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Abstract: We present a novel theoretical approach to the problem of light energy conversion in
thermostated semiconductor junctions. Using the classical model of a two-level atom, we deduced
formulas for the spectral response and the quantum efficiency in terms of the input photons’ non-zero
chemical potential. We also calculated the spectral entropy production and the global efficiency
parameter in the thermodynamic limit. The heat transferred to the thermostat results in a dissipative
loss that appreciably controls the spectral quantities’ behavior and, therefore, the cell’s performance.
The application of the obtained formulas to data extracted from photovoltaic cells enabled us to
accurately interpolate experimental data for the spectral response and the quantum efficiency of cells
based on Si-, GaAs, and CdTe, among others.

Keywords: PVC; spectral response; quantum efficiency; spectral entropy production; photochemical
potential; two-level atom model

1. Introduction

In photovoltaic cells (PVCs), light absorption promotes the transference of electrons
from the valence to the conduction bands, thus allowing electrical energy production from
light. The efficiency with which this process occurs is crucial for these devices’ practical
operation, and therefore, one of the fundamental aspects for theoretical investigations.
The estimation of this efficiency follows the classical works by Schockley and Queisser [1].
This analysis tacitly assumes radiation-matter thermal equilibrium when employing the
detailed balance relation. Posterior research improved this approach by considering that
solar cells operate at steady-state conditions rather than at equilibrium; this was the case of
the classical works by Wurfel [2] and Tiedje and coauthors [3].

References [4–8] provided classical contributions on this subject. The analysis of
the efficiency during non-equilibrium operation starts by introducing the quasi-Fermi
energy levels for the electrons and holes, from which the electrical potential generated
by the charge separation originates. This electrical potential is the output voltage of the
cell, and it is associated with the so-called internal chemical potential µe, defined as the
difference between the previously mentioned quasi-Fermi energy levels. These relations
lead to the current-voltage relationship for the solar cell [3]. In its more simple form, these
improvements are based on the two-level atom approach or can be reduced to it [9].

Recent theoretical approximations to the assessment of the spectral response and
external quantum efficiency are diverse, (see, for instance, [10]), although the vast ma-
jority are based in computational programs solving the electrodynamic and electron and
hole transport equations in semiconductor junctions under several assumptions; see, for
instance, [11–14]. Analytical approaches are also reported in the phenomenological and
quantum realms. In the first realm, the important contributions are associated with the
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introduction of light’s chemical potential, in a similar form as in the present work; see, for
instance, the reports by Markvart and coworkers [15–17]. In the realm of dissipative quan-
tum systems and quantum thermodynamics approach, the modeling is usually based on
two-level atom systems for which generalized (LGKS) quantum master equations are used
with the Jaynes–Cummings Hamiltonian with the Lindblad operator for the dissipative
terms [18–21].

From a more practical perspective, PVCs’ performance is characterized by a series
of quantities related to each other. The overall cell performance follows from the net
power generated by the solar cell divided by the net input power provided by the incident
radiation (the Sun). However, the spectral response, Sr(λ), and the quantum efficiency
Qe(λ), are the other two spectral quantities that measure the performance of PVC cells,
providing precise information of this performance in terms of the frequency or wavelength.
These two quantities are not independent. The relation between the quantum efficiency
and the spectral response is:

Sr(λ) =
qλ

hc
Qe(λ) (1)

In this work, we undertook the problem of calculating these two quantities from
a two-level atom model and showed that they are proportional to the non-equilibrium
photochemical potential of the incoming photons [17,22]. Our approach’s compelling per-
spective is to use these results to calculate mathematical relations for the spectral response
and the quantum efficiency containing the peculiarities of the transition probabilities
entering the equations that describe the population dynamics between states. We also
discuss thermodynamic-related quantities like the spectral entropy production and the
semiconductor’s efficiency for converting light input into an electrical current output. The
merit of this work is that it shows that the key thermodynamic quantity in this whole
situation is the photochemical potential. This quantity acts as the thermodynamic driving
force, per wavelength band, yielding the entropy production of the cell and reducing its
total efficiency.

Our analysis was based on a two-level atom model and did not consider recombi-
nation effects in terms of the classical view of electron-hole interaction. Nonetheless, we
incorporated recombination processes due to radiative-induced processes and thermal
coupling with the thermostat. As we show below, even in this case, the results obtained
were auspicious since they allow one to reproduce quantitatively, with a fair degree of
precision, experimental reports on the wavelength dependence of the spectral response
and the quantum efficiency.

The two-level atom model is the most basic model describing appropriately the dy-
namics of the formation and recombination of minority carriers in semiconductors due
to the incidence of light [9]. The model allows generalizations, like the inclusion of re-
combination effects and its extension to multi-state dynamics. Given its simplicity, it can
easily be related to the non-equilibrium thermodynamics of photovoltaic cells. A direct
correlation can be established between thermodynamic quantities and the quantum param-
eters entering the quasi-phenomenological Einstein model for the interaction between light
and matter. From the quantum perspective, we used this level of approach because of the
known difficulties of introducing dissipation due to the interaction with thermal reservoirs
in the pure quantum approach [18–21].

The model is quasi-phenomenological as the Einstein coefficients Anm and Bmn possess
quantum microscopic bases, having its replica in alternative approaches just as in [18].
Similarly, the normalized state populations m(t) and n(t) correspond to the diagonal
elements of the density matrix. Hence, the Einstein equations are neither more nor less
than the diagonalized form of the quantum master equation.

The advantage of using this approach is that the statistical description of the dissi-
pative processes can be directly related to the irreversible thermodynamics concepts and
techniques. They differ from the traditional equilibrium approach because in addition to
considering the unbalance of the temperatures between the light and the cell, the interaction
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with a thermostat to which a heat flow is continuously expelled during cell operation is
also considered explicitly.

2. Radiative Energy-Exchange Out of Equilibrium: A Phenomenological Model

Let us consider a semiconductor junction that exchanges energy with (i) the incoming
radiation from the Sun and with (ii) a thermal bath with which energy is exchanged through
heat conduction; see Figure 1.

Eg

m
thermostat

n

Hmn

T

Tsun

Bmn
Amn

I

Figure 1. Schematic representation of the system considered. A junction in thermal contact with
a thermostat at temperature T. The incoming radiation induces transitions of electrons from the
valence (m) to the conduction (n) bands separated by the gap energy Eg at the rates indicated.

The incoming light induces transitions of electrons from the valence to the conduc-
tion band, changing the semiconductor atoms’ energy distribution. In this representation,
the dynamics of a two-level atom model copes with the essential physics when explicit
electron-hole recombination is neglected [3,9]. This recombination could enter our model
by including non-linear terms, i.e., defining reaction constants that depend on the occu-
pation numbers of both states. However, this does not mean that two-level atom models
lack recombination effects since transitions from the higher to the lower energy level are
considered through radiative recombination, spontaneous emission, and thermal effects, all
of them characterized by different rate constants. The transitions occur between the ground
m and excited n bands of the semiconductor, having energies Em and En that correspond to
the quasi-Fermi energy levels of the valence and conduction bands [3]. We assumed that
these transitions match stimulated and spontaneous emission and absorption of photons
of frequency hν = Eg = En − Em, where Eg stands for the energy gap.

Mathematically, the model can be assembled with the help of the Einstein-like
model [23,24] for which the evolution equation for the normalized number of atoms
in the ground state, m, of the semiconductor materials is:

dm
dt

= −dn
dt

= −[Bmnusun
ν + Hmn]m (2)

+[Bnmusun
ν + Anm + Hnm]n,

where it is essential to emphasize that, since the electromagnetic energy density producing
the transitions has its origin in an external source, for example, the Sun, it approximately
follows Planck’s radiation formula:

usun
ν =

8πhν3

c3
εsun

ν

ehν/kTsun − 1
, (3)

where Tsun ∼ 5250–5600 K is the approximate temperature of the Sun and where we in-
cluded the emissivity coefficient εsun

ν that accounts for the deviation of the Sun’s emission
with respect to the black body emission. Additionally, Bmn(ν) and Bnm(ν) are the transition
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probabilities per unit time due to the stimulated radiation process. These probabilities
satisfy the detailed balance condition gmBmn = gnBnm, where gi are the degeneracies of
states i = m, n. Additionally, the spontaneous transition rate from n to m is represented
by Anm(ν). Finally, the coefficients Hmn and Hnm measure the transition rates induced
by the atoms’ thermal interaction with the thermostats. This last interaction is one of the
main differences between our approach and the classical works reported in [1–8,15,17] and
summarized in [25]. In these classical approaches, the assessment of the efficiency of the
energy conversion is done by assuming a balance between absorbed and emitted radiation.
In this approximation, thermal interaction with the heat reservoir is not explicitly consid-
ered in the microscopic mechanism as a possible factor promoting transitions. As will be
shown below, the thermal contributions introduce corrections in the upward and backward
transition rates, as well as the photochemical potential. Within the microscopic description
based on a two-level system, the thermal factor was first considered in [22], where the
radiative interaction between two black bodies was analyzed in approximated form.

The temperature difference between the Sun and the semiconductor acts as a drift
that takes the semiconductor’s state away from equilibrium. Hence, it is convenient to
rewrite Equation (2) in terms of the difference between electromagnetic energy densities:
(usun

ν − eν). Thus, by adding and subtracting terms in Equation (2), we may define the net
radiative current:

j ≡ −Bmn(usun
ν − eν)(n−m). (4)

In this equation, the last term can be identified with the excess minority carrier in the
semiconductor [26]. Using (4), we may write the more compact equations:

dm/dt = −dn/dt = −j− k+m + k−n. (5)

Equation (5) describes a first-order chemical reaction without the detailed balance, where
k+ and k− are the corresponding forward and reverse rate constants or probabilities per
unit time of passing from ground to excited states and vice versa. These constants are
given by:

k+ ≡ Bmneν + Hmn, (6)

k− ≡ (gm/gn)Bmneν + Anm + Hnm.

It is worth mentioning that k− represents an “effective” recombination rate that incorpo-
rates spontaneous and radiation-induced recombination, as well as thermally activated
recombination effects.

According to Equation (4), j is proportional to the net radiation received by the
semiconductor from the Sun, which promotes the transference of atoms from the ground
to their excited state.

2.1. Equilibrium

Thermal equilibrium is reached when the radiative current j and the time derivatives
dm/dt = −dn/dt vanish. In this state, the equality of temperatures between the material,
T = Tν, makes that Equation (5) reduce to:

k+

k−
=

neq

meq . (7)

The ratio of the equilibrium populations satisfies the canonical relation:

neq

meq =
gn

gm
e−hν/kT . (8)
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From Equations (6)–(8), it follows that

eeq
ν =

gn Anm

gmBmn

1
ehν/kT − 1

+
Hnm − (gn/gm)Hmnehν/kT

ehν/kT − 1
, (9)

where we used the detailed balance relation for the radiation-induced transition coefficients.
In the black body ideal limit, the previous Equation (9) reduces to Planck’s radiation
formula [24]:

eeq
ν = uν =

8πhν3

c3
1

ehν/kT − 1
(10)

when one takes into account the well-known relation gn Anm/(gmBmn) = 8πhν3/c3 and
the detailed balance relation Hnm/Hmn = (gm/gn)ehν/kT is satisfied, [24]. These results
yield the following expression for the number of photons of frequency ν, Nν:

Nν =
1

ehν/kT − 1
, (11)

2.2. Out of Equilibrium

Since Tsun >> T, then j ∝ usun
ν − eν 6= 0, and the entire system is out of equilibrium

since there is a net flux of the number of atoms that perform transitions from their ground
states m to their excited states n. In the non-equilibrium stationary case, the time derivatives
of the populations vanish, and Equation (5) reduces to:

j = −k+mst + k−nst, (12)

where nst and mst are the populations in the non-equilibrium stationary state. Related
to Equation (12), note that the left-hand side plays the role of a generating current (see
Equation (4)), and the right-hand-side corresponds to the net recombination current in the
classical view, in such a way that under steady-state illumination, both currents balance
each other [25,26]. Using now Equations (4), (7), (8), and (12), we can obtain an expression
for nst/mst:

nst

mst =
gn

gm
· 1 + Bmn(usun

ν − eν)/k+

1 + Bmn(usun
ν − eν)/k−

e−hν/kT . (13)

Notice that the involvement of the coefficient Bmn in this last expressions came from
Equation (4). The stationary radiative current j breaks the canonical balance due to the fact
that it induces the passing of atoms from the lower to the upper energetic level, that is it
produces a number of electrons in the conduction band. This effect does not modify the
thermal equilibrium between the semiconductor and the thermostat.

The work that is necessary for the light to maintain the continuous production of free
charge carriers, characterized by a stationary nonequilibrium number of atoms in the higher
energy level, nst, with degeneracy gn, is accounted for through a macro-canonical correction
associated with a free energy change per atom. Thus, we introduce the photochemical
potential µ through the relation:

nst

mst '
gn

gm
e−hν/kTeµ/kT , (14)

mst is the non-equilibrium number of atoms in the lower energy level with degeneracy gm,
corresponding to electrons in the valence band. Using Equations (13) and (14), one may
obtain the explicit expression for:

µ = kT ln

∣∣∣∣∣∣1 +
Bmn
k+ ∆uν

1 + Bmn
k−i

∆uν

∣∣∣∣∣∣. (15)
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After performing some algebraic operations, the previous expression can be recasted in the
more appealing form:

µ = kT ln

∣∣∣∣∣∣1 +
Bmn

(
1

k+ −
1

k−

)
∆uν

1 + Bmn
k−i

∆uν

∣∣∣∣∣∣. (16)

The last two formulas give the photochemical potential in terms of the difference of electro-
magnetic energy densities, ∆uν = usun

ν − eν, between the input radiation and the output
emission by the semiconductor. It is therefore clear that this difference of electromagnetic
energy at the surface of the semiconductor plays the role of a spectral drift, unbalancing
the internal energy distribution of the semiconductor per frequency or wavelength band,
owing to the production of an electrical current if the photochemical potential is large
enough to overcome the potential barrier at the junction.

Equation (15) resembles previous relations obtained for the photochemical potential;
see [15,17,22,25] and references therein. However, there are two main differences that
should be emphasized. The first one is the way in which the energy input is incorporated
through the difference of electromagnetic energy densities, ∆uν = usun

ν − eν, and the second
and more important distinction is that Equation (15) incorporates the interaction with the
thermal reservoir of the cell, through the quotients Bmn/k+ and Bmn/k−, that does not
reduce to unity; see Equation (6).

3. Spectral Response, Quantum Efficiency, and Photochemical Potential

We want to emphasize here that Equations (4) and (15) constitute the fundamental
results of this work, since they may be used to deduce important results, as well as to
explore the influence of the drift ∆uν on the electrical current produced by the junction.

3.1. The Current-Voltage Equation

Let us note now that Equation (4) gives the number of atoms per unit time passing
from the valence to the conduction band after considering radiation and spontaneous and
thermal recombination processes. Therefore, Equation (4) defines the net electric current
produced by the junction under illumination. The light-generated current under short
circuit conditions is:

In =
q j
A

, (17)

where q is the charge of the electrons and A is the conduction cross-section area. Using the
right-hand side of Equation (4), the light-generated current can be expressed in the form:
In = q

A
(
k−nst − k+mst). Now, after using Equation (7) and making some factorizations,

the light-generated current becomes:

In =
q
A

k−

meq
(
nstmeq −mstneq). (18)

The factorization of the mstneq term again and the use of Equations (7), (8), and (15) enable
us to obtain the following final relation between the light-generated current produced and
the photochemical potential:

In = I0

(
eµ/kT − 1

)
. (19)

where we introduced the notation I0 ≡ qk+mst/A. This definition indicates that the
characteristic current I0 is related to the free electrons’ joint production through light and
thermal inputs. This formula goes parallel to the classical short-circuit current voltage [9]:

Isc = Ī0

(
eqVoc/kT − 1

)
, (20)
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in which Isc is the short-circuit current and Ī0 is the reverse saturation current. The
similitude between Equations (19) and (20) compels us to identify the photochemical
potential with the voltage produced by the p-n junction:

µ = qVoc, (21)

both being functions of the frequency. A similar result was obtained in [17] after analyzing
the light-matter interaction in fluorescent solar collector. Additionally, it is interesting to
notice that the equality (21) together with Equation (15) poses a novel way to relate the
open cell voltage with the formation of minority carriers, which is similar to that reported
in [26].

3.2. Spectral Response and Quantum Efficiency

The first result that follows from the previous analysis is the explicit expression of the
spectral response Sr. This quantity is the light-generated current by the cell, In, divided by
the power input of the incident light, Pi:

Sr =
In

Pi
. (22)

In a first approximation, the short-circuit current per photon is proportional to the open
cell voltage, Equations (19) and (21), with µ provided by Equation (15), and to the intrinsic
resistivity of the semiconductor ρ. The relation is:

In =
L
ρ

µ

q
, (23)

where L is a characteristic length of the transport process, like the minority carrier diffusion
length. The input power per photon by the incident light can be written as:

Pi = hν
c

4L
. (24)

Therefore, using Equations (23) and (24), the spectral response becomes:

Sr(λ) =
4L2

cρq
λ

hc
µλ. (25)

Here, we switched from the frequency to the wavelength representation for convenience.
According to Equation (1), the quantum efficiency is therefore given by:

Qe(λ) =
4L2

cρq
µλ

q
. (26)

Thus, Equations (25) and (26) emerge as fundamental spectral quantities providing precise
information about the performance of p-n junctions and, in general, of PVCs. Here,
Expression (26) indicates that the photochemical potential accounting for the unbalance
induced by the light input power on the p-n junction is directly associated with the quantum
efficiency of the cell, a spectral quantity that depends on the light absorption coefficient
through the coefficients Bmn.

4. Applications

This section is devoted to using the relations obtained for the spectral response
and the quantum efficiency. However, prior to the development of a direct comparison
with the experimental data reported in the literature, it is convenient to discuss some
crucial questions about the transition rates Bmn, Anm, and Hmn and their relation with the
absorption coefficient.
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4.1. Absorption Cross-Section and Spontaneous and Stimulated Transition Probabilities Per
Unit Time

Einstein’s theory of radiation-matter interaction is a phenomenological theory em-
bodied by Equation (2). Here, we added the thermostat’s interaction, not considered
in the original model [24]. Hence, our approach depends on two inputs, Anm and Hmn.
Non-relativistic quantum electrodynamics [27,28] establishes the microscopic foundations
of Einstein’s phenomenological theory by providing the following expression for the
spontaneous transition rate:

Anm ∼
| pnm |2

3hπ2
ν3

c3 , (27)

where pnm = 〈n | er | m〉 is the transition dipole matrix element due to the passing of
electrons from the valence to conduction bands.

Furthermore, we took advantage of the relation between the transition dipole term
and the absorption cross-section αν, and we write the stimulated transition probability per
unit time in the form:

B(λ) =
λ3

8πh
Anm(λ), (28)

where we switched again from the frequency to the wavelength representation and dropped
out the subindex notation for convenience. The relation between the spontaneous transition
rate and the absorption cross-section is:

A(λ) =
8π

λ2 αλ, (29)

and the corresponding relation with the stimulated probability is Bmn(λ) = (λ/h)αλ, [29].
For the fittings below, we used the following mathematical relation for the absorption
cross-section:

α(λ) =
λ2

8π
A0 f (λ), (30)

where A0 is a characteristic transition frequency and f (λ) is an arbitrary function having
the dimensions of frequency. The fits proceed by determining the constant A0 and modeling
the function f (λ).

The coefficients Hmn and Hnm measure the rates at which the electrons jump between
the valence and conduction bands due to the thermal interaction with the heat bath. This
thermal process suggests that Hmn can follow Eyring’s formula:

Hmn ∼
kT
h

znm(T)e−Egap/kT , (31)

where Egap plays the role of an activation energy and znm(T) = zn/zm with zn and zm the
partition functions of the excited and basal states, respectively. For the sake of simplicity, in
the following, this rate will be considered as a constant.

4.2. Data Fitting

The relations discussed in the previous subsection, together with the expression (15)
for the photochemical potential, evidence that, for a given illumination spectrum, the
wavelength behavior of the spectral response and, consequently, of the quantum efficiency
become determined by the ratio between the thermal rate Hmn and the spontaneous
emission coefficient Amn or, equivalently, of the absorption cross-section αλ. We illustrate
this latter point below by fitting experimental data [30–32].

The data we used to compare with the theory were measured under the standard
1.5AM illumination protocol. Consequently, the incoming light spectrum should be ap-
proximated by Equation (3) and by adapting the wavelength dependence of the emissivity
coefficient εsun

λ . For this purpose, we introduced an interpolation function of the Sun’s
irradiation data shown in Figure 2, for 1.5 AM illumination (symbols). The interpolation
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function used is the lighter purple line, whereas the red dashed line corresponds to the
black body spectrum for the Sun’s approximated temperature Tsun = 5250 K.

300 600 1100

0.1

0.3

0.5

0.7

0.9

λ [nm]

Q
e

QeSr [A/W]

600200 1100

Irradiance [W/m2]

0.1

0.3

0.5

0.7

0.90.7

0.5

0.3

0.1

a)

b) c)

Figure 2. (a) Solar irradiance and interpolation of the data. (b) Spectral response, Equation (25) and
(c) quantum efficiency, Equation (26), of different crystalline and amorphous Si-based cells [30] as
a function of the wavelength for 1.5AMG. The green symbols and line correspond for the spectral
response to AQ81/cr-Si, the red symbols and line to AQ82/cr-Si filtered, and the blue symbols and
line to AQ83(4)/a-Si.

Figure 2 shows the data (symbols) of the spectral response of crystalline and amor-
phous Si-based cells reported in [30], as well as the fit (lines) using Equation (25) with the
corresponding absorption cross-section shown in Figure 3. The absorption cross-sections
used were modeled, in a first approximation, by adding Gaussian functions with different
amplitudes and variances. This figure also shows the external quantum efficiency, deter-
mined by Equation (26), and using the fits of the spectral response. The parameters used
for the fit were q = 1.60× 10−19 C, ρ = 2.5× 103 Ω m for the intrinsic resistivity. The
characteristic length L = 176 µm allowing a fit of the data with a 5% maximal error falls in
the range reported in the literature for the electron diffusion length [33]. The values of the
spontaneous emission coefficient A0 and of the thermal rate Hmn were: A0 = 1.14× 109 s−1

and Hmn = 3.5× 108 s−1.
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Figure 3. Spontaneous transitions rate Amn(λ) given by Equation (29) as a function of the wavelength.
(a) The three coefficients used for the fits of Figure 2 with the same color key. (b) The three coefficients
used for the fits of Figure 4 with the same color key.

Figure 4 shows the data (symbols) of the spectral response of three cells based on dif-
ferent junction types (CIGS, GaAs, and CdTe) [31]. In a similar way as in Figure 2, also
shown are the corresponding theoretical values of the quantum efficiency, inferred from
Equation (26) and compared with the quantum efficiencies for CIGS (yellow) and CdTe
(magenta), independently measured in [32]. The parameters used for the fit of the CIGS
cell were: ρCIGS = 2.5× 103 Ω m for the intrinsic resistivity and the minority carrier char-
acteristic length LCIGS = 180 µm. For the GaAs, we used ρGaAs = 1.08× 103 Ω m and
LGaAs = 90 µm, and for the CdTe cell, we used ρCdTe = 1.5× 10−2 Ω m and LCdTe = 0.46
µm. These values allowed the fitting of the data with an 8% maximal error and were in
the range reported for the diffusion length reported in the literature [33,34]. The values
used for the spontaneous emission coefficient and the thermal rate used in Figure 4 were:
for CIGS, A0 = 1.14× 109 s−1 and Hmn = 3.5× 107 s−1; for GaAs, A0 = 5.4× 1011 s−1 and
Hmn = 35 s−1; and for CdTe A0 = 3.1× 109 s−1 and Hmn = 8.0× 103 s−1. The fits were
done using Mathematica after direct comparison between the formulae evaluation and the
digitalized data. Data were digitalized using PlotDigitizer.
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Figure 4. (a) Spectral response Sr, Equation (25), and (b) quantum efficiency, Equation (26), of
different PVCs [31] as a function of the wavelength for 1.5AMG. The yellow symbols and lines
correspond to a CIGS cell. The cyan symbols and lines correspond to GaAs-based and filtered cells
and the magenta symbols and lines to a CdTe-based cell. (c) Comparison of the quantum efficiencies,
inferred by using Equation (26), from the fit of CIGS and CdTe data from [31] with independent data
from [32].

The inferred quantum efficiencies in Figures 2 and 4 have the expected trend and
values, thus indicating that the theoretical approach by Equations (25) and (26) is very
promising for predicting these quantities if it is provided a precise model or data for the
absorption cross-section. The relations also indicate that the spectral response data allow
one to infer the absorption cross-section, as we proceeded in the present case.

In Figure 5, we present the behavior of the spectral response Sr, Equation (25), for
different values of the ratio A0/Hmn. We kept the value of A0 constant and took the
case of AQ81/c-Si cells of Figure 2, to which corresponds the green line in Figure 5.
The red dashed line follows by increasing the thermal rate by one order of magnitude,
that is for Hmn = 3.5 × 109s−1. The blue dashed-dotted line corresponds to Hmn =
3.5× 1012s−1, the magenta long dashed line to Hmn = 3.5× 1014s−1 and, finally, the dotted
black line to Hmn = 3.5× 1016s−1. The physical conclusion was that the intensity of the
thermal interaction, characterized by an increasing value of the thermal rate Hmn, induces
a significant reduction of the junction’s spectral response. It must be emphasized that
Figure 5 shows that the spectral response depends dramatically on the coefficients Hmn.
The ideal case would be for Hmn = 0, and therefore, ignoring the parameters of the bath
provides one with the maximum limits of the characteristic of photo-voltaic cells.
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Figure 5. Behavior of the spectral response Sr, Equation (25), for different values of the ratio A0/Hmn.

5. Entropy Production and Global Efficiency

This section evaluates the spectral entropy production of the semiconductor junction
associated with the three different processes during its operation: current production, light
absorption, and heat production.

The Gibbs entropy postulate [35] establishes that the entropy of the cell depends on
the populations n and m in the form:

Scell = −k m ln
∣∣∣ m
meq

∣∣∣− k n ln
∣∣∣ n
neq

∣∣∣+ Seq, (32)

where Seq is the equilibrium entropy of the system and m(t) and n(t) evolve in time
according to Equation (2). The time derivative of Equation (32) gives the total change of
the entropy due to the three previously mentioned processes, since the evolution equation
of the populations incorporates the corresponding energy (and entropy) exchanges due to
the presence of the radiative and thermal transition rates.

Thus, performing the time derivative of Equation (32), using the fact that dm/dt =
−dn/dt due to number conservation, and Equation (7), one can write the following expres-
sion for the entropy change per unit time:

dScell
dt

= k j ln
∣∣∣∣ k+m

k−n

∣∣∣∣+ (k+m− k−n
)

ln
∣∣∣∣ k+m

k−n

∣∣∣∣. (33)

The first term on the right-hand side of the last equation is the entropy exchange per unit
of time (Φ̇cell) between the cell and the surroundings. This is due to the power input
associated with the absorbed incoming light, which is proportional to j. The exchange of
heat between the cell and the thermostat enters through the forward and backward rates k+

and k−. Recall that these rates depend on the thermal rates Hmn and Hnm. The second term
on the right-hand side is the spectral entropy production per unit time (Σ̇cell) associated
with the generation of free electrons due to the absorption of light and the heat exchange
with the thermostat. As is well known, in the stationary state, the entropy exchanged
with the surroundings compensates the entropy produced (Σ̇cell = −Φ̇cell), in such a way
that the total entropy of the cell remains constant, dScell/dt = 0. This condition implies
Equation (5) and shows the consistency of our analysis.

Therefore, the entropy production per unit time, Σ̇cell , can be written in the form:

Σ̇cell = −k j ln
∣∣∣∣ k+m

k−n

∣∣∣∣. (34)
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Using Equations (7) and (14) in order to rearrange the terms in the logarithm, it is possible
to find:

Σ̇cell =
j µλ

T
, (35)

which, in view of the definitions (17) and (21), is an alternative way to write the Joule heat
effect, that is the power dissipated by an electric current. In Figure 6, we plot both the
spectral entropy production given through Equation (35) and the quantum efficiency (26).
The comparison shows that the light input energy is dissipated in generating minority
carriers, showing the expected correlation between the quantum efficiency and the spectral
entropy production.

Additionally, considering stationarity, the total entropy exchange Φ̇cell satisfies the
equation:

Φ̇cell = −Σ̇cell = k j ln
∣∣∣∣ k+m

k−n

∣∣∣∣. (36)

This quantity can be divided into two parts, one associated with energy exchange between
the cell and the radiation at temperature Tsun:

Φ̇rad
cell =

1
Tsun

dUsun

dt
> 0, (37)

and the other one with the energy exchange between the cell and the thermostat at temper-
ature T:

Φ̇tst
cell =

1
T

dUtst

dt
< 0, (38)

where Φ̇cell = Φ̇rad
cell + Φ̇tst

cell , and the inequalities make reference to the fact that the thermal
energy flow goes from the radiation field to the thermostat across the junction. Comparing
Equations (37) and (38) with (36), one may infer that the stationary energy flow can be
identified as:

dUsun

dt
= −dUtst

dt
= hν j ≡ Q̇ν. (39)

Using the fact that mst − nst = tanh
( µ

2kT
)
, since mst + nst = 1, the explicit expression for

the energy flow is:

Q̇ν = Bmn(usun
ν − eν) hν tanh

( µ

2kT

)
. (40)

This definition is compatible with Equation (4).
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Figure 6. Quantum efficiency (26) and scaled spectral entropy production (35) of the (a) CdTe and
the (b) cr-Si cells.

Using the relations between the induced transition coefficient Bmn and the spontaneous
emission Anm, one may write Equation (40) in the form:

Q̇ν =
1

τnm

(
Nsun

ν − Ñν

)
hν tanh

( µ

2kT

)
, (41)
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where τnm = 1/Anm is the average lifetime of the excited states. Additionally, the energy
densities due to the Sun are simplified to Nsun

ν , the Bose–Einstein distribution entering the
Planck formula, Equation (11):

Nsun
ν =

εsun
ν

ehν/kTsun − 1
, (42)

which is corrected by εsun
ν , the emissivity of the Sun consistent with the irradiance shown

in Figure 2. It is worth recalling here that, in the quasi-equilibrium approximation, the
definition (14) can be substituted into Equation (7) instead of neq/meq, thus leading to the
Würfel–Planck distribution [6,36]:

ẽν =
8πhν3

c3
1

e(hν−µ)/kT − 1
. (43)

This last formula is used for calculating the backward emission flow by the semiconductor
when the macroscopic radiation balance (40) is explicitly calculated. Equation (43) enables
us to write the modified population number:

Ñν =
1

e(hν−µ)/kT − 1
, (44)

where the condition hν > µ should be obeyed. This condition is fulfilled in the whole range
of wavelengths for the cells considered in this work and presented through Figures 2–4.
The representation of the quantum efficiency suggests that the photochemical potential
in Equations (40) and (44) can be substituted by its maximum values µ ∼ µmax, which
corresponds to the energy difference between the quasi-Fermi levels [9]. For instance, in the
case of Figure 2, the value of the gap energy is about Egap ' 1.7× 10−19 J, whereas for the
green line, we have µmax ' 1.5× 10−19 J, for the red line µmax ' 1.3× 10−19 J, and finally,
µmax ' 1.2× 10−19 for the blue line. Therefore, Equation (44) takes the more usual form:

Ñν =
1

e(hν−µmax)/kT − 1
. (45)

In view of the previous considerations, Equation (40) can be used for calculating the
average efficiency of the cell if we first consider a proper distribution of excitation modes
through their distribution of relaxation times for different frequencies or wavelengths,
τmn → τν, consistent with Equation (29). Introducing the normalized density of frequency
modes ρν, for the solar cell power per unit surface, Psc, we can write:

Psc = tanh
(µmax

2kT

) ∫ ∞

Eg
hν
(

Nsun
ν − Ñν

)ρν

τν
dν. (46)

It must be emphasized that our approach can be extended to include a hierarchy of
recombination processes [37] by introducing the appropriate distribution of frequency
modes. As suggested in [38], this can be done by assuming ρν ∼ 1/ν. This definition of the
solar cell power divided by the total solar input Psun = σT4

s gives the global efficiency of
the cell:

η =
Psc

Psun
=

tanh
( µmax

2kT
)

σT4
s

∫ ∞

Eg
hν
(

Nsun
ν − Ñν

)ρν

τν
dν. (47)

When ρν/τν = 8πν2/c2 and σ = π2k4/(60c2h̄3), then the expression obtained reduces to
the classical one used in the literature for evaluating the solar cell efficiency, except by the
correcting factor tanh

( µmax
2kT
)
, which originates from our treatment of the problem.
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6. Conclusions

We attempted to formulate a novel theoretical approach to evaluate photovoltaic
solar cells’ performance in this work. This performance was accounted for by the spectral
response, the quantum efficiency, and the spectral entropy production at the microscopic
level and in terms of the global efficiency parameter in the thermodynamic limit.

Our approach was based on the two-level atom model, which we modified by includ-
ing the junction’s coupling with a thermostat that regulates its temperature. Considering
the non-equilibrium nature of this energy exchange and conversion process, we adopted
a stationary operation regime that breaks the detailed balance and substantially affects
the results. The quantification of the non-equilibrium light absorption process was done
through a stationary radiative current involving the difference between the input and
output radiation from the cell and taking into account the crucial fact of the non-zero value
of the chemical potential of photons in this non-equilibrated process. The combination of
these two quantities and the appropriate definitions of the cell’s operation current and volt-
ages allowed us to obtain an explicit expression for the spectral response of semiconductor
junctions and therefore show that the quantum efficiency of the junction is proportional
to the already mentioned photochemical potential. These relevant results allowed us to
connect the spectral absorption cross-section with the spectral response and the cell’s quan-
tum efficiency since the spontaneous and radiation-induced transition probabilities per
unit time of the two-level atom model depend on this photochemical potential. Using the
relationships we obtained, even for a rough model of the spectral absorption cross-section,
we were able to perform good fits of the reported data of the spectral response and the
quantum efficiency of different cells based on crystalline and amorphous Si, as well as for
other junction compositions like GaAs and CdTe.

In addition, we showed that the efficiency of the junction’s energy conversion depends
crucially on the ratio between the spontaneous to the thermally induced transition rates.

The theoretical approach presented here is parallel to the well-established solid-
state description of the processes taking place in the energy conversion in semiconductor
junctions. We believe that it is not a banal exercise. On the contrary, we think it contributes
to the subject by clarifying how the coupling between light absorption and cell conversion
efficiency depends on the photochemical potential. We consider that a possible limitation
of our work consists of not having incorporated the multiple electron-hole recombination
processes [37]. However, the model can be generalized in this way, a task that remains for
future work.
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Abbreviations
The following abbreviations are used in this manuscript:

PVC Photovoltaic cell
cr-Si Crystalline silicon
a-Si Amorphous silicon
AQ81/c-Si Crystalline silicon-based cell from [16]
AQ82/c-Si Crystalline silicon-based mini-module cell from [16]
AQ83/c-Si Crystalline silicon-based mini-module cell from [16]
AQ84/a-Si Amorphous silicon-based mini-module cell from [16]
CIGS Copper indium gallium selenide
GaAs Gallium arsenide
CdTe Cadmium telluride
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