7)

The update of the inverted index table Bp needs to traverse the constructed indexes, so the
time complexity is also O(El

e). Therefore, the time complexity of the Explicit Indexing phase
is O(N) + O(δN · El

e).
At the phase of Unique Pair Generation, MultiObJ needs to traverse Bp to identify

unique instance pairs. Keys of dictionary Bp are distinct indexes constructed in Explicit
Indexing phase, the minimal number of which is 1. The maximum number of keys of Bp

is 2δN · El
e. This situation occurs when all the indexes constructed in the Explicit Indexing

phase are different from each other. On average, the number of keys of Bp is

El
u = δN · El

e = δvN · El−1
g . (8)

Therefore, the time complexity of Unique Pair Generation is O(δN · El
e).

The Index Inference phase of MultiObJ infers indexes for instances in which the objects
under predicates are missing. In this phase, the algorithm searches for all suitable instance
j ∈ G′v for each instance i ∈ Gn, where i and j have the same index in loop l − 1 and
G, G′ ∈ {S, T}, G 6= G′. The indexes of the instance j in the l-th loop will become a part of
the index set of the instance i. The other part of the index set is formed by concatenating
each index of instance i in previous loop and NULL. The instance i obtains El−1

g indexes in
previous loop, and each index corresponds to multiple eligible instances j. In loop l − 1,
instances in a knowledge graph generates N · El−1

g indexes, among which the number of
distinct indexes is El−1

u . According to Equation (8), the average number of repetitions for
each index is El−1

g /(δEl−1
e), which is also the eligible j’s quantity. The instance j obtains El

e
indexes in the l-th loop, so the number of indexes obtained in the Index Inference phase of
each instance with missing objects is

El
r = El−1

g · (1 +
El−1

g

δEl−1
e

) · El
e. (9)

There are (1− δ)N instances in In, so the time complexity of the Index Inference phase is
O((1− δ)N · El

r)
The relationship between the aforementioned expectations is deduced as follows. In

loop l, there are 2N · El
g indexes in the Indexing phase, which consist of 2δN · El

e indexes
constructed in the Explicit Indexing phase and 2(1− δ)N · El

r indexes constructed in the
Index Inference phase. Therefore,

El
g = δEl

e + (1− δ)El
r. (10)

Entropy 2021, 23, 602 23 of 27

According to Equations (7)–(10), the recurrence relation of El
g can be derived as

El
g = δv · El−1

g + (1− δ)v · (El−1
g)2(1 +

El−1
g

δEl−1
e

). (11)

Recall that E0
e = E0

g = 1, then E1
e = v, E1

r ≈ v, E2
e ≈ v2, E2

r ≈ v3, E3
e ≈ v4, E2

r ≈ v9, . . . ,
and El

g ≈ El
r. It can be seen that the closer the average predicate completeness rate δ is

to 1, the smaller the high-order items in El
g are, and the smaller the algorithm overhead

is. When the number of loops l reaches 3, since the exponent of v in El
g is too high, the

influence of the constant v on the complexity of the algorithm cannot be ignored. Therefore,
it is not recommended to construct indexes with more than 3 predicates. When |P| ≤ 2,
El

g, El
e, El

r could be regard as constants, and the time complexity of Indexing phase is O(N).
The final phase of MultiObJ is Candidate Pair Generation. The number of keys in

dictionary B is E|P|u , and the number of instances from different KGs under each key
is N · E|P|g /E|P|u . The time complexity of this phase is O(E|P|u (N · E|P|g /E|P|u)2) ∼ O((N ·
E|P|g)2/E|P|u).

From the above analysis, we can know that the time complexity of MultiObJ is O(N) +

O(N · E|P|g) + O((N · E|P|g)2/E|P|u), where E|P|g is the expectation of the number of indexes

for an instance constructed referring to all the predicates in P, and E|P|u is the expectation
of the number of distinct indexes among these indexes. MultiObJ leverages the joint of
multiple objects’ features to make indexes of instances more discriminative. In this way,
the algorithm increases E|P|u to reduce the high order term O((N · E|P|g)2/E|P|u) in the time
complexity. In particular, the time complexity of MultiObJ is O(N) when |P| ≤ 2.

After all pairs to be matched are generated, the framework will generate a similarity
vector for each pair. For all pairs of instances, FTRLIM sequentially compares the similarity
of related objects according to the predicates in the specified predicate set Pc. FTRLIM
generates |U|+ |C| instance pairs through Blocker, the total number of instance pairs does
not exceed 2|C| because unique instance pairs are all candidate instance pairs. Since |Pc|
can be regarded as a constant, and O(|C|) ≈ O((N · E|P|g)2/E|P|u), the time complexity of

comparison is O(|Pc|(|U|+ |C|)) ≈ O((N · E|P|g)2/E|P|u). The generated similarity vectors
will be judged by the FTRL model. Since the process of training the FTRL model is non-
distributed and involves manual operations, we do not consider the time-consuming
impact of this process on the whole. The trained FTRL model accepts similarity vectors
as inputs and calculates similarity scores for them. Finally, the instance pairs with scores
higher than the threshold are filtered and deduplicated to become the final matching
results. The time cost of these two processes is proportional to the number of instance pairs,
and the time complexity is O((N · E|P|g)2/E|P|u). Thus, from the generation of similarity
vectors to the generation of the matching results, the time complexity of the framework is
O((N · E|P|g)2/E|P|u).

In summary, the time complexity of the FTRLIM framework to complete the instance
matching task is O(N) + O(δN · E|P|g) + O((N · E|P|g)2/E|P|u), where E|P|g is the expectation
of the number of indexes for an instance constructed referring to all the predicates in P, and
E|P|u is the expectation of the number of distinct indexes among these indexes. This com-
plexity can be simplified to O(N) when |P| ≤ 2, where P is the list of predicates specified
for constructing inverted indexes for instances. FTRLIM is deployed on a distributed Spark
cluster. One entire matching process will be divided into multiple tasks, which will be
completed by Spark cores in a distributed manner. Theoretically, increasing the number of
Spark cores can reduce the computation time for matching. The result of the analysis shows
that FTRLIM has approximately linear time complexity. When encountering large-scale
data that is difficult to handle, increasing the number of Spark cores in the cluster will
improve the matching efficiency.

Entropy 2021, 23, 602 24 of 27

7. Conclusions

In this paper, we propose a novel blocking algorithm MultiObJ. It extracts and joints
features of objects according to the type of predicates to block instances and select candidate
pairs. Then, we design a distributed framework FTRLIM for large-scale instance matching
based on the MultiObJ blocking algorithm. It leverages the online logistic regression
model FTRL to determine whether two instances refer to the same entity in the real
world. The framework is implemented in a distributed architecture. We construct three
data collections with different scales and different levels of heterogeneity. We conduct
comparative experiments on two real-world datasets and the constructed data collections.
The experiment results verify the effectiveness of the MultiObJ blocking algorithm. The
results also show that the FTRLIM framework performs high-quality instance matching
with high efficiency and excellent scalability than the state-of-the-art frameworks.

The FTRLIM framework focuses more on the attributes of instances to construct
indexes and compare instance pairs. In the follow-up work, we will consider integrating
more structural information of KGs to perform instance matching. In addition, we also
find that the current framework still has a certain dependence on human work, and we
will also make an effort to improve the automation of the FTRLIM framework.

Author Contributions: Conceptualization, H.Z., X.W., and Y.J.; methodology H.Z. and X.W.; software,
X.W. and Y.J.; validation, X.W., Y.J., and B.D.; formal analysis, H.Z. and B.D.; investigation, X.W. and
Y.J.; resources, H.Z. and B.D.; data curation, X.W and Y.J.; writing—original draft preparation, H.Z.,
X.W.; writing—review and editing, H.F., B.D., and Q.L.; visualization, X.W.; supervision, Q.L.; project
administration, H.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Science and Technology Commission of Shanghai Munici-
pality (No.20511102703) and the National Natural Science Foundation of China (No. 61702374).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available dataset PermID-Project was processed in this study
to construct the PermID-5k, PermID-20k, and PermID-L data collections. The PermID-Project data
can be found here: https://permid.org/ (accessed on 10 November 2019).

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

Abbreviations
The following abbreviations are used in this manuscript:

FTRL Follow-the-Regular-Leader

KG Knowledge Graph

IM Instance Matching

References
1. Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak, R.; Ives, Z. Dbpedia: A nucleus for a web of open data. In The Semantic

Web; Springer: Berlin/Heidelberg, Germany, 2007; pp. 722–735.
2. Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; Taylor, J. Freebase: A collaboratively created graph database for structuring

human knowledge. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, BC,
Canada, 10–12 June 2008; pp. 1247–1250.

3. Suchanek, F.M.; Kasneci, G.; Weikum, G. Yago: A core of semantic knowledge. In Proceedings of the 16th International
Conference on World Wide Web, Banff, AB, Canada, 8–12 May 2007; pp. 697–706.

4. Huang, X.; Zhang, J.; Li, D.; Li, P. Knowledge graph embedding based question answering. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining, Melbourne, VIC, Australia, 11–15 February 2019; pp. 105–113.

5. Wang, H.; Zhao, M.; Xie, X.; Li, W.; Guo, M. Knowledge graph convolutional networks for recommender systems. In Proceedings
of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 3307–3313.

6. Xiong, C.; Power, R.; Callan, J. Explicit semantic ranking for academic search via knowledge graph embedding. In Proceedings of
the 26th International Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 1271–1279.

https://permid.org/

Entropy 2021, 23, 602 25 of 27

7. Abubakar, M.; Hamdan, H.; Mustapha, N.; Aris, T.N.M. Instance-based ontology matching: A literature review. In Proceedings
of the International Conference on Soft Computing and Data Mining, Johor, Malaysia, 6–7 February 2018; pp. 455–469.

8. Yan, Z.; Guoliang, L.; Jianhua, F. A survey on entity alignment of knowledge base. J. Comput. Res. Dev. 2016, 53, 165.
9. Wasi, N.; Flaaen, A. Record linkage using Stata: Preprocessing, linking, and reviewing utilities. Stata J. 2015, 15, 672–697.
10. Elmagarmid, A.K.; Ipeirotis, P.G.; Verykios, V.S. Duplicate record detection: A survey. IEEE Trans. Knowl. Data Eng. 2006, 19, 1–16.
11. Glaser, H.; Jaffri, A.; Millard, I. Managing Co-Reference on the Semantic Web. In Proceedings of the WWW2009 Workshop on

Linked Data on the Web, LDOW, Madrid, Spain, 20 April 2009.
12. Jean-Mary, Y.R.; Shironoshita, E.P.; Kabuka, M.R. Ontology matching with semantic verification. J. Web Semant. 2009, 7, 235–251.
13. Karp, R.M. Reducibility among combinatorial problems. In Complexity of Computer Computations; Springer: Boston, MA, USA,

1972; pp. 85–103.
14. Böhm, C.; De Melo, G.; Naumann, F.; Weikum, G. LINDA: Distributed web-of-data-scale entity matching. In Proceedings of the

21st ACM International Conference on Information and Knowledge Management, Maui, HI, USA, 29 October–2 November 2012;
pp. 2104–2108.

15. Wang, S.; Englebienne, G.; Schlobach, S. Learning concept mappings from instance similarity. In Proceedings of the International
Semantic Web Conference, Karlsruhe, Germany, 26–30 October 2008; pp. 339–355.

16. Diallo, G. An effective method of large scale ontology matching. J. Biomed. Semant. 2014, 5, 44.
17. Li, J.; Wang, Z.; Zhang, X.; Tang, J. Large scale instance matching via multiple indexes and candidate selection. Knowl. Based Syst.

2013, 50, 112–120.
18. Shao, C.; Hu, L.M.; Li, J.Z.; Wang, Z.C.; Chung, T.; Xia, J.B. Rimom-im: A novel iterative framework for instance matching. J.

Comput. Sci. Technol. 2016, 31, 185–197.
19. Nguyen, K.; Ichise, R. ScLink: Supervised instance matching system for heterogeneous repositories. J. Intell. Inf. Syst. 2017,

48, 519–551.
20. Assi, A.; Mcheick, H.; Karawash, A.; Dhifli, W. Context-aware instance matching through graph embedding in lexical semantic

space. Knowl. Based Syst. 2019, 186, 104925.
21. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Commun. ACM 2008, 51, 107–113.
22. Assi, A.; Mcheick, H.; Dhifli, W. BIGMAT: A Distributed Affinity-Preserving Random Walk Strategy for Instance Matching on

Knowledge Graphs. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA,
9–12 December 2019; pp. 1028–1033.

23. Suchanek, F.M.; Abiteboul, S.; Senellart, P. PARIS: Probabilistic Alignment of Relations, Instances, and Schema. Proc. VLDB
Endow. 2011, 5, 157–168, doi:10.14778/2078331.2078332.

24. McMahan, H.B.; Holt, G.; Sculley, D.; Young, M.; Ebner, D.; Grady, J.; Nie, L.; Phillips, T.; Davydov, E.; Golovin, D.; et al. Ad
click prediction: A view from the trenches. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013; pp. 1222–1230.

25. Singhal, A. Introducing the Knowledge Graph: Things, Not Strings; Available online: https://blog.google/products/search/
introducing-knowledge-graph-things-not/ (accessed on 09 December 2020).

26. Färber, M.; Bartscherer, F.; Menne, C.; Rettinger, A. Linked data quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO.
Semant. Web 2018, 9, 77–129.

27. Miller, E. An introduction to the resource description framework. Bull. Am. Soc. Inf. Sci. Technol. 1998, 25, 15–19.
28. Jupp, S.; Malone, J.; Bolleman, J.; Brandizi, M.; Davies, M.; Garcia, L.; Gaulton, A.; Gehant, S.; Laibe, C.; Redaschi, N.; Wimalaratne,

S.M.; Martin, M.; Le Novère, N.; Parkinson, H.; Birney, E.; Jenkinson, A.M. The EBI RDF platform: Linked open data for the life
sciences. Bioinformatics 2014, 30, 1338–1339, doi:10.1093/bioinformatics/btt765.

29. Lindemann, G.; Schmidt, D.; Schrader, T.; Keune, D. The resource description framework (RDF) as a modern structure for medical
data. Int. J. Biol. Med Sci. 2009, 4, 89–92.

30. Cheatham, M.; Krisnadhi, A.; Amini, R.; Hitzler, P.; Janowicz, K.; Shepherd, A.; Narock, T.; Jones, M.; Ji, P. The GeoLink
knowledge graph. Big Earth Data 2018, 2, 131–143.

31. Ali, F.; Ali, A.; Imran, M.; Naqvi, R.A.; Siddiqi, M.H.; Kwak, K.S. Traffic accident detection and condition analysis based on social
networking data. Accid. Anal. Prev. 2021, 151, 105973.

32. Ali, F.; El-Sappagh, S.; Islam, S.R.; Ali, A.; Attique, M.; Imran, M.; Kwak, K.S. An intelligent healthcare monitoring framework
using wearable sensors and social networking data. Future Gener. Comput. Syst. 2021, 114, 23–43.

33. Jiménez-Ruiz, E.; Grau, B.C. Logmap: Logic-based and scalable ontology matching. In Proceedings of the International Semantic
Web Conference, Bonn, Germany, 23–27 October 2011; pp. 273–288.

34. Faria, D.; Pesquita, C.; Santos, E.; Palmonari, M.; Cruz, I.F.; Couto, F.M. The agreementmakerlight ontology matching system. In
Proceedings of the OTM Confederated International Conferences On the Move to Meaningful Internet Systems, Graz, Austria,
9–13 September 2013; pp. 527–541.

35. Wu, J.; Pan, Z.; Zhang, C.; Wang, P. Lily Results for OAEI 2019. In Proceedings of the 14th International Workshop on Ontology
Matching co-located with the 18th International Semantic Web Conference (ISWC 2019), Auckland, New Zealand, 26 October
2019.

https://doi.org/10.14778/2078331.2078332
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://doi.org/10.1093/bioinformatics/btt765

Entropy 2021, 23, 602 26 of 27

36. Araujo, S.; Tran, D.; DeVries, A.; Hidders, J.; Schwabe, D. SERIMI: Class-Based Disambiguation for Effective Instance Matching
over Heterogeneous Web Data. In Proceedings of the SIGMOD 2012 15th Workshop on Web and Database, Scottsdale, AZ, USA,
20–24 May 2012; pp. 25–30.

37. Sleeman, J.; Finin, T. A machine learning approach to linking foaf instances. In Proceedings of the 2010 AAAI Spring Symposium
Series, Palo Alto, CA, USA, 22–24 March 2010.

38. Rong, S.; Niu, X.; Xiang, E.W.; Wang, H.; Yang, Q.; Yu, Y. A machine learning approach for instance matching based on similarity
metrics. In Proceedings of the International Semantic Web Conference, Boston, MA, USA, 11–15 November 2012; pp. 460–475.

39. Nguyen, K.; Ichise, R.; Le, H.B. Learning approach for domain-independent linked data instance matching. In Proceedings of the
ACM SIGKDD Workshop on Mining Data Semantics, Beijing, China, 12–16 August 2012; pp. 1–8.

40. Koumarelas, l.; Papenbrock, T.; Naumann, F. MDedup: Duplicate detection with matching dependencies. Proc. VLDB Endow.
2020, 13, 712–725.

41. Caruccio, L.; Deufemia, V.; Naumann, F.; Polese, G. Discovering relaxed functional dependencies based on multi-attribute
dominance. IEEE Trans. Knowl. Data Eng. 2020, doi:10.1109/TKDE.2020.2967722.

42. Caruccio, L.; Deufemia, V.; Polese, G. Mining relaxed functional dependencies from data. Data Min. Knowl. Discov. 2020,
34, 443–477.

43. Huhtala, Y.; Kärkkäinen, J.; Porkka, P.; Toivonen, H. TANE: An efficient algorithm for discovering functional and approximate
dependencies. Comput. J. 1999, 42, 100–111.

44. Kejriwal, M.; Miranker, D.P. Semi-supervised instance matching using boosted classifiers. In Proceedings of the European
Semantic Web Conference, Portoroz, Slovenia, 31 May–4 June 2015; pp. 388–402.

45. Sherif, M.A.; Ngomo, A.C.N.; Lehmann, J. Wombat–a generalization approach for automatic link discovery. In Proceedings of
the European Semantic Web Conference, Portorož, Slovenia, 28 May–1 June 2017; pp. 103–119.

46. Kejriwal, M.; Miranker, D.P. An unsupervised instance matcher for schema-free RDF data. J. Web Semant. 2015, 35, 102–123.
47. Jurek, A.; Hong, J.; Chi, Y.; Liu, W. A novel ensemble learning approach to unsupervised record linkage. Inf. Syst. 2017, 71, 40–54.
48. Hu, W.; Chen, J.; Qu, Y. A self-training approach for resolving object coreference on the semantic web. In Proceedings of the 20th

International Conference on World Wide Web, Hyderabad, India, 28 March–1 April 2011; pp. 87–96.
49. Hao, Y.; Zhang, Y.; He, S.; Liu, K.; Zhao, J. A joint embedding method for entity alignment of knowledge bases. In Proceedings of

the China Conference on Knowledge Graph and Semantic Computing, Beijing, China, 19–22 September 2016; pp. 3–14.
50. Zhu, H.; Xie, R.; Liu, Z.; Sun, M. Iterative Entity Alignment via Joint Knowledge Embeddings. IJCAI 2017, 17, 4258–4264.
51. Sun, Z.; Hu, W.; Zhang, Q.; Qu, Y. Bootstrapping Entity Alignment with Knowledge Graph Embedding. IJCAI 2018, 18,

4396–4402.
52. Broscheit, S.; Ruffinelli, D.; Kochsiek, A.; Betz, P.; Gemulla, R. LibKGE-A knowledge graph embedding library for reproducible

research. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations,
Online, 16–20 November 2020; pp. 165–174.

53. Ali, M.; Berrendorf, M.; Hoyt, C.T.; Vermue, L.; Galkin, M.; Sharifzadeh, S.; Fischer, A.; Tresp, V.; Lehmann, J. Bringing
light into the dark: A large-scale evaluation of knowledge graph embedding models under a unified framework. arXiv 2020,
arXiv:2006.13365.

54. Ali, M.; Berrendorf, M.; Hoyt, C.T.; Vermue, L.; Sharifzadeh, S.; Tresp, V.; Lehmann, J. PyKEEN 1.0: A Python Library for Training
and Evaluating Knowledge Graph Embeddings. J. Mach. Learn. Res. 2021, 22, 1–6.

55. Papadakis, G.; Ioannou, E.; Palpanas, T.; Niederee, C.; Nejdl, W. A blocking framework for entity resolution in highly
heterogeneous information spaces. IEEE Trans. Knowl. Data Eng. 2012, 25, 2665–2682.

56. Bilenko, M.; Kamath, B.; Mooney, R.J. Adaptive blocking: Learning to scale up record linkage. In Proceedings of the Sixth
International Conference on Data Mining (ICDM’06), Hong Kong, China, 18–22 December 2006; pp. 87–96.

57. Papadakis, G.; Svirsky, J.; Gal, A.; Palpanas, T. Comparative analysis of approximate blocking techniques for entity resolution.
Proc. VLDB Endow. 2016, 9, 684–695.

58. Mestre, D.G.; Pires, C.E. Efficient entity matching over multiple data sources with mapreduce. J. Inf. Data Manag. 2014, 5, 40–40.
59. Otero-Cerdeira, L.; Rodríguez-Martínez, F.J.; Gómez-Rodríguez, A. Ontology matching: A literature review. Expert Syst. Appl.

2015, 42, 949–971.
60. Christen, P. A survey of indexing techniques for scalable record linkage and deduplication. IEEE Trans. Knowl. Data Eng. 2011,

24, 1537–1555.
61. Yan, W.; Xue, Y.; Malin, B. Scalable load balancing for mapreduce-based record linkage. In Proceedings of the 2013 IEEE 32nd

International Performance Computing and Communications Conference (IPCCC), San Diego, CA, USA, 6–8 December 2013;
pp. 1–10.

62. Li, J.; Tang, J.; Li, Y.; Luo, Q. Rimom: A dynamic multistrategy ontology alignment framework. IEEE Trans. Knowl. Data Eng.
2008, 21, 1218–1232.

63. Castano, S.; Ferrara, A.; Montanelli, S.; Lorusso, D. Instance Matching for Ontology Population. In Proceedings of the Sixteenth
Italian Symposium on Advanced Database Systems, SEBD, 22–25 June 2008; pp. 121–132.

64. Saïs, F.; Pernelle, N.; Rousset, M.C. Combining a logical and a numerical method for data reconciliation. In Journal on Data
Semantics XII; Springer: Berlin/Heidelberg, Germany, 2009; pp. 66–94.

Entropy 2021, 23, 602 27 of 27

65. Stoermer, H.; Rassadko, N. Results of OKKAM feature based entity matching algorithm for instance matching contest of OAEI
2009. In OM’09: Proceedings of the 4th International Conference on Ontology Matching—Volume 551; CEUR-WS.org: Aachen, Germany,
2009; pp. 200–207.

66. Noessner, J.; Niepert, M.; Meilicke, C.; Stuckenschmidt, H. Leveraging terminological structure for object reconciliation. In
Proceedings of the Extended Semantic Web Conference, Heraklion, Greece, 30 May–3 June 2010; pp. 334–348.

67. Saveta, T.; Daskalaki, E.; Flouris, G.; Fundulaki, I.; Herschel, M.; Ngomo, A.C.N. Lance: Piercing to the heart of instance matching
tools. In Proceedings of the International Semantic Web Conference, Bethlehem, PA, USA, 11–15 October 2015; pp. 375–391.

	Introduction
	Related Work
	Problem Formulation
	Knowledge Graph
	Instance Matching

	The FTRLIM Framework
	Blocker
	Comparator
	FTRL Trainer
	Matcher
	Configuration

	EvaluationResults
	Datasets
	Benchmark Datasets
	Constructed Datasets

	EvaluationExperiment Settings
	Evaluation of the MultiObJ Blocking Algorithm
	Evaluation of the Matching Quality
	Evaluation of the Scalability and Efficiency

	Discussion
	Conclusions
	References

