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Abstract: We present a quantum algorithm for simulation of quantum field theory in the light-front
formulation and demonstrate how existing quantum devices can be used to study the structure
of bound states in relativistic nuclear physics. Specifically, we apply the Variational Quantum
Eigensolver algorithm to find the ground state of the light-front Hamiltonian obtained within the
Basis Light-Front Quantization (BLFQ) framework. The BLFQ formulation of quantum field theory
allows one to readily import techniques developed for digital quantum simulation of quantum
chemistry. This provides a method that can be scaled up to simulation of full, relativistic quantum
field theories in the quantum advantage regime. As an illustration, we calculate the mass, mass
radius, decay constant, electromagnetic form factor, and charge radius of the pion on the IBM Vigo
chip. This is the first time that the light-front approach to quantum field theory has been used to
enable simulation of a real physical system on a quantum computer.

Keywords: quantum simulation; relativistic bound states; hadrons; mesons; BLFQ; light-front; VQE

1. Introduction

The light-front quantization framework of quantum field theories (QFTs) is well-
adapted for digital quantum simulation. We demonstrated this in our previous work by
developing quantum algorithms based on simulating time evolution and adiabatic state
preparation [1]. In the present paper, we aim for near-term devices by showing how to
formulate the relativistic bound state problem as an instance of the Variational Quantum
Eigensolver (VQE) algorithm [2–21]. VQE is a hybrid quantum-classical algorithm for
finding low-lying eigenvalues and eigenstates of a given Hamiltonian, which can be
implemented on existing quantum computers. We are thus able to run example simulations
on IBM Vigo, one of IBM’s publicly available quantum processors. Similar to [20], we
apply VQE to a two-body bound state in nuclear physics using Hamiltonian dynamics [22].
However, we consider here deeply bound states of quarks in mesons with relativistic
kinematics, instead of the weakly bound deuteron studied in [20].

For an efficient Hamiltonian formulation of quantum field theory, we use the frame-
work of Basis Light-Front Quantization (BLFQ) [23,24] and choose a basis tailored to the
symmetries and dynamics specific to a particular physical system. Having much in com-
mon with ab initio methods in quantum chemistry and nuclear theory, it serves as an
ideal framework for testing near-term devices by solving problems such as calculation of
hadronic spectra [25–28] and parton distribution functions [29–31].

Within BLFQ, a field is expanded in terms of second-quantized Fock states represent-
ing occupancies of modes (first-quantized basis functions), and there is no a priori limit
on the degrees of freedom [23]. Accordingly, our algorithms are designed to efficiently
simulate QFT applications where particle number is not conserved. However, for QFTs at
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low resolution or for phenomenological applications, BLFQ is often restricted to the valence
degrees of freedom, so we adopt this restriction in order to implement quantum simulations
on an existing quantum chip. These experiments represent the first stage shown in Figure 1,
which illustrates a progression of methods that scale towards fault-tolerant simulation of
QFTs in the quantum supremacy regime. However, the methods we propose apply to the
first three stages in Figure 1, while the final stage was discussed in [1]. In other words,
in this paper we describe techniques that may be used to simulate bound states of general
quantum field theories in the full multi-particle setting.

For our experimental demonstration, we consider the dynamics of valence quarks for
light mesons on the light front using the Hamiltonian from [32]. This Hamiltonian includes
the kinetic energy, the confinement potential in both the longitudinal and the transverse
directions [28], and the Nambu–Jona-Lasinio (NJL) interaction [33] to account for the chiral
interactions among quarks. The dependence of the light-front wave functions for valence
quarks on the relative momentum is expanded in terms of the adopted modes, which are
orthonormal basis functions. After imposing finite cut-offs in this expansion, the light-front
Hamiltonian becomes a Hermitian matrix in the resulting basis representation. We use the
same scheme as in [32] to fix our model parameters at each choice of basis cut-offs.

VQE, this paper︷ ︸︸ ︷
Two-body sector
BLFQ, relative
coordinate basis

→
Valence sector
BLFQ, single-
particle basis︸ ︷︷ ︸

Benchmarking

→
Multi-particle
BLFQ, single-
particle basis

→

Fault-tolerant, [1]︷ ︸︸ ︷
Multi-particle
DLCQ single-
particle basis︸ ︷︷ ︸

Quantum-computational advantage

Figure 1. Quantum simulation of the light-front quantum field theory at different stages of complexity
and resource requirements. Discrete light-cone quantization (DLCQ) [34] may be considered to
be a special case of BLFQ [23] that employs a plane-wave basis, and may be useful in the fault-
tolerant quantum computing regime [1]. We separate the rightmost (DLCQ) stage because classical
preprocessing is used in BLFQ to obtain approximations using fewer quantum resources.

We implement VQE for this model on the IBM Vigo processor. We minimize the
mass-squared of a pion obtained from a variational ansatz for its wave function. Using the
resulting ansatz, we compute the decay constant, mass radius, and elastic form factor of
the pion on the quantum processor. We thus demonstrate that the light-front formulation
of QFT enables calculations of properties of composite particles in relativistic field theories
on existing quantum processors.

2. Basis Light-Front Quantization

In the Hamiltonian framework of light-front quantum field theories, the bound state
spectrum is obtained as the eigenvalues of the mass squared operator M2 = PjPj:

PjPj|Ψ〉 = (P+P− − P2
⊥)|Ψ〉 = m2|Ψ〉 , (1)

where P+ = P0 + P3 and P⊥ are the conserved light-front longitudinal momentum and
transverse momenta, respectively. On the other hand, P− = P0 − P3 is the light-front
Hamiltonian, which, when included in M2, forms an effective Hamiltonian whose eigen-
values are m2. The eigenvectors of (1) are known as the light-front wave functions (LFWFs),
from which one can determine various observables.

In the present work, we apply the light-front formalism to studying hadrons. While
one can, in principle, use the fundamental quantum chromodynamics (QCD) Hamiltonian,
in the current paper we solve for the relative momentum LFWFs of the valence quarks
inside light mesons, using the effective Hamiltonian from [32]. In this Hamiltonian, the
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confinement of quarks inside the hadrons is based on the anti-de Sitter Space/quantum
chromodynamics (AdS/QCD) correspondence [35,36].

To construct the effective Hamiltonian operator, we start from the soft-wall AdS/QCD
Hamiltonian, describing the dynamics of valence quarks [35,36], which assumes zero quark
masses and a transverse confining potential:

HSW = P+P−SW − P2
⊥ =

−→κ ⊥
x(1− x)

+ b4x(1− x)−→r 2
⊥ , (2)

where the operator x = k+/P+ corresponds to the longitudinal momentum fraction carried
by the valence quark, b specifies the strength of the confinement potential,−→κ ⊥ =

−→
k ⊥ − x

−→
P ⊥

is the operator of relative transverse momentum of the valence quarks, and the operator −→r ⊥
is conjugate to −→κ ⊥. kµ are the components of the valence quark four-momentum operator.

While the Hamiltonian (2) is only designed to act on the meson valence sector wave
function (7) to be introduced below, by using the single-particle basis [23], BLFQ allows
one to extend the AdS/QCD LFWFs and effective interactions to the multi-particle Fock
sectors [23,37–39]. This is crucial for quantum-computing applications, since we only
expect to attain quantum advantage in the multi-particle regime.

Next, we modify HSW in (2) by adding nonzero quark masses and effective longitudi-
nal confinement [25,28]:

HSW → H0 = HSW +
m
x
+

m
1− x

− b4

(m + m)2 ∂xx(1− x)∂x , (3)

where m and m are the masses of the valence quark and valence antiquark, respectively. The
form of longitudinal potential is chosen so that it would reduce to the three-dimensional
harmonic oscillator potential in the non-relativistic limit. Allowing an independent cou-
pling parameter for the longitudinal confinement in (3) can be fruitful for describing
multiple meson sectors [40].

The remaining part of the strong interaction between quarks, Heff
int, is modeled using

the scalar-pseudoscalar channel of the color-singlet NJL model [33]. Thus, we end up with
a Hamiltonian of the form

Heff = H0 + Heff
int , (4)

where Heff takes the role of PjPj in Equation (1) in the valence Fock sector of mesons
(two-quark bound states) with

H0 =
(−→κ ⊥)2 + m2

x
+

(−→κ ⊥)2 + m2

1− x
+b4x(1− x)−→r 2

⊥ −
b4

(m + m)2 ∂xx(1− x)∂x (5)

containing kinematic terms and two-body confining potentials. For clarity we introduce
the interaction in terms of field operators as

Heff
int =

∫
dx−

∫
d−→x ⊥

(
−Gπ P+

2

)[(
ψψ
)2

+
(

ψiγ5
−→τ ψ

)2
]

, (6)

which absorbs quark-gluon and gluon-gluon QCD couplings into local four-fermion self-
interactions. When applied to Equation (4), an expansion into the valence Fock sector of
mesons is implied for Equation (6). In (6) x− and −→x ⊥ are the single-particle light-front
coordinates, −→τ consists of the Pauli spin operators acting in the isospin space on the
fermion field operator ψ, Gπ is the NJL coupling constant, and the normal ordering of Heff

is understood.
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Within the BLFQ, the LFWFs of the valence quarks are expressed as [32]∣∣∣Ψ(P+,
−→
P ⊥)

〉
= ∑

r,s

∫ 1

0

dx
4πx(1− x)

×
∫ d−→κ ⊥

(2π)2 ψrs(x,−→κ ⊥)× b†
r (xP+,−→κ ⊥ + x

−→
P ⊥)

× d†
s ((1− x)P+,−−→κ ⊥ + (1− x)

−→
P ⊥)|0〉 .

(7)

The ladder operators b†
r and d†

r create a quark and an antiquark of spin r from the
light-front vacuum, and obey the usual anticommutation relations {br, b†

s } = {dr, d†
s } = δrs

(all other anticommutators being zero). The light-front wave function for the valence
quarks is then expanded in the following orthonormal basis:

ψrs(x,−→κ ⊥) = ∑
nml

ψ(n, m, l, r, s) φnm

( −→κ ⊥√
x(1− x)

; b

)
χl(x) , (8)

where φnm is a two-dimensional (2D) harmonic oscillator eigenfunction, χl is the longi-
tudinal basis function related to Jacobi polynomials [32], and n, m, and l are the radial,
angular, and longitudinal basis quantum numbers respectively. The momentum scale of the
harmonic oscillator function is chosen identical to the confinement strength in Equation (5).
In the representation in which analytic expressions exist for these basis functions, H0 is di-
agonal. Furthermore, the matrix elements of the full Hamiltonian (4) in this representation
can be calculated analytically [32].

3. Mapping onto Qubits

To simulate the BLFQ Hamiltonian described above, we will use the variational
quantum eigensolver (VQE) algorithm, which can be implemented on existing quantum
computers. VQE is an approach to finding Hamiltonian eigenvalues, in which a quantum
processor is used as part of a hybrid quantum-classical algorithm [4]. In VQE, a quantum
computer is used to evaluate the Hamiltonian expectation value for a given variational
state, while a classical computer performs a gradient search to minimize the expectation
value. In order to formulate a physical problem as a VQE instance, one has to (a) Establish
a correspondence between the physical states and the multi-qubit states of a quantum com-
puter, (b) Prepare a parametrized ansatz state on the quantum computer |ψ(~θ)〉 = U(~θ)|ψ0〉
(|ψ0〉 is some easy to prepare reference state), (c) Evaluate the Hamiltonian expectation
value E(~θ) = 〈ψ(~θ)|Ĥ|ψ(~θ)〉 by sampling on the quantum computer, (d) Send the estimated
value E(~θ) to the classical optimization to determine the set of parameters for the next
iteration of the algorithm. VQE has been successfully applied to finding the ground states
of second-quantized Hamiltonians in quantum chemistry [4,7,21,41].

In order to apply VQE, we first need to map our Hamiltonian of interest to a qubit
Hamiltonian. Written as an operator acting on valence sector Fock states, the Hamilto-
nian (4) is a fourth-order polynomial in quark and antiquark creation and annihilation
operators. Thus it resembles the general form of Hamiltonians in quantum chemistry,
H = ∑i,j hija†

i aj + ∑i,j,k,l hijkla†
i a†

j akal , where a† is a fermionic operator, which in our case
could create either a quark or antiquark. This remains true as one extends the problem to
multi-particle Fock states, and enables us to use methods developed for digital quantum
simulation of quantum chemistry [4]. However, the restriction to the valence sector Fock
states (7) is special in the sense that in this reduced subspace the Hamiltonian can be written
in terms of effective single-body interactions Heff = ∑i,j hijc†

i cj, where the operators c†
i cre-

ate two-body modes from vacuum. The c†
i and cj are bosonic (meaning that they commute

with each other), yet square to zero (owing to the fermionic nature of their constituents).
However, we may treat them as fermionic operators because the distinction between com-
mutation relations for fermionic and bosonic operators depends on the occupations of
modes other than those they act upon, and the total occupancy in our case is limited to one.
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Because we are aiming for multiparticle simulation of fermions, we therefore use fermionic
mappings in order to provide a demonstration of techniques that we would use in the
multi-particle scenario.

For the demonstrations below, we use the light meson BLFQ Hamiltonian with the
minimal choice of basis function cutoffs and model parameters specified in Table 1. In the
zero azimuthal angular momentum block, the Hamiltonian describes the interaction of
quarks whose momentum-space wave function is in the lowest eigenstate of H0:

hij =


640, 323 139, 872 −139, 872 −107, 450
139, 872 346, 707 174, 794 139, 872
−139, 872 174, 794 346, 707 −139, 872
−107, 450 139, 872 −139, 872 640, 323

, (9)

where the matrix elements are in units of MeV2. The size of H reflects the 4 possible spin
configurations of the valence quarks. In this case the NJL interaction takes the role of the
spin-orbit interaction of quarks. The lowest eigenvalue of H corresponds the squared mass
of the pion, m2

π = (139.6 MeV)2. Note that in the light-front formulation, the Hamiltonian
is the invariant mass-squared operator [34].

Table 1. Model parameters of the BLFQ-NJL model. The antiquark mass is identical to the quark mass.

m κ Gπ

337.01 MeV 227.00 MeV 250.785 GeV−2

The expectation value of the Hamiltonian is calculated via its decomposition into
Pauli operators Pi with real coefficients hi:

〈ψ(~θ)|Ĥ|ψ(~θ)〉 = ∑
i

hi〈ψ(~θ)|Pi|ψ(~θ)〉 . (10)

The expectation values of the individual Pauli terms on the RHS of (10) can be effi-
ciently measured via sampling from the state |ψ(~θ)〉 [4]. Various techniques for reducing
the number of required measurements have been proposed [42–48], but for the purpose of
our demonstration we simply estimate each Pauli expectation value separately.

We explore two approaches to simulation in the BLFQ formulation. The first uses
direct encoding of Fock states in qubit states, meaning that the occupation of each mode is
represented in a fixed register of qubits. Since we are using the relative momentum basis
and working within the valence sector of the Fock space, the basis Fock states only contain
one occupied mode. We employ the Jordan-Wigner (JW) encoding [49], which is commonly
used in quantum chemistry [50,51], and in our case simply means encoding the occupation
of each mode in a single qubit. Any superposition of such encoded states can be prepared
using the simple circuit given in Figure 2a. For multi-particle states, one could switch to
the more efficient Bravyi-Kitaev encoding [52,53], and use the Unitary Coupled Cluster
ansatz [41]. In direct encodings, the number of qubits required for the simulation is equal
to the number of fermionic modes in the Fock state, which scales as the product of the
cutoffs for the (n, m, l) quantum numbers [32].

A different approach is based on compact encoding [1,50], in which only the quantum
numbers of occupied modes are stored; in our case, this amounts to storing the index
of the single occupied mode in binary form. Therefore, the number of qubits required
for storing a single-particle Fock state is logarithmic in the number of modes, and so the
number of parameters required for arbitrary state preparation is polynomial in the number
of modes. Thus, one can express Hamiltonian (9) in terms of two-qubit Pauli operators,
and use arbitrary state preparation as an ansatz circuit, as shown in Figure 2b.
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|0〉⊗4

Ry(θ2)

X X X

Ry(θ1) X

Ry(θ3)

(a)

|0〉⊗2
Ry(θ1) X Ry(θ3)

Ry(θ2)

(b)

Figure 2. Ansatz circuits for preparing an arbitrary superposition of single-particle Fock states with
real coefficients in the direct encoding (a) and compact encoding (b). Ry(θ) denotes a single-qubit
rotation through an angle θ about the y-axis.

In the multi-particle case, in compact encoding, the number of Pauli terms in the qubit
Hamiltonian may become exponential in the system size. However, the Hamiltonian matrix
in the basis of Fock states is sparse because it contains polynomially many creation and
annihilation operator monomials, and each of these connects a Fock state to, at most, one
other Fock state. Therefore, we can use the formulation of VQE for sparse Hamiltonians
described in [54] for the multi-particle compact encoding case.

4. Results

We implemented VQE on the IBM Vigo quantum processor using both direct and com-
pact encodings with and without measurement error mitigation provided by Qiskit [55]. In
Figure 3, we show the experimentally obtained energies at each minimization step, as well
as the exact values and those obtained by classical sampling from the exact probability
distributions (the latter illustrates the performance of a noiseless quantum computer). The
improvement due to measurement error mitigation was significant only for the compact
encoding, and led to the best convergence to the true ground state energy out of the
experimental methods.

We evaluated additional observables in the ground state. In Table 2, we show the ac-
curacies obtained using each technique: exact evaluation, classical sampling, and sampling
on the IBM Vigo chip with and without measurement error mitigation. We prepared the
ground state on the IBM Vigo chip by using the parameters obtained in our VQE minimiza-
tion. The observables we measured are the pion mass, mass radius, and decay constant. As
expected, the results obtained using the compact encoding are consistently more accurate
than those obtained using the direct encoding, since the corresponding ansatz circuits are
shorter. Measurement error mitigation consistently improves the accuracies in the compact
encoding, and provides no benefit in the direct encoding. However, we do see that in
nearly all cases, the quantum methods are approximately correct, with the method using
compact encoding and measurement error mitigation approaching the performance of
classical sampling.
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Figure 3. Results of the VQE minimization algorithm in the compact and direct encodings. Each point
was obtained from 8192 samples per term on the IBM Vigo chip. Note that here m2

π = (139.6 MeV)2

is the lowest eigenvalue of the Hamiltonian, by definition (see (9) and the associated discussion).

Table 2. Fractional errors, expressed as percentages, in estimates of various observables calculated in the ground state
obtained by means of the VQE minimization. The observables are pion mass squared (m2

π), mass radius squared (〈rm〉2),
and decay constant ( fπ). These were obtained from 8192 samples per term on the IBM Vigo chip, with and without
measurement error mitigation. Classical sampling means sampling from the exact probability distribution. Observables
are shown both including constant terms (the physically relevant values), and not including them (the measured values).
The constant terms are different between direct and compact encodings, therefore direct and compact entries in “no
constant” rows correspond to different physical observables, and should not be compared. For m2

π , the exact m2
ρ is used for

normalization, where m2
ρ, the mass of the rho meson squared, is the second lowest eigenvalue of the light meson BLFQ

Hamiltonian.

Direct Encoding Compact Encoding

Classical
Sampling IBM Vigo IBM Vigo,

err. mit.
Classical
Sampling

IBM Vigo IBM Vigo,
err. mit.

m2
π , no constant 0.48% 7.6% 7.5% 0.01% 11.6% 6.2%

m2
π 0.90% 14.1% 14.0% 0.08% 12.7% 9.1%

〈rm〉2, no constant 0.45% 6.6% 7.2% 0.43% 29.4% 7.1%

〈rm〉2 0.65% 9.5% 10.4% 0.01% 6.4% 1.6%

fπ , no constant 0.05% 59.8% 59.0% 0.21% 29.2% 7.6%

fπ 0.02% 21.0% 20.7% 0.14% 13.0% 5.1%

We computed the pion elastic form factor F(Q2), obtaining the results shown in Figure 4.
Based on these data, we computed the pion charge radius as 〈r2

c〉 = −6 dF(Q2)/ dQ2|Q2=0.
The values obtained using the quantum computer match those obtained via the state vector
representation,

√
r2

c = 1.24 fm, within a few percent precision. These calculations illustrate
that our algorithm provides reasonable results for physically meaningful quantities even
with the noisy and limited quantum resources that are currently available.
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Figure 4. Pion elastic form factor, obtained from 8192 samples per term on the IBM Vigo processor,
with and without measurement error mitigation.

5. Discussion

In this work, we demonstrated how one can use existing quantum processors to per-
form calculations in relativistic field theories in the light-front formulation. The methods
we proposed apply to the multi-particle setting, which can potentially reach the regime of
quantum advantage. While designing a scalable VQE ansatz for the compact encoding re-
mains an open problem, using the direct encoding allows one to readily employ techniques
developed for digital simulation of quantum chemistry. We have thus demonstrated the
viability of quantum simulation in the light-front formulation, using methods that can be
scaled to exploit the available quantum resources, from existing noisy intermediate-scale
quantum machines up to the crossover into fault-tolerance.
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