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Abstract: A classical random walker starting on a node of a finite graph will always reach any other
node since the search is ergodic, namely it fully explores space, hence the arrival probability is unity.
For quantum walks, destructive interference may induce effectively non-ergodic features in such
search processes. Under repeated projective local measurements, made on a target state, the final
detection of the system is not guaranteed since the Hilbert space is split into a bright subspace and
an orthogonal dark one. Using this we find an uncertainty relation for the deviations of the detection
probability from its classical counterpart, in terms of the energy fluctuations.

Keywords: quantum search; dark and bright states; Zeno subspaces; ergodicity

1. Introduction

A classical random walk on a finite graph explores the system completely. In a search
process, a particle starts on some node of a graph and then searches for a target on another
node. For classical walks on such structures, the arrival probability Pdet, the probability that
the particle starting on one node is eventually detected at some other specified location, is
unity. In that limited sense, a classical random walk search on a finite graph, is exhaustive,
though time-wise it is inefficient. The exception with Pdet 6= 1 is obvious. If the graph is
decomposable into several non-connected parts, the dynamics is not ergodic, and then
exploration of at least part of the space is prohibited. Thus, the related recurrence problem
becomes an issue only for an infinite system. For example, a classical random walk on an
infinite lattice in dimension larger than two is non-recurrent [1–3].

A very different behavior is found for quantum walkers [4–7] on finite graphs that start
localized on a node of the graph. The concept of quantum arrival is not well-defined, and
instead we discuss the first detection; see Sec. II. Moreover, constructive interference may
speed up search processes dramatically, under certain conditions [8]. However, destructive
interference may divide the Hilbert space into two components called dark and bright, and
this yields an inefficient search and an effect superficially similar to classical non-ergodicity,
Pdet < 1. More specifically, an observer performs repeated strong measurements, on a
node other than the starting node, in an attempt to detect the particle [8–22]. In the time
intervals between the measurements the dynamics is unitary. The rate of measurement
attempts is 1/τ, where τ is a parameter of choice (see details below). Due to destructive
interference, there might exist certain initial states |ψin〉 whose amplitude vanishes at the
detected node at all times and this renders them non-detectable. Such initial conditions
are called dark states and they are widely encountered [23]. In this case, the mean hitting
time, i.e., the mean time for detection, is infinite [10]. This occurs even for simple models
like quantum walks on a hyper-cube [8] or a ring [17]. More precisely, to get non-classical
behavior for Pdet, the system has to have some symmetry property [10,24] (though in other
cases, symmetry is responsible for the speedup of the quantum search). Generic initial
states |ψin〉, are linear combinations of dark and bright states, the latter defined as states
that are detected with probability one. It follows that a system starting in state |ψin〉 has a
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probability to be detected that lies somewhere between zero and unity. The challenge is to
find 0 ≤ Pdet ≤ 1.

A formal solution for the detection probability was found in [8,24] and obtained
explicitly for a few examples [25]. Since Pdet is non-trivial, as compared with its classical
counterpart, we will find its bound. This is derived via an uncertainty relation [24],

∆PVar(H)d ≥ |〈d|[H, D]|ψin〉|2.

Here ∆P = Pdet − |〈ψin|d〉|2 is the deviation of the total detection probability from the
initial probability of detection, Var(H)d is the variance of the energy in the detected state
|d〉, and on the right hand side of the inequality we have the commutator of H and the
measurement projector D = |d〉〈d|. Generally, the uncertainty principle [26], describes
the deviation of the quantum world from classical Newtonian mechanics. Our goal is
very different. We present an approach that shows how quantum walks, depart from
the corresponding classical walks. The relation does not depend on the sampling time
τ, and in fact is valid for a large class of measurement protocols. Recently, a time-energy
uncertainty-like relation, was found in [27], with a focus on the time to detect a particle
returning to its origin.

Note that the uncertainty principle discussed here, an exact formal solution to the
problem, and an upper bound based on symmetry, were presented recently in a short
communication [24]. Here, our goal is to provide a more detailed account of the problem.
Below, we will show how to improve the lower bound obtained from the uncertainty
principle. We also extend our previous study providing an upper bound based on an
uncertainty principle, Equation (18) below. A key element of this work is to explore the
basic ingredients of the uncertainty principle, for systems subject to repeated measurements.
For large systems and depending on the initial condition, the lower bound in the above
mentioned uncertainty relation, can be far from the exact result. However, improved
bounds, which are based on related principles, can be very accurate. For example, we
found a lower and upper bound on the detection problem of a hyper-cube in d dimensions,
these coincide tightly with the exact result [24]. Thus, the focus here is on an elementary
uncertainty principle for an evolution interspersed with measurements, with a form that
relies on a commutation relation, in the spirit of the standard approach.

2. Model and Notation

We consider quantum dynamics on a finite graph. The evolution free-of-measurement
is described by a time independent Hamiltonian H and the corresponding unitary propaga-
tor. Examples include a single particle on a graph, where H is a tight-binding Hamiltonian,
e.g., the dynamics of a particle on a ring with hops to nearest neighbours. The theory is
valid in generality, e.g., by identifying the graph with a Fock space, one can describe the
dynamics of a many-body system, see an example in Ref. [27]. Initially, the particle is in
state |ψin〉, which could be a state localized on a node of the graph.

An extensively studied measurement protocol, exploits stroboscopic measurements
at times τ, 2τ, ... in an attempt to detect the particle in state |d〉 (see [28] for the case of a
general distribution of times between measurements). The detected state |d〉 can be a node
of the graph or an energy eigenstate of H, etc. Specifically, the measurement, if successful,
projects the wave packet onto state |d〉; otherwise this state is projected out and the wave
function renormalised (see below). Between the measurement attempts the evolution is
unitary and described by U = exp(−iHτ) and here h̄ = 1. The outcome of a measurement
is binary: either a failure to detect (no) or success (yes). Thus, the string of measurements
yields a sequence no, no, and in the n-th attempt a yes, though the final success is not
guaranteed. Once we detect the particle, we are done, and we say that nτ is the time it took
to detect the particle in state |d〉. Fixing H and τ and repeating this measurement process
does not mean that the particle is always detected. The question addressed here is what is
the probability that the particle is detected at all, in principle after an infinite number of
measurement attempts. This is the total detection probability Pdet.
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This model is the quantum version of the first passage time problem [2,3]. However,
the measurements back react and modify the dynamics. Specifically, each individual
measurement is described with the collapse postulate. Namely, if the system’s wave
function is |ψ〉 at the moment of the detection attempt, the amplitude of finding the par-
ticle at |d〉 is 〈d|ψ〉. As mentioned, if the particle is detected we are done. If not, the
amplitude of the quantum state on the detector is set to zero, the wave function renor-
malised, and the evolution free of measurements continues until the next measurement,
etc. Mathematically, the failed detection transforms |ψ〉, i.e., the wave function just before
measurement, to N(1− D)|ψ〉 where N is the normalization factor, and D = |d〉〈d| is the
measurement projector.

3. Lower Bound Using the Propagator

A bright state is an initial condition that is eventually detected with probability one
and Pdet(ψin) = 1, while a dark state is never detected, and Pdet(ψin) = 0. Following [24,25],
it is not difficult to show that if |β〉 is a normalised bright state then U†|β〉 is bright as well.
We will soon present simple arguments to explain this statement, but first let us point out
its usefulness. Clearly it follows that (U†)k|β〉 is bright when k is a non-negative integer.
As a bright-state seed consider the following state |β〉 = U†|d〉. |β〉 is an obvious bright
state since it is detected in the first measurement attempt with probability one, because
〈d|UU†|d〉 = 1. It therefore follows that the states

U†|d〉, · · · , (U†)k|d〉 · · · (1)

are all bright.
Why is U†|β〉 bright in the first place? As is well known, the energy basis is complete.

Less well known is that we may construct a complete set of stationary eigenstates of H
which are either bright or dark [25]. In [25], we presented a formula for the stationary
dark and bright states, making this statement more explicit, but for now all we need to
know is that the finite Hilbert space can be divided into these two orthogonal subspaces
denoted HB (bright) and HD (dark). Let |ED

j 〉 be a specific stationary dark state, and j is
an index enumerating this family of states, and Ej the corresponding energy. Then clearly
〈ED

j |U†|β〉 = 0 since the dark state is orthogonal to the bright one and 〈ED
j |U† gives a

phase exp(iEjτ). It follows that U†|β〉 has no dark component in it and hence it is bright.
Thus, the whole approach is based on the fact that we may divide a finite Hilbert space to a
dark and bright subspaces (see also [29–31]).

We notice in the same way that the sequence

U|β〉, · · ·Uk|β〉 · · · (2)

is also bright. As a consequence, since U†|d〉 is bright, the state UU†|d〉 is also bright. So
when starting at the state |ψin〉 = |d〉, the system is detected with probability one, as was
shown previously using other methods [12,28].

We now see that
|d〉, U†|d〉 · · · (3)

are bright states. However they are not orthogonal. We may choose the first two terms and
construct two orthogonal bright vectors

|χ̃1〉 = |d〉 and |χ̃2〉 = N
(
|d〉 − U†|d〉

〈d|U†|d〉

)
(4)

where N is a normalization constant and |d〉, the detected state, is not an eigenstate of U†.
We note that using a similar approach it is not difficult to obtain further orthogonal bright
states. Furthermore, the infinite sequence in Equation (3) is over-complete. To construct a
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bright space, we must find a set of orthogonal vectors forming a basis, using for example
the Gram–Schmidt method. Formally the bright space is

HB = Span{|d〉 , U|d〉 , U2|d〉 , · · · } (5)

where Span{...} is the set containing all linear combinations of vectors of the states in
the parentheses. Below we will construct this space explicitly for some simple examples,
however in general this demands crunching linear algebra. For this reason the here-
presented uncertainty relation, is useful in many cases.

When we have found a complete set of orthonormal basis vectors, which are either
dark or bright states, the detection probability is given by [8];

Pdet = ∑
β̃∈HB

|〈β̃|ψin〉|2, (6)

where the summation is over a bright basis which as usual has many representations. It
follows that

Pdet ≥ |〈χ̃1|ψin〉|2 + |〈χ̃2|ψin〉|2. (7)

We then find

Pdet ≥
|〈d|U|ψin〉|2

1− |〈d|U|d〉|2 (8)

provided that the initial state and the detected one are orthogonal 〈d|ψin〉 = 〈χ̃1|ψdet〉 = 0.
Note that U|ψin〉 and U|d〉 are solutions of the Schrödinger equation in the absence of
measurement starting with |ψin〉 and |d〉, respectively, hence the lower bound relates the
dynamics of a measurement-free process at time τ to the detection probability, which is the
outcome of the repeated measurement process. The bound generally depends on τ and at
least in principle one may search for τ that maximizes its right hand side. When τ is small,
we may expand the propagator to second order U ∼ 1− iHτ − H2τ2/2 and then find

Pdet ≥
|〈d|H|ψin〉|2

Var(H)d
(9)

where
Var(H)d = 〈d|H2|d〉 − 〈d|H|d〉2 (10)

characterises the fluctuation of the energy in the detected state. Thus, the detection proba-
bility is bounded by the transition matrix from the initial to the detected state divided by
the fluctuations of the energy in the latter. What comes to us as a surprise is that this result
is valid for practically any τ, as we will show after a few remarks.

Remark 1. Our results are valid for finite size systems, like finite graphs. For infinite systems, it is
not always possible to divide the Hilbert space into two sub-spaces dark and bright. For example
for a one-dimensional tight-binding quantum walk on a lattice, with non-zero jump amplitude to
nearest neighbours only, starting on a node called the origin and measuring there, the non-zero
detection probability is less than unity [17]. This means that |d〉 is not bright for an infinite system,
which is physically obvious as the wave packet can spread to infinity and hence the particle can
escape detection.

Remark 2. The states |d〉, ...Uk|d〉... are bright and similarly with U†. Can we find a bright
state |β′〉 orthogonal to these states? The answer is negative, and hence these states can be used
to span the bright subspace. Assume |β′〉 is an initial condition |ψin〉 which is bright. At the
first measurement, at time τ, the amplitude of detection is 〈d|U|β′〉. However, this is zero by the
assumption that |β′〉 is orthogonal to the just obtained set of bright states. We may continue with
this reasoning for the second, third, etc measurements, and we see that detection amplitude of |β′〉 is
always zero. It follows that state |β′〉 is not bright.
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4. Uncertainty Relation

Let |β〉 be a bright state, then also f (H)|β〉 is bright where f (.) is an analytical function.
Indeed similar to the previous section 〈ED

j | f (H)|β〉 = 0 and hence the state f (H)|β〉 is
orthogonal to the dark states, meaning it is bright. As we showed already the state |d〉 is
bright so we find a sequence of bright states

|d〉, H|d〉, · · · , Hk|d〉 · · · . (11)

We use the same approach as in the previous section, namely we use the first two states
and find two orthonormal bright states

|χ1〉 = |d〉 and |χ2〉 = N
(
|d〉 − H|d〉

〈d|H|d〉

)
. (12)

The normalization constant is given by |N|2 = (〈H〉d)2/Var(H)d where 〈H〉d = 〈d|H|d〉.
Since H is Hermitian, inserting Equation (12) in Equation (7), and assuming no overlap of
the initial state with the detection one, 〈d|ψin〉 = 0 we get Equation (9). Thus, that formula
is valid for any τ.

For the more general case when the initial overlap with the detection state is not zero,
we define

∆P = Pdet − |〈d|ψin〉|2. (13)

Since |〈d|ψin〉|2 is the square of the overlap of the initial state and the detected one, it gives
the probability to detect the particle in a single-shot measurement at time t = 0. So ∆P
is the difference between the probability of detection after repeated measurements and
the initial probability of detection. Using Equations (7) and (12) and 〈d|H(D− 1)|ψin〉 =
〈d|[H, D]|ψin〉 we find

∆P Var(H)d ≥ |〈d|[H, D]|ψin〉|2. (14)

Here [H, D] is the commutator of the Hamiltonian and the projector describing the mea-
surement. If |ψin〉 = |d〉 the right hand side is equal to zero and we find Pdet ≥ 1, hence
here the uncertainty relation indicates that the detection probability is unity.

Remark 3. The matrix element 〈d|H|d〉 can always be set to be non-zero by a global shift of the
energy, hence |χ2〉 is well defined. In the final result we can switch back to any choice of energy
scale, since the Var(H)d is insensitive to the definition of the zero of energy.

Remark 4. For the stroboscopic sampling, recurrences and revivals imply that special sampling
times τ defined through ∆Eτ = 2πk exhibit resonances [12,17] such that the bounds based on
energy are invalid. Here ∆E is the energy difference between any pair of energy levels in the system.
In this case, the starting point of the analysis should be Equation (1) and not Equation (11).

Remark 5. We believe, that our results are generally valid for other detection protocols, for examples
when we sample the system randomly in time, following a Poissonian process [11,28]. Indeed the
state |χ1〉 is bright, for generic measurement protocols, beyond the stroboscopic one [28]. Similarly,
stationary dark states are generically dark. However, so far we have not proven that all the bright
states of the stroboscopic protocol, are generically bright, under arbitrary repeated measurement
protocols. In principle, an amplitude on a node of the system, can be zero at some set of times, and if
one chooses these special and non-typical times for measurements, the detection probability can be
set to zero (e.g., the measure zero exceptional points in the previous remark). A mathematical study
of our main result, for general repeated measurement protocol, is left for future work.

5. The Reverse Dark Approach

Assume |δ〉 is a normalised dark state, then as before the states Uk|δ〉, Hk|δ〉, f (H)|δ〉
are dark as well. In fact since by definition a system initially in a dark state |ψin〉 = |δ〉 is
never detected, it follows immediately that Uk|δ〉 and Hk|δ〉 are dark (see remark below).
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However, there is no symmetry between dark and bright states, in the sense that, every
system has at least one bright state |d〉, but not every system necessarily has a dark state.
As we showed in [25], totally bright systems have non-degenerate energy levels and all the
energy eigenstates have a finite overlap with the detected state. Still, let us assume that we
find a state |δ〉, which is dark, we can then apply nearly the same strategy as before to find
an upper bound for Pdet. We use |δ〉 and H|δ〉 to construct two orthonormal dark states

|ξ1〉 = |δ〉, |ξ2〉 = N
(
|δ〉 − H|δ〉

〈δ|H|δ〉

)
, (15)

where N is a normalization constant. Clearly here we assume that the dark state |δ〉 is
not a stationary state of the system, since otherwise |ξ2〉 is not defined. Analogous to
Equation (6), the detection probability is [25]

Pdet = 1− ∑
δ̃∈HD

|〈δ̃|ψin〉|2. (16)

Here the summation is over a basis of the subspaceHD. Since all the terms in the sum are
clearly non-negative

Pdet ≤ 1− |〈ξ1|ψin〉|2 − |〈ξ2|ψin〉|2.

For simplicity, assume that 〈δ|ψin〉 = 0. Then using the normalization N, we find

Pdet ≤ 1− |〈δ|H|ψin〉|2
Var(H)δ

. (17)

Now we have an upper bound. As mentioned in the introduction, the detection probability
even for small quantum systems on a graph, can be less than unity, unlike the corresponding
classical walks. So this is a useful bound provided that we can identify |δ〉. Notice that the
variance of energy is now obtained with respect to the dark state |δ〉. Of course, this state
is dark with respect to a state |d〉 so while the detector does not appear explicitly in our
formula, it is obviously important.

We now relax the condition 〈δ|ψin〉 = 0. Let PND = 1− |〈δ|ψin〉|2 be the probability
that initially the system is not in the dark state |δ〉 (hence the subscript ND). We consider
the deviation δP = PND − Pdet, and find

δPVar(H)δ ≥ |〈δ|[H, |δ〉〈δ|]|ψin〉|2. (18)

Unlike the lower bound Equation (14), here the commutator on the right hand side, is
between the Hamiltonian and a projector of the dark state, while previously the commutator
was of H and the projector of the detector state.

6. Further Improvement of the Uncertainty Relation

When 〈d|[H, D|ψin〉 = 0, the uncertainty relation Equation (14) does not provide
useful information on ∆P. Such situations can be found for quantum walks on a graph and
we encounter them frequently in the example section. This effect is easy to understand.
Assume that initially the particle is localised on a node of a graph while it is detected on a
another distant node, in particular 〈d|ψin〉 = 0. Then if the hopping amplitudes are short
ranged, the matrix element of H between the two distant nodes is zero and then the lower
bound is not useful.

For such cases, we consider two other orthonormal bright states

|χ1〉 = |d〉 and |χ2〉 = N
(
|d〉 − Hs|d〉

〈d|Hs|d〉

)
(19)
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where s is a positive integer. When s = 1 we get the previously examined case. The
normalization is |N|2 = (〈Hs〉d)2/Var(Hs)d where as before 〈Hs〉d = 〈d|Hs|d〉 and
Var(Hs)〉d = 〈d|H2s|d〉 − 〈d|Hs|d〉2. Using Equation (7) we find

∆PVar(Hs)d ≥ |〈d|[Hs, D]|ψin〉|2. (20)

This relation between ∆P, and the commutator of Hs and the projector D is clearly s
dependent. We will follow two approaches. In the first, we choose the smallest s, such
that the right hand side of the uncertainty relation is not equal to zero. The second is to
choose s in such a way to maximize the lower bound of Pdet. In the first approach and if H
is described by an adjacency matrix, s has a simple physical meaning as it is the distance
between the assumed localised initial state and the detector state, see further details below.
The first approach is the quickest way to gain insight, while the second can be used to
systematically improve the result.

7. Quantum Walks on Graphs

We consider a quantum walk of a single particle on a graph, modelled with a tight-
binding Hamiltonian. In our examples H is described by an adjacency matrix. Thus, the
particle can occupy nodes of a graph, the edges/connections describe hopping amplitudes.
All these amplitudes are identical and on-site energies are set to zero. In the schematic
figures of graphs under investigation, e.g., Figure 1, the circle with the light interior on a
vertex describes the measured state |d〉. We will focus on initial conditions localised on
another node (full circle) and also on the initial condition spread uniformly on the graph.
Our goal is to find exact expressions for Pdet using simple examples and compare the latter
to the uncertainty relation.

Notation

UncertaintyExact

Figure 1. A quantum walk on a line with five sites. The initial condition is any localised state denoted
with circles with an interior coloured green. The detected state |d〉 is the circle with a white interior.
Here we present the notation used in the text, the exact results of Pdet and the lower bound found
using the uncertainty relation. For example, starting on |1〉 and measuring on |2〉 we have Pdet = 2/3
while the uncertainty relation gives Pdet ≥ 1/2.
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7.1. Finite Line

We consider a quantum walk on a finite line with L nodes, focusing on the example
of L = 5. The localised basis is |r〉 with r = 1, · · · L, so one may think of the end points
as reflecting boundaries. This will soon be compared with a ring which has periodic
boundaries. The Hamiltonian reads:

H = γ


0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

. (21)

The hopping energy γ is set to unity hereafter. Below we modify the location of the detector,
and see its effect on the detection probability and the uncertainty principle. For schematics
and summary of the results, see Figure 1.

The transition to |d〉 = |1〉. Measurement is made on the left most node |d〉 = |1〉
which from symmetry is the same as the choice |d〉 = |5〉. We use |d〉, H|d〉 · · · to construct
the bright subspace and besides obvious normalization we get

HB = Span{|1〉, |2〉, |1〉+ |3〉, 2|2〉+ |4〉, 2|1〉+ 3|3〉+ |5〉}.

Since the dimension of the Hilbert space is five and since the above states are linearly
independent, we have no dark subspace. Hence we are done: the detection probability of
any initial condition |ψin〉 is unity.

Remark 6. For a quantum walk on a finite line, i.e., a lattice stretching from |1〉 to |L〉, with a
time independent H, and hops to nearest neighbours only (not necessarily translation invariant
as in our example), any initial state |ψin〉 is detected with probability one if the measurement is
performed on the end points |1〉 or |L〉. This conclusion is immediate since the action of Hk on the
detected state |1〉 gives L linearly independent vectors, which is the dimension of the Hilbert space.

Let us check the uncertainty principle starting with |ψin〉 = |2〉. We have Var(H)1 =
〈1|H2|2〉 − 〈1|H|1〉2 = 1 and the transition amplitude 〈2|H|1〉 = 1 hence

Pdet(2→ 1) ≥ |〈2|H|1〉|
2

Var(H)1
= 1. (22)

So, here the uncertainty principle gives the exact result, since clearly Pdet(2→ 1) ≤ 1.
For the other starting points in the system, namely the transitions |r〉 → |1〉, we use

s = r− 1 namely s is equal to the distance between the initial state and detected one. Our
results are summarized in Figure 1 and read: Pdet(2→ 1) ≥ 1, Pdet(3→ 1) ≥ 1, Pdet(4→
1) ≥ 1/5, Pdet(5 → 1) ≥ 1/10. We see that more distant initial states depart from the
exact result Pdet = 1. If |ψin〉 = |d〉 we mentioned already that the uncertainty relation
with s = 0 gives Pdet ≥ 1. This means that the particle is detected with probability one,
Pdet(1→ 1) = 1.

To date, we had no overlap between initial and detected states. For the uniform initial
state |ψin〉 = ∑5

r=1|r〉/
√

5 we find Pdet ≥ 6/25, where we used s = 1 (as mentioned the
exact detection probability is unity). We will later optimise the choice of s to see how one
may improve the prediction of the uncertainty relation.

Detector on |d〉 = |3〉. We now consider the detection on the middle point |3〉, a
case that yields further symmetry in the problem, compared with the situations when
the detector is on the other locations. The states |d〉, H|d〉 and H2|d〉 are bright and are
easy to evaluate {|3〉 , |2〉+ |4〉 , |1〉+ 2|3〉+ |5〉}. It is then easy to construct the dark space,
as we have only two dark states orthogonal to these bright states, so the dark basis is
{|δ1〉, |δ2〉} with |δ1〉 = (|2〉 − |4〉)/

√
2 and |δ2〉 = (|1〉 − |5〉)/

√
2. It is easy to understand

why these states are dark, as they interfere destructively on the detector on |3〉 in such a
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way that the amplitude of detecting the particle there is zero. We also have H|δ1〉 = |δ2〉
and H|δ2〉 = |δ1〉. Using the dark states and Equation (16), we find that Pdet(r → 3) = 1/2
for any initial state |r〉. The exception is the return problem |3〉 → |3〉, which is detected
with probability one.

Considering the transition |2〉 → |3〉 we may use the two uncertainty relations, one
with the detector state and the second with the dark state |δ2〉 to get:

1
2
≤ Pdet(2→ 3) ≤ 1

2
. (23)

So here the uncertainty relations give the exact result. The same holds for the transition
1 → 3 and the other transitions are clearly identical from symmetry. These results are
summarized in Figure 1.

Detector on |d〉 = |2〉. The bright subspace is spanned by |d〉, H|d〉, · · ·H3|d〉 namely

HB = Span{|2〉 , |1〉+ |3〉 , 2|2〉+ |4〉 , 2|1〉+ 3|3〉+ |5〉}.

Here H4|d〉 is also bright but is easily shown to be a linear combination of |d〉 and H2|d〉.
From these states it is easy construct an orthonormal bright basis{

|2〉 , (|1〉+ |3〉)/
√

2 , |4〉 , (2|5〉+ |3〉 − |1〉)/
√

6
}

. (24)

Hence the dimension of the bright subspace is four, and the dark subspace has one state in
it. This vector is orthogonal to the bright basis, Equation (24), and hence it is easy to see
that it is given by

|δ〉 = |1〉 − |3〉+ |5〉√
3

. (25)

We have H|δ〉 = 0; hence this state is a stationary state with an eigenvalue equal to zero. It is
easy to see why this is a dark state: its amplitude on the detector is zero for any time. Using
Equation (16), Pdet = 1− |〈δ|ψin〉|2 and we get the exact values of Pdet(1→ 2) = Pdet(3→
2) = Pdet(5 → 2) = 2/3 and Pdet(4 → 2) = Pdet(2 → 2) = 1. Compared with the case
when the detector was on the edge we get values for Pdet which depart from the classical
case of unit detection probability. In Figure 1. we compare these results with the uncertainty
principle: Pdet(1 → 2) ≥ 1/2, Pdet(3 → 2) ≥ 1/2, Pdet(4 → 2) ≥ 1, Pdet(4 → 2) ≥ 1/14,
where again we took s to be the distance between initial and detected state. For the uniform
initial state we get Pdet = 14/15 while the uncertainty principle gives Pdet ≥ 13/25 when
we choose s = 1.

It is easy to extend these results for a segment of length L = 2k + 1, and k = 1, 2, · · · .
We measure on |2〉 or |L− 1〉 and then we have one and only one dark state. This state is
an eigenstate |δ〉 = (1, 0,−1, 0, 1, 0,−1, · · · )/

√
k + 1 hence

Pdet(r → 2) =
{ k

k+1 if r is odd
1 r is even

(26)

On the other hand, if L is even we have no dark subspace and the detection probability
is unity. Thus, depending on whether L is even or odd, we may get a dark subspace or a
completely bright situation.

Remark 7. Note that in the example, the conclusion that for even L, we have only bright states,
is valid for the specified location of the detector |d〉 = |2〉. In general one can find for the segment
model, with even L, initial conditions and detectors sites with sub-optimal detection probability
Pdet < 1. For our case under study, consider L = 4, and as before |d〉 = |2〉. We obtain the bright
space, using the same method as before, and we find that it is spanned by:

HB = Span{|2〉 , |1〉+ |3〉 , 2|2〉+ |4〉 , 2|1〉+ 3|3〉}.
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It is easy to see that from these vectors, we can construct four orthonormal states, and since L = 4,
we have a complete bright space and an empty dark sub-space. This is unlike the case L = 5 where
we had only four such bright states, implying a dark sub-space which is not empty. It is easy to
extend the claim for larger segments with an even L, implying as we announced, that for |d〉 = |2〉
and even L, Pdet = 1. Delving deeper into this issue, the eigenvalues of H for even and odd L are
non-degenerate. This means that the dark states, are found from eigenvectors of H, with zero over
lap with the detected state. Consider, for example L = 8. Then it is easy to show, with a program
like Mathematica, that all the eight stationary states (eigen-vectors of H) have non-zero overlap with
localized states, |1〉, |2〉, |4〉, |5〉, |7〉, |8〉, while some of the stationary states have zero overlap with
|3〉 and |6〉. This indicates that if we chose the detectors on the latter sites, we will get sub-optimal
detection (but not on |d〉 = |2〉 considered in the example under study).

7.2. Enumeration of Paths Approach

Let H = γA where A is the adjacency matrix of some graph. We set the energy scale
γ = 1 as it does not control the detection probability (like the sampling rate 1/τ). Thus,
for the Hamiltonian under investigation, all bonds in the system are identical and on-site
energies are zero. So Hii = 0 while Hij = 1 if the states are connected, zero otherwise. An
example is the segment of size five just considered. As mentioned, the detection probability
for the return problem |d〉 → |d〉 is unity, hence below we consider only the transition
problem from some localised initial state |r〉 to another orthogonal localised state |d〉. In
this case, we can use a path counting approach to find a useful bound for Pdet.

We have
Hs|d〉 = ∑

s paths
|j〉 (27)

where the sum is over all states |j〉 which are endpoints of paths starting on |d〉 and whose
length is s. Clearly

Nr→d(s) = 〈r|Hs|d〉 (28)

is the number of paths starting on |r〉 and ending at |d〉 whose length is s. We then find
from the uncertainty relation

Pdet(r → d) ≥ [Nr→d(s)]
2

Nd→d(2s)− [Nd→d(s)]
2 . (29)

The denominator is the variance of Hs in the detector state. For example, when |r〉 is the
nearest neighbour of |d〉 we choose, s = 1 and get

Pdet(r → d) ≥ 1
#n.n

(30)

where in the denominator we have the number of nearest neighbours. This is the reason
why for the example of the line we got for nearest neighbours Pdet ≥ 1/2 while for the two
edge states, which have only one nearest neighbour, we got Pdet ≥ 1. The bound depends
on s and this can be used to our advantage. What is clear is that we must choose s to be
larger or equal to the distance between the starting point to the measured one, otherwise
the numerator in Equation (29) is equal to zero.

7.3. The Benzene-Like Ring

We now consider the tight-binding Hamiltonian for a particle on a ring with six
sites [17]

H = γ
5

∑
i=0

[|i〉〈i + 1|+ |i〉〈i− 1|], (31)

see the top left panel in Figure 2 for schematics. Here we use periodic boundary conditions
and hence |6〉 = |0〉. Similar to the previous example, the energy scale γ is irrelevant for
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the determination of Pdet, hence we may set γ = 1 and then H is the adjacency matrix of
the benzene-like ring. The repeated measurements are made on a site we call |d〉 = |0〉.

Exact Uncertainty

Figure 2. For a quantum walk starting on a node of the graph and measured elsewhere, we present
the exact result for the detection probability, which depend’s on the location of the starting point.
Shown also is the lower bound, obtained with the uncertainty principle. We choose s as the smallest
integer, for which the uncertainty principle is non-trivial, namely the case where 〈ψin|Hs|d〉 6= 0, this
is the distance between the measured site and the initial condition.

With the method of enumeration of paths we consider three transitions, 1→ 0, 2→ 0
and 3→ 0. Since the detector on the ring has two nearest neighbours, Pdet(1→ 0) ≥ 1/2.
For the transition 2→ 0 and 3→ 0 we will use s = 2 and s = 3, respectively. Notice that we
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have only one path of length two for the transition 2→ 0, while for the 3→ 0 transition we
have two paths of length three. Elementary path counting givesN0→0(4)− [N0→0(2)]2 = 2
for s = 2 whileN0→0(6)− [N0→0(3)]2 = 22 for s = 3, hence we get Pdet(2→ 0) ≥ 1/2 and
Pdet(3 → 0) ≥ 2/11. These results are summarized in the upper right panel of Figure 2.
We now analyse the problem exactly.

In Equation (11) we showed that if |ψin〉 is any linear combination of the states |0〉,
H|0〉, H2|0〉 and H3|0〉 then it is bright. Furthermore, H4|0〉 is bright, however to construct
a basis for the bright subspaceHB we need only the just mentioned states. Using |d〉 = |0〉,
the bright subspace is given by

HB = Span
{
|0〉, |1〉+ |5〉√

2
,

2|0〉+ |2〉+ |4〉√
6

,
3|1〉+ 2|3〉+ 3|5〉√

22

}
.

These states are nearly intuitively bright, for example the terms in the second (|1〉 +
|5〉)/

√
2, interfere constructively on the detector situated at |0〉. On the other hand, the

state (|1〉 − |5〉)/
√

2 is dark from symmetry. The free evolution of this state gives zero
amplitude on the detector. Acting with H on this state and normalising we see that
(|2〉 − |4〉)/

√
2 is also dark which is again obvious from symmetry.

With this information, we can solve the problem exactly. For example, consider a
particle starting on

|1〉 = 1√
2

 |1〉+ |5〉√
2︸ ︷︷ ︸

bright

+
|1〉 − |5〉√

2︸ ︷︷ ︸
dark

. (32)

As mentioned the first term is bright and the second dark, hence Pdet(1 → 0) = 1/2.
Similarly Pdet(2 → 0) = 1/2 and Pdet(3 → 0) = 1. The transition 5 → 0 is identical to
1→ 0 and similarly for 4→ 0. Let us now see how the lower and upper bounds work for
this case (L = 6).

The 1 → 0 transition. As mentioned |d〉 = |0〉 and using Equation (31) we find
Var(H)0 = 2. For the initial condition |ψin〉 = |1〉 we have zero initial overlap with the
detector. We find

1
2
=
|〈0|H|1〉|2
Var(H)0

≤ Pdet ≤ 1− |〈δ|H|1〉|
2

Var(H)δ
=

1
2

(33)

where we used as a dark state |δ〉 = (|2〉 − |4〉)/
√

2 and Var(H)δ = 1. In this case, the
lower and upper bound coincide giving the exact result Pdet = 1/2.

The 2→ 0 transition. Since the matrix element 〈0|H|2〉 = 0, we now use Equation (20)
with s = 2 since the distance between the initial state and measured one is 2. We find

1
2
=
|〈2|H2|0〉|2
Var(H2)0

≤ Pdet ≤ 1− 〈δ|H|2〉|
2

Var(H)δ
=

1
2

. (34)

Var(H2)0 = 2, Var(H)δ = 1 and |δ〉 = (|1〉 − |5〉)/
√

2. Again the lower and upper bound
coincide giving the exact result.

The 3→ 0 transition. We now set s = 3 finding Var(H3)0 = 22, while |〈0|H3|3〉|2 = 4
and this gives the mentioned lower bound 2/11 ≤ Pdet ≤ 1 which is to be compared with
the exact result Pdet = 1.

In general one could imagine several ways of how to improve the lower bound. The
obvious one is to go beyond the calculation of the bright states |d〉 and Hs|d〉, namely
consider a third bright state, but that means more algebra. Another option is to choose
Hs1 |d〉 and Hs2 |d〉 as the starting point (we took s1 = 0 and s2 = 1, 2, 3). In the next section,
we will improve the lower bound using a simple example. An upper bound can be tackled
with symmetry arguments, which provide a different perspective [24].
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7.4. Optimisations of the Lower Bound

Here we use a simple model of a system with a dangling bond, and consider the
optimisation of the lower bound, i.e., we will soon search for the best choice of s. For the
quantum walk on the line, when the measurement is made on the end point, we showed
that the detection probability is unity. We add a perturbation to the system: one link
perpendicular to the line. We will treat the example of a system with 6 nodes on the
backbone and one dangling bond; see schematics Figure 3 and details in the Appendix A.
Adding one dangling bond breaks the symmetry, but only partially in the sense that we still
find that the detection probability is not generically unity. We note that strongly disordered
systems with no symmetry exhibit a classical behaviour, namely Pdet = 1 [24].

Notation

Exact

Uncertainty

Figure 3. A system with a dangling bond, where the edge state |0〉 is repeatedly measured. Note
that in the absence of the bond, i.e., when node |6〉 is removed, the detection probability is unity, no
matter what is the starting point. To obtain the lower bound, using uncertainty, we choose s to be the
shortest distance between the initial condition and the detected state. In Figure 4 we improve the
bound for the transition |5〉 → |0〉, which here gives Pdet ≥ 1/78.

The notation used, the exact results, and the uncertainty principle are presented here
in Figure 3, where the transition from a localised initial state to the detector on |0〉 is
considered. The distance between the initial condition and the detected state is s. Now
we turn to a simple optimisation of the bound, both for a localised initial state and for a
uniform initial condition.

Consider the initial condition which is uniform |ψin〉 = ∑6
r=0|r〉/

√
7. In this example

we have only one dark state |δ〉 = (|6〉 − |3〉+ |5〉)/
√

3, and with this we find the detection
probability Pdet = 20/21. The uncertainty principle, with s = 1 reads:

Pdet −
1
7
≥ |〈0|H(1− |0〉〈0|)|ψin〉|2

Var(H)0
=

1
7

. (35)

Here, 1/7 on the left hand side is the initial overlap, and we have chosen the detected node
|d〉 = |0〉. This gives Pdet ≥ 2/7. To improve this bound, we made similar calculations
with s = 2, ..., 5; the results are presented in Table 1. The best lower bound is found for
s = 5, Pdet ≥ 167/253 ' 0.6117. To further improve the bound, we depart from the pen
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and paper approach and instead we use a simple computer program. The results for both
the uniform initial condition and a localised initial state are presented in Figure 4. This
figure shows that increasing s yields a better result for the lower bound, but eventually
the calculation saturates while exhibiting odd/even oscillation, Note that generally the
lower bound calculations involve only the multiplication of matrices, while obtaining an
orthonormal basis for the darkHD or brightHB subspaces, needed for the calculation of
the exact expression for Pdet Equations (6) and (16), demands considerably more work.

Table 1. For the system with a dangling bond, the detection being on |0〉, the Table gives the lower
bound for the uniform initial condition versus s. Increasing s in this range is improving the bound.

s 1 2 3 4 5

Pdet ≥ 2
7

2
7

11
21

42
119

167
253

5 10 15 20

s

0.00

0.25

0.50

0.75

1.00

L
o
w
e
r
B
o
u
n
d

loc

uni

Figure 4. We demonstrate the optimisation of the uncertainty principle, for a system with a dangling
bond. The Figure shows the lower bound for Pdet versus s. The measurement is on node |0〉 and we
consider two initial conditions: one localised |ψin〉 = |5〉 and the other uniform. See upper part of
Figure 3 for schematics and notation. Starting on node |5〉 and when s ≤ 4 the bound is equal to
zero since if the initial and detected states are localised, s must be larger than the distance between
these states to make the approach useful. Increasing s clearly leads to improvements of the bound.
The exact results are Pdet = 20/21 for the uniform initial condition, and Pdet = 2/3 for the initially
localised state.

7.5. Other Examples

For not too large systems, it is relatively easy to write a simple program generating
the bright states |d〉, H|d〉 · · · and then to perform the Gram–Schmidt procedure. This
way we find an orthonormal basis for the bright spaceHB. Furthermore, then we can find
the detection probability using Equation (6). In Figure 2 we present some graphs and the
corresponding detection probability. Here, as before, the starting point is a node of a graph,
and the empty circle is the position of the detector. It is striking, that when the detector is
placed on a symmetry centre of the graph, Pdet may exhibit a deficit from the classical limit
of unity. Since the classical detection probability on similar graphs is unity, the deviations
are of interest. So as a rule of thumb we use systems with symmetry to find deviations
from classical expectations.
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All the examples presented here are based on rather simple graphs. This allowed us
to obtain exact solutions rather easily and then estimate the performance of the uncertainty
principle. For large and generally complex systems one needs a set of tools, and one cannot
rely only on the method presented here. If the system is disordered, such that the energy
spectrum is non-degenerate, and each stationary state has some finite overlap with the
detected state, the detection probability is unity. In this case, the system behaves classically
and there is no need at all for a lower bound. For systems with symmetry, and hence a
degenerate spectrum, an upper bound based on symmetry was found. This relates the
number of equivalent states in the system ν, i.e., states that are equivalent to the initial state
with respect to the measured one, showing that Pdet ≤ 1/ν. Finally, here we used as a seed
the bright state |d〉. In [24], we proposed a shell method, that searches for a bright state,
with a strong overlap with the detected one. This allowed us to treat several large systems,
like systems with loops, the hyper-cube, and also go beyond the examples with adjacency
Hamiltonians treated here [24]. Further investigation of other structures like large glued
trees [32,33], and fractals [34], is left for future work.

8. Discussion

This work relied on the partition of the Hilbert space into dark and bright sub-spaces.
Probably the best known example, is the case of rapid measurements, τ → 0 [35]. Then,
when measuring on a node of the graph, it is not difficult to find a basis for this pair of
sub-spaces. The measured node is obviously the bright sub-space, since the particle is
detected with probability one at the first measurement. Localized initial states, on all
the other nodes are dark, since the square modulus of the amplitude at the detected site
is of order τ2 (unlike classical walks where the corresponding probability increases like
τ) and hence Pdet = 0 in this limit. It was later realised that the splitting of the Hilbert
space into two components, does not need to rely on fast measurements [10,29–31]. The
general mechanism behind this effect is destructive interference. Recently, we expressed
the dark and bright sub-space of a general Hamiltonian in terms of its eigenstates [25].
Using this, we could find here a bound for the detection probability, in the form of an
uncertainty principle.

The splitting of the Hilbert space into two components, resembles the splitting of a
classical system into two disjoint components, namely ergodicity breaking. Let us assume
we have such a classical system, which is split into non-connected domains A and B. We
add a detector within one sector, say A. If we detect the particle, we know that it started in
A, otherwise it started in B. In the quantum world we may start in a superposition state,
with components in both the dark and bright sub-spaces. Hence, this situation is very
different as compared with the classical case of ergodicity breaking, leading to non-trivial
Pdet even if H itself describes a fully connected system.

The uncertainty relation Equation (14) does not depend on the measurement frequency
1/τ and in that sense it is universal. However, in some cases, its right hand side is equal to
zero. In particular, as shown here, this occurs when an initial localised state and a detected
localised state are far from each other and the Hamiltonian describes a finite range of jump
amplitudes. A second relation, Equation (20), depends on the free parameter s, allowing to
connect between distant states, and this permits an easy calculation of a nontrivial lower
bound for Pdet. We showed how to optimise the choice of s, improving the lower bound. As
mentioned, more advanced methods, intended for larger systems, are discussed in [24]. A
general strategy, to improve the results obtained here, is based on further collecting bright
or dark states, instead of the two we used in Equations (7), (12) and (19). In principle, and in
particular with a simple computer program, one may use more states with a Gram–Schmidt
method, and gain tighter bounds than those found here. However, that comes at a cost,
namely the theory becomes in some sense cumbersome, as compared to the uncertainty
principle discussed here.

In this article we considered repeated strong measurement as the protocol of choice.
Due to the wide range of quantum measurement theories, one must wonder how general
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are the results presented here? While the answer to this question is left for future work, we
may speculate the following. The mechanism leading to dark states is in principle simple:
the amplitude of the wave function at |d〉 is equal to zero forever. Hence any choice of a
measurement theory or any measurement protocol, that is reasonably physical in the sense
that it postulates that we cannot detect nor influence the state of the particle if the amplitude
of finding it is zero, will yield the same dark states as for strong measurements. Still, we
cannot claim any results for weak measurements [36]. We believe that our results, hold also
for the well-known non-Hermitian approach, where the detection is modelled with a sink.
For the limit of small τ it was shown [14,20] that one may use a non-Hermitian approach
to model the strong detection protocol considered here. Hence, the two approaches have
many things in common. Instead of stroboscopic sampling one may use temporal random
sampling, for example sampling times drawn from a Poisson process [11,28]. Again we
believe that this will not alter our results since the destructive interference is found also in
this case. The fact that our results are τ independent is another argument for the generality
of the approach.

The uncertainty principle investigated here, is different from the standard
approaches [37–40]. These are roughly divided into two schools of thoughts. The text-book
momentum-position uncertainty relation, is a measure of uncertainty in the state function.
To verify it, one needs to perform two sets of measurements obtaining the uncertainty in x
and p independently. The second, is the disturbance approach originating from the γ-ray
thought experiment [37]. This dichotomy continued to attracted considerable research
until recently [41–48]. Our approach is different from both and this is obviously related to
the fact that we consider repeated measurements which back-react and modify the unitary
evolution and also to the observable of interest: the detection probability. The uncertainty
relation found here, can be extended to other observables. In [27], a time-energy relation
was discovered for the fluctuations of the return time, with an interesting dependence on
the winding number of the problem.

As for possible experimental observation, the quantum walk has already been demon-
strated, using single neutral particles and site-resolved microscopy [49,50]. Usually, the
focus is on the measurement of the propagation of the packet of particles. This demands
what we may call a global measurement searching for the position of the particle at time t,
while we are considering a spatially local measurement which detects the particle on a sin-
gle target node of a graph. Such experiments, on the recurrence problem, were conducted
in [51] with coherent light using strong projections, the number of repeated measurements
was roughly forty. Thus, measurements of the quantum detection probability Pdet, and the
uncertainty principle, are within reach.

Usual uncertainty relations are statements showing the departure of quantum reality
from classical Newtonian mechanics. Here however, we are dealing with the departure
of quantum search from its classical random walk counterpart. In Equation (14) we use
the fluctuations of energy in the detected state Var(H)d and it is natural to consider its
meaning in a measurement protocol. The observer repeatedly attempts to detect the particle
and once successful, namely the particle is detected, the particle is in state |d〉. Once the
particle is detected we stop the monitoring measurements on |d〉. This means that in this
second stage of the experiment the energy is a constant of motion. We now measure H.
Hence repeating the protocol many times we have from the first stage of the experiment an
estimate for Pdet and from the second the variance of H in the detected state is obtained.
It follows that at least in principle there is a physical meaning to the variance of H in
the detected state, as these are the fluctuations after the particle is finally detected (if the
particle is not detected, we do not record the energy). It follows that we may rewrite
Equation (14) in a form that emphasizes the role of the state function. Since the final wave
function, after a successful detection is |ψfin〉 = |d〉 we have

∆P Var(H)ψfin ≥ |〈ψfin|[H, D]|ψin〉|2. (36)
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The same holds more generally for s 6= 1. Note that Var(H)ψfin is a constant of motion
after the successful detection, since as mentioned we stop the repeated detection attempts
once obtaining the yes click. This means that the observer does not need to measure
the fluctuations immediately after the successful detection and there is no issue with the
violation of the energy-time principle.
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Appendix A

We present calculations for the single dangling bond system. The localised states
describing the nodes of the graph are labeled |0〉, · · · |6〉, we measure on |0〉 and we start on
any other node (in the text we also considered a uniform initial condition). The Hamiltonian
is given by

H =



0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 1 0 1 0 0 1
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0


.

From H|d〉, ...Hk|d〉 · · · we get six normalised bright states,

|0〉, |1〉, |0〉+ |2〉√
2

,
2|1〉+ |3〉+ |6〉√

6
,

2|0〉+ 4|2〉+ |4〉√
21

,
6|1〉+ 5|3〉+ |5〉+ 4|6〉√

78
.

Here H7|d〉 yields a state which is a linear combination of these states so it is of course
excluded from this list. Since we have the dimension of the Hilbert state equal to seven,
we have one dark state orthogonal to the bright ones. This is easy to find |δ〉 = (|6〉 −
|3〉+ |5〉)/

√
3. and we notice that this is a stationary state of the system so Var(H)δ = 0. It

follows that the detection probability Pdet is equal to unity for the transitions 0, 1, 2, 4→ 0
while for 3, 5, 6 → 0 we find Pdet = 2/3. This is presented in Figure 3. The uncertainty
principle gives the bound Pdet(1→ 0) ≥ 1, Pdet(2→ 0) ≥ 1, Pdet(3→ 0) ≥ 1/6, Pdet(4→
0) ≥ 1/17, Pdet(5→ 0) ≥ 1/78, see Figure 3. For the 5→ 0 transition we need Var(H5)0 =
78 which is larger than the fluctuations of energy when s = 1, ..., 4.
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