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Abstract: Functional responses are non-linear functions commonly used to describe the variation in
the rate of consumption of resources by a consumer. They have been widely used in both theoretical
and empirical studies, but a comprehensive understanding of their parameters at different levels
of description remains elusive. Here, by depicting consumers and resources as stochastic systems
of interacting particles, we present a minimal set of reactions for consumer resource dynamics. We
rigorously derived the corresponding system of ODEs, from which we obtained via asymptotic
expansions classical 2D consumer-resource dynamics, characterized by different functional responses.
We also derived functional responses by focusing on the subset of reactions describing only the
feeding process. This involves fixing the total number of consumers and resources, which we call
chemostatic conditions. By comparing these two ways of deriving functional responses, we showed
that classical functional response parameters in effective 2D consumer-resource dynamics differ from
the same parameters obtained by measuring (or deriving) functional responses for typical feeding
experiments under chemostatic conditions, which points to potential errors in interpreting empirical
data. We finally discuss possible generalizations of our models to systems with multiple consumers
and more complex population structures, including spatial dynamics. Our stochastic approach builds
on fundamental ecological processes and has natural connections to basic ecological theory.

Keywords: stochastic consumer-resource dynamics; Holling type II and type III functional responses;
Beddington–DeAngelis functional response; system’s size expansion; feeding experiments

1. Introduction

Models of predator-prey dynamics are the archetypal description of consumer-resource
interaction. Since the pioneering work of Lotka and Volterra [1,2], coupled first-order or-
dinary differential equations to describe the temporal variation of the abundance of two
species, a consumer and a resource, are used by ecologists in all sorts of applications [3–9].
In this context, the term functional response [10–12] was introduced to capture the vari-
ation in the rate of consumption of a resource by a consumer when the density of the
resource changes. Functional responses measure how per capita average rates of resource
consumption respond to the density of both resources and consumers. Such functions have
been derived by isolating the feeding process, that is by considering that both resource
and consumer densities remain constant. These responses can be summarized by plotting
the number of resource items consumed per unit time by a consumer as a function of
resource density. Holling [11,12] used the term type I to describe a linear relationship
between feeding rates and resource density, while the term type II describes a non-linear
relationship between feeding rates and resource density, where the slope of the curve
monotonically decreases with increasing resource density, saturating at a constant value
of resource consumption. Such a functional form is obtained assuming consumers move
from a phase where they actively search for resources to a handling phase where they are
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occupied with consuming/digesting and not able to search for new resource items [13].
The term type III is associated with similar non-linear functions, where the slope first
slightly increases, then, after a certain threshold, steeply increases, and finally, decreases,
producing a sigmoidal shape in the curve [14]. It has been shown both theoretically [15] and
empirically [16] that type III functional responses have a stabilizing effect on population
dynamics. Assuming that consumers can also interfere with each other, e.g., by competing
for the same resource item during searching and handling, the functional response becomes
a function of both resource and consumer density. Non-linear functional forms in both
consumer and resource density were independently proposed by Beddington [17] and
DeAngelis [18]. The Beddington–DeAngelis functional response for predator interference
has been further characterized and extended in subsequent studies [19–22].

Functional responses are typically measured in feeding experiments with a controlled
resource density, which isolates the feeding process and enables quantifying resource
intake. Several statistical methods to infer functional response parameters from feeding
experiments are available [23–25]. Functional response parameters can also be directly
inferred from consumer resource time series obtained from empirical studies of population
dynamics [16,26–28]. Both empirical approaches and corresponding inference methods are
based on the assumption that the parameterizations of functional responses obtained by
feeding experiments are analogous to the parameterizations of the 2D ODEs describing
consumer resource population dynamics. The type II functional response is still the most
widely used functional response, and the corresponding differential equations for predator-
prey dynamics, also known as the the Rosenzweig–MacArthur equations [29], have been
widely studied in the dynamical systems literature [30–32]. Furthermore, the dynamical
properties of consumer resource equations with the Beddington–DeAngelis functional
response are well studied [33,34].

A complete review of the properties of these equations is beyond the scope of this
paper. Instead, here, we underline how to derive such macroscopic equations from the ele-
mentary processes affecting the dynamics of individuals. Statistical physics has developed
an array of powerful tools to scale up from microscopic to macroscopic dynamics [35,36].
These methods, originally developed to describe particle systems or chemical kinetics,
can be more generally applied to many-body systems, and their use in population and
community ecology has become widespread [37–45]. Examples of such derivations were
given by Dawes and Souza [46], who proposed a minimal set of reactions to derive type I, II,
and III functional responses, and by Van der Meer and Smallegange [21], who used similar
arguments to derive a stochastic version of the Beddington–DeAngelis functional response.
We provide here a simpler derivation that can be easily extended to include a more general
set of reactions and accommodate different aspects of consumer resource interactions. We
made the model general by allowing immigration and resource logistic growth and by
defining the formation of a consumers-resource complex and triplets composed by two
consumers fighting for one resource, which describes handling and interference, respec-
tively. Although the stochastic description of the feeding process we provide here is not
exhaustive, since we are not including direct consumer interference, it provides the basis
for more elaborated reaction schemes. The paper is structured as follows

• In Section 2, we give the description of a minimal set of reactions to define consumer-
resource dynamics, including predators handling prey and predators interfering. We
use the Van Kampen, systems size expansion to get, through the master equation of
the discrete system, a mean field version of the model consisting in a set of four ODEs.

• In Section 3, we provide a detailed analysis of the dynamical properties of the 4D
ODE system, including bifurcation analysis.

• In Section 4, we show how different arguments of time scales’ separation give rise to
the classical 2D systems described in the ecological literature, i.e., predator-prey equa-
tions with Beddington–DeAngelis and Holling type II and type I functional responses.

• In Section 5, we derive classical functional responses (Holling type II and III and
Beddington–DeAngelis) inspired by [14]. We emphasize their stochastic nature, by
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deriving the probability distribution of feeding events. By doing so, we clarify the
assumptions that enable all these derivations. We obtained functional responses that
differ in their parameterization and in their functional form (for the Beddington–
DeAngelis case) from the functional responses obtained via separation of time scales
in the previous section.

• In Section 6, we discuss potential limitations and possible generalizations of the model,
describing future avenues of research.

2. A Minimal Set of Stochastic Processes

Here, we describe the dynamics of S = 2 species, a resource φR and a consumer XA.
We characterize the dynamics distinguishing the two species by defining a maximum
number of resource individuals N � 0 (N ∈ N) that can be packed in the local community.
This parameter plays the role of the size of the system. This characterization introduces
a limit in the total immigration rate of the resource species, ΛR, between zero, when the
system is full with N resource individuals, and N, when it is empty. This results in a
density-dependent total immigration rate and a density-independent death rate.

∅
λR

φR , (1)

φR
δR ∅ , (2)

where δR is the intrinsic death rate of the resources and ΛR(t) = λR(N − nR(t)). Note that
we can always consider the system’s size as divided into N small portions or sites, which
means that λR can be interpreted as an immigration rate per empty site. Here, nR(t) is the
number of resource individuals in the local community at time t. To further characterize
resource dynamics, we considered another reaction describing birth events,

φR + ∅
β

φR + φR . (3)

Here, the per capita resource rate is given by B(t) = β
N−nR(t)

N , and β can be regarded as a
per capita birth rate when the system is almost empty.

The dynamics of the consumers is described by immigration and death reactions,

∅
λA XA , (4)

XA
δA ∅ , (5)

and by processes associated with interactions between consumer and resource individuals
describing, e.g., the feeding process with reactions:

XA + φR
α X[AR] + ∅ , (6)

X[AR] + ∅ ν XA + XA , (7)

where the formation of consumer-resource pairs X[AR] happens at a total rate αnRnA
N

and the degradation of pairs into newly born consumers happens at rate νn[AR]. In
Reactions (6) and (7), α is the encounter rate between consumers and resources and ν is a
degradation rate of pairs, defining the “handling time” τH := 1/ν of individual consumers.

We can finally consider another process related to consumer interference formalized
in triplet formation, given by reactions of the kind:

X[AR] + XA
χ

X[ARA] + ∅ , (8)

X[ARA] + ∅
η

X[AR] + XA , (9)

where χ is the rate of triplet formation that measures the propensity of free consumers
to attack handling consumers and η is the rate of triplet degradation, which defines the



Entropy 2021, 23, 575 4 of 27

“interference time” τI := 1/η. Note that we did not consider interference between free
consumers, i.e., reactions leading to the formation of consumer pairs X[AA].

2.1. Derivation of Mean Field Approximations

The process defined by Reactions (1)–(9) can be formulated as a stochastic process.
Fixing the number of sites to N, the system state is completely defined by a vector
n = (nR, nA, n[AR], n[ARA]), and the dynamics is given by a discrete state Markov pro-
cess, where P(n, t|n0, t0) denotes the probability that the system is in state n at time t, given
it was in state n0 at time t0 < t.

The transition rates associated with elemental processes are:

T+
R := T(nR + 1, nA, n[AR], n[ARA]|n) = λR(N − nR) +

βnR(N − nR)

N − 1
, (10)

T−R := T(nR − 1, nA, n[AR], n[ARA]|n) = δRnR, (11)

T+
A := T(nR, nA + 1, n[AR], n[ARA]|n) = λAN, (12)

T−A := T(nR, nA − 1, n[AR], n[ARA]|n) = δAnA, (13)

T+
[AR] := T(nR − 1, nA − 1, n[AR] + 1, n[ARA]|n) =

αnAnR
N

, (14)

T−
[AR] := T(nR, nA + 2, n[AR] − 1, n[ARA]|n) = νn[AR], (15)

T+
[ARA]

:= T(nR, nA − 1, n[AR] − 1, n[ARA] + 1|n) =
χnAn[AR]

N
, (16)

T−
[ARA]

:= T(nR, nA + 1, n[AR] + 1, n[ARA] − 1|n) = ηn[ARA]. (17)

These transition rates are consistent with the set of reactions introduced above.
Let P(n, t) denote the conditional probability P(n, t|n0, t0) obtained by imposing that

the initial state, at t = t0, is n0, i.e., P(n, t0) = δ(n− n0). With this definition, the master
equation reads as:

∂P
∂t

= (E−1
R − I)(T+

R P) + (ER − I)(T−R P)

+ (E−1
A − I)(T+

A P) + (EA − I)(T−A P)

+ (EREAE−1
[AR] − I)(T+

[AR]P) + (E−2
A E[AR] − I)(T−

[AR]P)

+ (EAE[AR]E−1
[ARA]

− I)(T+
[ARA]

P) + (E−1
A E−1

[AR]E[ARA] − I)(T−
[ARA]

P),

(18)

where we introduced the one-step operators:

EX f (. . . , nX , . . . ) = f (. . . , nX + 1, . . . ),

E−1
X f (. . . , nX , . . . ) = f (. . . , nX − 1, . . . ),

(19)

to make the notation compact. Observe that operator X acts on population abundance nX ,
with X ∈ {R, A, [AR], [ARA]}.

It can be shown, via a systematic Van Kampen expansion [35] of the master equation
on the system’s size (N), that the stochastic model defined above yields a deterministic ap-
proximation as the leading term of the expansion, together with a Fokker–Planck equation
describing the noise in the next-to-leading order [35]. The mean field version of the process



Entropy 2021, 23, 575 5 of 27

associated with the general set of reactions (1)–(9) is given by a system of coupled ODEs
given by:

dnR
dt

= λR(N − nR)− δRnR +
(βN − βnR − αnA)nR

N
, (20)

dnA
dt

= λAN − δAnA + 2νn[AR] + ηn[ARA] −
(αnR + χn[AR])nA

N
, (21)

dn[AR]

dt
= ηn[ARA] − νn[AR] +

(αnR − χn[AR])nA

N
, (22)

dn[ARA]

dt
=

χn[AR]nA

N
− ηn[ARA]. (23)

In Appendix A, we illustrate how the Van Kampen expansion for the master equation
proceeds for the case in which no triplet formation is considered, i.e., when χ = 0 = η.

3. Stability Analysis

The ODE system defined by Equations (20)–(23) has a rich behavior in terms of its
stability and the qualitative analysis of the equilibrium points it exhibits. We first analyzed
the equilibrium points of the full ODE system and found a transcritical bifurcation when
λA = 0. The system has limit cycles that emerge after a Hopf bifurcation, which we show
in a particular case in Section 3.1.

At equilibrium, (23) yields ηn[ARA] =
χn[AR]nA

N . Substitution into the r.h.s. of (22)
yields νn[AR] =

αnRnA
N . Therefore, substitution of these two relations into the r.h.s. of (21)

gives, at equilibrium,

λAN − δAnA +
αnRnA

N
= 0, (24)

which, together with (20), forms a non-linear system of degree three for equilibrium
abundances nA and nR. This system can be reduced to a cubic equation for nR, which reads:

− f 3
R + (1− λ′R − δ′R + δ′A) f 2

R+

+

[
α

β
λ′A + (δ′R − 1)δ′A + (δ′A + 1)λ′R

]
fR − λ′Rδ′A = 0, (25)

where we made the definitions λ′A := λA/α, λ′R := λR/β, δ′A := δA/α, and δ′R := δR/β and
used the resource abundance scaled by the system’s size fR := nR/N. However, for the
sake of simplicity, in what follows, we focus on the case of the absence of the immigration
of the predator, λA = 0.

In this case, (24) yields a trivial solution, nA = 0, which implies trivially that n[AR] = 0
and n[ARA] = 0. Therefore, the r.h.s. of (20) yields a second-order equation,

λ′R(1− fR)− δ′R fR + (1− fR) fR = 0. (26)

This equation can be solved for fR,

f±R =
1
2

(
q− λ′R ±

√
(λ′R − q)2 + 4λ′R

)
, (27)

where we introduced the control parameter q := 1− δ′R = 1− δR
β , which can be seen as

the ratio between the intrinsic growth rate (r = β− δR) and the birth rate (β) of resources.
The solution f−R is always negative, so we discarded it, and we obtained the first set of
solutions nR = N f+R and nA = n[AR] = n[ARA] = 0.

On the other hand, for λA = 0, Equation (24) yields also the constant (q-independent)
solution nR = NδA

α = Nδ′A. Again, using the r.h.s. of (20), we obtained a non-trivial
equilibrium solution for nA,
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nA =
Nβ

α

(
−δ′A +

λ′R
δ′A

+ q− λ′R

)
(28)

which, in turn, yields the equilibrium pair abundance,

n[AR] =
Nβ

ν

(
−δ′A

2
+ (q− λ′R)δ

′
A + λ′R

)
, (29)

and triplet abundance,

n[ARA] =
Nβ2χ

ηνδ′A

(
δ′A

2 − (q− λ′R)δ
′
A − λ′R

)2
. (30)

Now, we focus on the two equilibrium abundances for the resource, n(1)
R = N f+R and

n(2)
R = Nδ′A. These two solutions cross each other at:

q? = δ′A + λ′R −
λ′R
δ′A

=
δA
α

+
λR
β
− αλR

βδA
, (31)

which is basically a restriction between model parameters,

1− δR
β

=
δA
α

+
λR
β
− αλR

βδA
. (32)

Then, using the Jacobian matrix of the system (20)–(23) evaluated at the two equilibria, it is
easy to show that the solution for n(2)

R = Nδ′A is stable for q < q? and unstable for q > q?.

Consistently, the equilibrium solution for n(1)
R = N f+R is unstable for q < q? and stable for

q > q?. Therefore, we found a transcritical bifurcation at q = q? for λA = 0. Figure 1 shows
the transcritical bifurcation as the stability of the steady-state changes by increasing the
control parameter above the threshold q?.

−4 −2 0 2 4

0
1

2
3

4

Order parameter, q

R
es

ou
rc

e 
ab

un
da

nc
e,

 f

Solution (2)

Solution (1)

Figure 1. Transcritical bifurcation for λR = 2β, λA = 0, and δA = 3α/2. Here, the vertical
axis stands for the scaled resource abundance fR, and the horizontal axis represents the control

parameter q = 1− δR/β. For q < q? = 13/6, the (upper) solution f (2)R = 3/2 is stable and for

q > q? stability changes and f (1)R = 1
2

(
q− 2 +

√
(2− q)2 + 8

)
becomes the stable resource scaled

abundance. Observe that for q > q?, consumer, pair, and triplet abundances become equal to zero in
the stable branch. Stable (unstable) solutions are marked with full (dashed) lines.

3.1. Hopf Bifurcation

We also observed the emergence of a Hopf bifurcation for several ranges of model
parameters. Here, we illustrate the existence of a Hopf bifurcation for λR = 0, λA = 0, and
δR = 0, in which we were able to calculate a series expansion of eigenvalues for small β. In
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order to derive analytical expressions in the simplest setting, we considered the model in
the absence of triplets.

Let us focus on the equilibrium abundances nR = NδA
α , nA = Nβ

α

(
1− δA

α

)
, and

n[AR] =
NβδA

αν (1− δA
α ). The bifurcation arises around this equilibrium point. Observe that

these densities are meaningful if α > δA. Notice that the threshold given by (32) reduces to
α = δA in the particular case we considered (λR = 0, λA = 0, and δR = 0). For α > δA, the
solution f (2)R = δA/α derived above is the stable one.

At that equilibrium point, the Jacobian matrix reads:

J =


− βδA

α −δA 0
−β
(

1− δA
α

)
−2δA 2ν

β
(

1− δA
α

)
δA −ν

. (33)

For β = 0, it is easy to see that the eigenvalues of J are λ = 0 (double) and λ = −2δA − ν,
so the equilibrium point is neutrally stable, and a limit cycle appears. We now expand
these eigenvalues for β� 1. The characteristic polynomial is:

λ3 +

(
2δA +

βδA
α

+ ν

)
λ2 +

(
3δA + ν

α
− 1
)

βδAλ +

(
δA
α
− 1
)

βδAν = 0. (34)

This cubic equation can be expanded in power series of β (for a similar expansion, we
refer the reader to [47]). First, we obtained a series expansion for the double root λ = 0,
obtained when β = 0. The perturbation analysis starts by setting λ = aβb and then trying
to determine the factor a and exponent b at leading order. Substitution into (34) yields:

− a3β3b + aβ1+bδA

(
1− 3δA + ν

α

)
+ βνδA

(
−1 +

δA
α

)
− δA

α
a2β2b+1 − (2δA + ν)a2β2b. (35)

Therefore, the smallest powers in β are obtained by choosing b = 1/2. Canceling the
leading terms (which turn out to be of the order of β), we can determine an expression for
a as the solution of:

δAν

(
−1 +

δA
α

)
− (2δA + ν)a2 = 0, (36)

i.e.,

a = ±

√
δAν(δA − α)

α(2δA + ν)
. (37)

Here, we see that for α > δA, the double eigenvalue λ = 0 obtained for β = 0 splits into
two complex eigenvalues with the imaginary part equal to:

Im(λ) = ±

√
βδAν(α− δA)

α(2δA + ν)
. (38)

We can calculate the real part (at the lowest order in the β series expansion) by setting:

λ = ±

√
βδAν(α− δA)

α(2δA + ν)
i + cβ. (39)
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Expanding the characteristic polynomial up to order β3/2 and setting equal to zero the
coefficient of the leading term yields the following expression for c:

c = − δA(ν
2 + 2(3δA − α)(δA + ν))

2α(2δA + ν)2 . (40)

Therefore, for β� 1, we obtained the two complex conjugate eigenvalues:

λ = − βδA(ν
2 + 2(3δA − α)(δA + ν))

2α(2δA + ν)2 ±

√
βδAν(α− δA)

α(2δA + ν)
i +O(β3/2). (41)

By setting ν2 + 2(3δA − α)(δA + ν) = 0, we found the threshold of a Hopf bifurcation,
which can be expressed as:

αc = 3δA +
ν2

2(δA + ν)
. (42)

Observe that αc > δA, so eigenvalues stemming from the splitting of λ = 0 (for β = 0)
are complex. For α > αc, Re(λ) > 0, and for δA < α < αc, Re(λ) < 0 in the limit β � 1.
Therefore, the eigenvalues cross over the imaginary axis, and a Hopf bifurcation arises: for
α < αc, eigenvalues have a negative real part, which leads to stable oscillations around
the equilibrium point. Once the threshold αc is crossed over (α > αc), damped oscillations
(with Re(λ) < 0) no longer exist, and the equilibrium point is unstable. The dynamics
converges to a limit cycle (i.e., we found a supercritical Hopf bifurcation as α increases).

For the sake of completeness, we provide here the series expansion for the third
eigenvalue, which can be obtained in a similar way:

λ = −2δA − ν− 2βδA(α− δA)(δA + ν))

α(2δA + ν)2 +O(β3/2). (43)

Notice that this eigenvalue remains negative for small perturbations in β > 0.
Figure 2 shows the stability of equilibrium solutions for arbitrary values of α and

β. The diagram shows the transcritical bifurcation threshold (32), which separates the
stable solution (1), where only the resource survives, from the coexistence equilibrium
(2). This solution is first asymptotically stable, and then, damped oscillations around this
stable equilibrium point arise. The rightmost threshold line in Figure 2 stands for the Hopf
bifurcation, which separates stable oscillations from limit cycles.

0 5 10 15 20

0
10

20
30

40
50

α

β Stable 
 resource

Stable
coexistence

Damped

oscillations
Limit

cycles

Figure 2. Parameter space showing transitions between different stability regimes for λR = 0, λA = 0,
and δR = 0. In this case, the transcritical bifurcation threshold (32) reduces to the vertical line α = δA.
The threshold αc (cf. Equation (42)) for the Hopf bifurcation is the limit (for β→ 0) of the line that
separates stable oscillations and limit cycles. The remaining lines were computed by numerical
evaluation of the Jacobian eigenvalues.
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4. Derivation of Functional Responses via the Separation of Time Scales

In this section, we discuss the asymptotic dynamics of the mean field description of
the system (20)–(23). To simplify the calculations, we assumed there is no immigration in
the system (λR = 0 and λA = 0). A simple asymptotic derivation can be made for the type
I and type II functional responses. In this case, there is no interference between predators
(χ = 0, η = 0), and we can write the mean field Equations (20)–(23) as:

dnR
dt

= rnR

(
1− nR

K

)
− αnRnA

N
, (44)

dnA
dt

= 2νn[AR] − δAnA −
αnRnA

N
, (45)

dn[AR]

dt
=

αnRnA
N

− νn[AR], (46)

where r = β− δR and K = rN/β are the growth rate and carrying capacity of the resource.
Assuming that compounds disappear very fast from the system, the time scale of consumers

XA is longer than the time scale of the compounds X[AR]. In this regime, putting
dn[AR]

dt = 0
in Equation (46), we obtained νn[AR] = αnAnR/N, which we can substitute in Equation (45)
to get:

dnR
dt

= rnR

(
1− nR

K

)
− αnRnP

N
, (47)

dnP
dt

=
αnRnP

N
− δAnP, (48)

which are the classical predator-prey Lotka–Volterra equations [1,2], i.e., consumer-resource
equations with a type I functional response. Note that in Equation (48), the numerical
response, i.e., the per capita rate of food intake of the predator [48], is equivalent to the
functional response. In other words, the conversion efficiency of resource density into
predator density is one. In this case, the parameter α can be interpreted as the macroscopic
attack rate of the predator, whose density is given by nP = nA.

In the opposite limit, when the time scale of compounds X[AR] is longer than the time
scale of consumers XA, we can assume that the degradation rate of compounds and the
growth rate of resources are small compared to all the other parameters. Following [46],
these assumptions can be summarized by setting ν = εν̃ and r = εr̃ with 0 < ε � 1,
while ν̃ and r̃ remain O(1). For any positive parameters, Equations (44)–(46) have simpler
dynamics in the leading order. Making a simple rescaling in the time of the dynamics by
writing d/dt = εd/dt̃ and substituting into Equation (21), we can now derive an expression
for nA as:

nA =
2εν̃n[AR]

δA + αnR/N
+O(ε2), (49)

which can be substituted into Equations (20) and (22) to obtain an ODE system of two
equations given by:

dnR

dt̃
= r̃nR

(
1− nR

K

)
− αnRnP

1 + ατHnR
+O(ε), (50)

dnP

dt̃
=

αnRnP
1 + ατHnR

− δPnP +O(ε), (51)

which is the classical Rosenzweig–MacArthur model for predator-prey dynamics [29],
where the total density of predators is slaved to the total number of compounds
nP := nA + n[AR] = n[AR] +O(ε). Equations (50) and (51) describe predator-prey dynam-
ics characterized by logistic growth for the prey and a typical type II functional response
with attack rate α = 2αν̃/δA, handling time τH = 1/2ν̃, and death rate δP = ν̃. In this
case as well, the numerical response in Equation (51) is given by the functional response
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of Equation (48). Note also that in this case, the parameters of the macroscopic equations
can be expressed as a function of the parameters of the microscopic process (2)–(7), but
are not intuitively related to the same parameters obtained considering typical heuristic
arguments to derive functional responses [25].

Similar slaving arguments can be made for the general system (20)–(23), where also
the degradation rate of triplets is small compared to the other rates (i.e, we additionally set
η = ε2η̃). The derivation goes as follows.

Eliminating nA from Equation (21), we obtained, up to first order in ε,

nA =
2εν̃n[AR]

δA + αnR/N + χn[AR]/N
+ O(ε2), (52)

which can be substituted into (20) to get an equation for the resource,

dnR

dt̃
= r̃nR

(
1− nR

K

)
−

2αν̃nRn[AR]

NδA + αnR + χn[AR]
+ O(ε). (53)

On the other hand, summing Equations (22) and (23) yields:

d
dt̃
(n[AR] + n[ARA]) =

2αν̃nRn[AR]

NδA + αnR + χn[AR]
− ν̃n[AR] + O(ε). (54)

If we assumed that n[ARA] is proportional to n[AR] along the dynamics, say n[ARA] = κn[AR],
and we defined the total density of consumers as nP := n[AR] + n[ARA] = (1 + κ)n[AR],
we finally obtained the typical functional form of the Beddington–DeAngelis functional
response [19], including predator handling and interference,

dnR

dt̃
= r̃nR

(
1− nR

K

)
− αnRnP

NδA + αnR + χnP
+ O(ε), (55)

dnP

dt̃
=

αnRnP
NδA + αnR + χnP

− δPnP + O(ε), (56)

where the effective interference rate is given by χ = χ
1+κ , the effective attack rate is α = 2αν̃

1+κ ,
and the effective death rate of predators is given by δP = ν̃

1+κ . However, we did not find a
straightforward way to determine κ in terms of the parameters of the original dynamics
given by Equations (20)–(23). In addition, we had to assume that densities n[AR] and n[ARA]

are proportional along the temporal dynamics to obtain (55) and (56).

5. Stochastic Feeding Rates

A rigorous definition of a predator functional response can be precisely given as the
number of resource units an average individual predator is able to consume per unit time.
Since predator consumption rates respond in principle to resource density, any empirical
approach intending to measure these rates will require fixing both resource and predator
densities. We call these conditions chemostatic, in analogy with experiments done in
chemostats, i.e., reactors where nutrient concentrations and density of microorganisms can
be controlled [49]. Given the processes that define the stochastic dynamics in Section 2, we
can now ask what type of functional response emerges under chemostatic conditions.

Therefore, let us assume that we maintain both the number of resource units n0
R and

the total number of consumers n0
A = nA + n[AR] constant. Let us also assume first no

formation of triplets and focus only on the feeding process. In this case, the dynamics can
be simply described by the following two processes:

XA + φR
α X[AR] + ∅ , (57)

X[AR]
ν XA , (58)
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where the first equation is tightly coupled to the addition of a new resource unit in order to
keep resources fixed to exactly the same level n0

R all the time.
In order to calculate the functional response, i.e., the number of resource units captured

by an individual predator per unit time, we introduced a new stochastic variable RT , as
the number of resource units consumed by a total population of consumers n0

A, in a time
interval, T. Then, the functional response, as a per capita feeding rate, over a certain period
T and a total number of consumers n0

A, becomes:

f (n0
R, n0

A; T) =
1
T

RT

n0
A

. (59)

This functional response is a stochastic per capita feeding rate. In principle, it is
assumed to be both prey and predator dependent. It is described by the probability
distribution of cumulative feeding events n, realized by the total number of consumers n0

A,
between Time 0 and T. If we characterize the configuration of the system by n, the number
of accumulated feeding events, and nA, the number of free predators ready to attack
resources at any given time, the stochastic dynamics of the feeding process is governed by
the following total transition rates:

rn,nA := T[(n + 1, nA − 1)|(n, nA)] = α
n0

R
N

nA, (60)

gn,nA := T[(n, nA + 1)|(n, nA)] = ν(n0
A − nA). (61)

Equations (60) and (61) represent the rate at which the individual-based reactions (57)
and (58) occur. Compare these to reactions (6) and (7). Notice that here we did not consider
consumer growth nor resource depletion. When a consumer individual attacks a resource item,
this item is instantaneously replenished in order to maintain the resource density constant.
These rates can be then used to write a master equation (see Equation (A14) in Appendix B),
which governs the temporal evolution for the probability of having an accumulated total of
n resource items being consumed and nA free consumers at time t, P(n, nA; t). This one-step
process is linear in nA since both n0

A and n0
R are kept constant. Therefore, the probability

distribution P(n, nA; t), can be calculated exactly. The probability distribution characterizing
the stochastic variable RT is, in fact, its marginal, i.e., the probability of having a given number
n of accumulated feeding events at time T, regardless how many free consumers nA are around.
It will be given by:

P(n, t) =
n0

A

∑
nA=0

P(n, nA, t). (62)

Before giving more details about the calculation of both the full probability distri-
bution P(n, nA; t) and its marginal, P(n, t), we first analyzed the average feeding rate,
〈 f (n0

R, n0
A; T)〉. It is clear that the average total number of resource units R ≡ 〈RT〉, con-

sumed by a population of consumers monotonically increases in time according to:

dR
dt

= α
n0

R
N

nA, (63)

which, by defining:

θ := α
n0

R
N

, (64)

can also be written in integral form as:

R(T) = θ
∫ T

0
nA(t)dt. (65)
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Therefore, the average feeding rate per individual consumer over a period T can be
written as:

〈 f (n0
R, n0

A; T)〉 = 1
T

θ
∫ T

0 nA(t)dt
n0

A
. (66)

Since the total number of consumers is kept constant (n0
A = nA + n[AR]), the average

deterministic rate equations describing the feeding processes as defined in Reactions (57)
and (58) can be reduced to a single equation for nA,

dnA
dt

= νn0
A − (θ + ν)nA. (67)

If we assume as initial condition nA(0) = n0
A, i.e., all consumers are free and ready to feed

at time t = 0, then we can integrate the last equation from zero to T as:

nA(t) =
ν

ν + θ

[
1 +

θ

ν
e−(θ+ν)t

]
n0

A, (68)

and therefore: ∫ T

0
nA(t)dt =

ν

ν + θ

[
T +

θ

ν(ν + θ)
(1− e−(θ+ν)T)

]
n0

A. (69)

Now, going back to Equation (66), we can write:

〈 f (n0
R, n0

A; T)〉 = θν

ν + θ
+

θ

Tν(ν + θ)
(1− e−(θ+ν)T). (70)

This average rate per individual consumer tends to a stationary value as T tends to infinity,
which is:

〈 f (n0
R)〉 =

θν

ν + θ
, (71)

where we removed the time (to denote the asymptotic limit) and the consumer depen-
dence. After introducing again θ, as defined in Equation (78), it is clear that the average
consumption rate per individual consumer corresponds exactly to the typical Holling type
II functional response, where ν is the inverse of the handling time and α is the attack rate:

〈 f (n0
R)〉 =

α
n0

R
N

1 + α
ν

n0
R

N

. (72)

See also the red curve in Figure 3. In an empirical setting, where we monitored the
total number of resource units consumed by a controlled population of n0

A consumers
under chemostatic conditions over a period T, we would obtain a different total number
for each experimental replicate. The scheme given by the reactions (57) and (58) predicts
a theoretical distribution that can then be compared to data. We give details about the
calculation of this distribution in Appendix B. In short, the transition rates given by
Equations (60) and (61) are first used to write a master equation from which an equation
for the probability generating function can be derived:

∂G(x, y; t)
∂t

= νn0
A(y− 1)G(x, y; t) + [θ(x− y)− νy(y− 1)]

∂G(x, y; t)
∂y

, (73)
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where the precise definition of G(x, y, t) is given in Equation (58) in Appendix B. This PDE is
then solved under the initial condition G(x, y, 0) = yn0

A by the method of the characteristics,
with the normalization condition G(0, 0, t) = 1, which yields the functional form:

G(x, y; t) = eνn0
A(y−1)t

y+0 (x)e−∆(x)t − y−0 (x) y−y+0 (x)
y−y−0 (x)

e−∆(x)t − y−y+0 (x)
y−y−0 (x)


n0

A

, (74)

where y−0 (x), y+0 (x), and ∆(x) are functions of x (see Appendix B). It can be checked that
this expression satisfies G(0, 0, t) = 1, for any t, and G(x, y; 0) = yn0

A as required. In
addition, this allows the immediate calculation of the probability generating function of the
marginal distribution P(n; t) by simply evaluating the full probability generating function
at y = 1:

G(x, 1; t) =

y+0 (x) e−∆(x)t − y−0 (x) 1−y+0 (x)
1−y−0 (x)

e−∆(x)t − 1−y+0 (x)
1−y−0 (x)


n0

A

. (75)

The distribution P(n; t) gives the probability of n prey items disappearing under the
pressure of a constant total number of consumers n0

A, from Time 0 until time t. Under
controlled experimental conditions [24], this probability can be used as the exact likelihood
function for inference purposes. See also [50] and the references therein, for a broader
description of the challenges of the experiments and the inference of functional response
parameters. Figure 3 shows stochastic simulations of the per capita rate compared to the
Holling type II average provided by (72).

Figure 3. Plot of the per capita feeding rate of the stochastic process defined by the reactions (57)
and (58). Simulations were carried out using the Gillespie algorithm with 10,000 steps, while the
rates (black dots) were calculated, after a transient of 5000 steps, for different values of resource
concentrations and compared with the functional response given by Equation (72) (red line). The
simulation parameters are β = 1.5, δA = 1, α = 2.5, ν = 1, and N = 10,000. The total number of
consumers is fixed to n0

A = nA + n[AR] = 200.

Note that the Holling type II functional response in Equation (72) naturally arises
as a per capita average asymptotic feeding rate after reaching stationarity under chemo-
static conditions. If the feeding mechanism differs from the simple one assumed by
the reactions (57) and (58), other functional responses will be obtained. For instance, if con-
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sumer feeding rates are strongly affected by the density of the resources, we can describe
feeding dynamics by the following two processes:

XA + n φR
α X[AR] + (n− 1) φR , (76)

X[AR]
ν XA . (77)

If we repeat an analogous derivation as for Holling type II, we arrived formally at the same
Equation (67), but instead, parameter θ should now be defined as:

θ := α

(
n0

R
N

)n

(78)

which leads to a Holling type III functional response:

〈 f (n0
R)〉 =

α

(
n0

R
N

)n

1 + α
ν

(
n0

R
N

)n . (79)

Note that Reaction (76) can be regarded as if the presence of n− 1 extra resources facilitated
the attack by consumers. Resources would have a self-catalytic effect on their own loss. In
nature, it is plausible that when resources are clumped together, consumers encounter them
better and faster. However, a Holling type III of exact order n (Equation (79) represents
here of course an idealization.

Furthermore, let us now assume consumer interference through the formation of
triplets. Then, feeding dynamics is specified by the following scheme:

XA + φR
α X[AR] + ∅ , (80)

X[AR]
ν XA (81)

X[AR] + XA
χ

X[ARA] + ∅ , (82)

X[ARA] + ∅
η

X[AR] + XA , (83)

Again, under chemostatic conditions, the resource level n0
R and the total number of

consumers n0
A are both kept constant. In order to calculate the functional response as

a per capita feeding rate over certain period T, 〈 f (n0
R, n0

A; T)〉, we made use again of
the definition given by Equation (66). The total consumer population is kept constant
(n0

A = nA + n[AR] + 2n[ARA]) and is distributed among the three types: free consumers
nA, handling/feeding consumers n[AR], and interfering consumers engaged in triplet
formation n[ARA]. Once this distribution reaches the steady state, there will be a steady
number of consumers n?

A, free to attack and deplete resources. Therefore, at stationarity,
Equation (66) becomes:

〈 f (n0
R, n0

A)〉 = θ
n?

A
n0

A
, (84)

where we dropped the dependence of the averaging time interval T, because this is an
asymptotic rate and θ, defined again as in Equation (78), is a constant parameter, since n0

R
is assumed constant. The value of n?

A is defined by the steady state that emerges from the
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rate equations describing the feeding mechanism depicted in the reaction scheme (80)–(83).
One can check that this system should read as:

dnA
dt

= νn[AR] + ηn[ARA] − α
n0

R
N

nA − χ
n[AR]

N
nA, (85)

dn[AR]

dt
= ηn[ARA] − νn[AR] + α

n0
R

N
nA − χ

n[AR]

N
nA, (86)

dn[ARA]

dt
= χ

n[AR]

N
nA − ηn[ARA]. (87)

In order to determine the steady state of these feeding dynamics, we better work with
densities fA = nA/N, f[AR] = n[AR]/N, and f[ARA] = n[ARA]/N and make use of the
constraint of a constant consumer population (n0

A = nA + n[AR] + 2n[ARA]), which reduces
the ODE system to the following two equations:

d fA
dt

= ν f[AR] +
η

2
( f 0

A − fA − f[AR])− θ fA − χ f[AR] fA, (88)

d f[AR]

dt
=

η

2
( f 0

A − fA − f[AR])− ν f[AR] + θ fA − χ f[AR] fA. (89)

By making these two equations equal to zero, we obtained steady state densities. In
particular, the density of free consumers f ?A can be written as:

f ?A =
1
4

− η

χ

(
1 +

ν

θ

)
+

√(
η

χ

(
1 +

ν

θ

))2
+ 8

η

χ

ν

θ
f 0
A

. (90)

Using this expression in Equation (84) and rearranging, we finally obtained the following
per capita feeding rate of consumers at steady state given by:

〈 f (n0
R, n0

A)〉 =
2α

n0
R

N

1 + α
ν

n0
R

N +

√(
1 + α

ν
n0

R
N

)2
+ 8 χ

η
α
ν

n0
R

N
n0

A
N

. (91)

Note that this is a predator-dependent functional response that generalizes Holling type
II. If no triplet formation is considered (χ = 0), we recovered Equation (72). Here, we
considered consumers interfering with other consumers that have already caught a resource
item, perhaps in the hope of getting a share. However, other possible forms of predator
interference are possible. Figure 4 shows the comparison with stochastic simulations.

The functional response given by (91) reduces almost to a Beddington–DeAngelis
form in the limit χ

η � 1 and α
ν � 1. In this case, (91) reduces to:

〈 f (n0
R, n0

A)〉 ≈
α

n0
R

N

1 + 2α
ν

n0
R

N + 2χα
ην

n0
R

N
nA

R
N

. (92)

If we introduce the dimensionless rates τ[AR] := α
ν , which can be interpreted as the average

attack rate in units of handling time, and τ[ARA] := χ
η , standing for the ratio between

the pace of triplet formation and triplet degradation, respectively, we found that only
in the limit of τ[ARA] � 1 and τ[AR] � 1, Equation (92) is a suitable approximation of
Equation (91). The equation obtained is a predator-dependent functional response of the

Beddington–DeAngelis type except for the product n0
R

N
nA

R
N in the denominator. Therefore,

we note that only if the system is at a very high resource density (n0
R ≈ N), we would tend

to observe the exact Beddington–DeAngelis functional form.
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Figure 4. Plot of the per capita feeding rate of the stochastic process defined by the reactions (80)–(83).
Simulations were carried out using the Gillespie algorithm with 15,000 steps, while the rates (black
dots) were calculated, after a transient of 7500 steps, for different values of consumers concentrations,
and compared with the functional response given by Equation (91) (red line). The simulation
parameters are β = 1.5, δA = 1, α = 2.5, ν = 1, η = 1, χ = 100, and N = 10,000. The total number of
resources is fixed to n0

R = 5000.

6. Discussion

The aim of statistical physics is to develop phenomenological macroscopic results
from a probabilistic examination of the underlying microscopic processes. This allows
connecting processes at different levels of coarse-grained description. We applied this
approach to consumer-resource dynamics, connecting elemental processes of growth and
consumption at the individual level to a more coarse-grained description that leads, in the
limit of large populations, to a deterministic description in terms of the two-dimensional
typical predator-prey model (the macroscopic law, sensu Van Kampen [35]).

We set up individual dynamics in a way that makes contact with classic models
in ecology. For instance, if we consider only resource dynamics, we have a population
that invades an area characterized by N sites with a given immigration rate per site,
λR. Then, local growth occurs, that is individuals send a number of propagules per
unit time that only settle down successfully in proportion to the number of free, still
non-colonized sites. This means that the system can only pack a maximum number of
individuals, N. Finally, individuals die at a density-independent per capita rate, δR. Under
the usual assumption of one individual per site, this model corresponds to the open Levins
model [51–54]. The extension of this model to S resources that compete for the N sites
has been also carefully analyzed in the literature [55,56], both using one-step stochastic
process and in the deterministic limit. Furthermore, if we drop local growth, then we have
a system of S species undergoing an independent immigration-birth-death process, which,
under ecological equivalence, leads to a typical neutral model for biodiversity [57,58].
Interestingly, when we sample a total of NS individuals from such a neutral community
dynamics, which are necessarily distributed in a vector of abundances ~n = (n1, . . . , nS),
the probability of obtaining a given configuration vector, ~n, follows exactly the Etienne
likelihood function [59,60], the corner-stone of neutral biodiversity theory.

Consumer-resource dynamics was also set up in a general way although it clearly
allows for further generalizations. First, we considered also that consumers immigrate
from outside the N-site system at a per site rate, λA. While the system can only pack N
resource individuals, in principle, there is no limit for the number of consumers. This
number will be dynamically controlled by the resource level. The size of the system only
directly limits resources. This differs from most approaches (e.g., [37,46,61,62]), but as we
showed, it is not a problem to expand the system in terms of the size parameter N and
recover, in this way, the corresponding deterministic rate equations in the large N limit.
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Some of the results we covered here, such as the existence of a Hopf bifurcations, can only
be recovered when there is no external immigration of consumers. Since natural systems
are most of the time open and subject to external inputs, this means that nice and stable
consumer-resource dynamics (limit cycles) should be very difficult to observe in nature
due to the stabilizing role of external immigration [63]. This does not preclude recovering
stable cycles under experimental, close-to-immigration, controlled conditions [64,65].

The way we set up the subset of reactions controlling feeding dynamics has also the
potential to clarify much of the discussion about predator-dependent functional responses
of the Beddington–DeAngelis type [20,66–68]. We defined interference between consumers
through structures that require multiple individuals to interact and stay together for an
amount of time. Under this assumption, incidentally, we showed that, by considering
only interference between handing consumers and free consumers, the exact Beddington–
DeAngelis functional form cannot be fully recovered. We believe this point requires careful
analysis that we will develop in a further publication.

The minimal set of reactions that we conceived reproduces consumer-resource dy-
namics in terms of four ODEs, Equations (20)–(23), in the deterministic limit. This involves
the description of the different processes driving dynamics at the individual level. Our
main result in this work has to do with the comparison between two alternative ways
of deriving functional responses. First, an asymptotic approximation for the mean field
version of the complete set of reactions, borrowing slaving arguments from [46], gives
rise to a consumer-resource model, which predicts a functional form for the average per
capita rate at which consumers deplete resources. Secondly, in a rather classic way [14,19],
we derived the functional responses by describing the setting of a typical feeding experi-
ment, that is the same system in chemostatic conditions, by only considering the subset of
reactions characterizing the feeding interaction. In the first case, when going from the four-
equation to the two-equation system, the dynamics of the usual kind, i.e., predator-prey
equations with Holling type I (Equations (47) and (48)), type II (Equations (50) and (51)),
and Beddington–DeAngelis (Equations (55) and (56)), are recovered by carefully assuming
separation of time scales in the processes involved. Moreover, depending on the particular
assumptions behind the separation of time scales, different functional forms may arise.
In general, our analysis showed that predator feeding rates in the 2D consumer-resource
models do not exactly match the typical functional responses presented in the literature,
which we mostly recovered here under chemostatic conditions. Therefore, our results
clearly demonstrated a discrepancy between the functional responses that emerge from the
analysis of the full consumer-resource system through asymptotic derivations and sepa-
ration of time scales and the functional responses derived under chemostatic conditions.
For example, the attack rate and the handling time of type II functional response obtained
under chemostatic conditions differ from the same parameters of the type II functional
response that results from asymptotic derivations.

Although finding effective low-dimensional representations from high-dimensional
dynamical systems is not an easy task, which formally requires methods from singular
perturbation theory [69,70], we believe that the origins of the discrepancy we report is
not related to the separation of time scales we assumed in order to go from the full, four-
equation ODE system to the typical predator-prey 2D model. We rather think that it has to
do with the simple way in which consumers transform resources into new consumers, the
so-called numerical response of consumers in the ecological literature [48]. The instanta-
neous coupling between consumption and reproduction we assumed here, which is also
assumed in simple predator-prey models, is not realistic and might be at the basis of this
inconsistency. Structured population models, which assume that consumers accumulate
mass or energy as they feed and reproduce at a later stage [71], may shed new light on
the relation between individual feeding dynamics and macroscopic functional responses.
Other possible generalizations, such as the explicit consideration of spatial dynamics [67]
(see also Appendix C), may also help explain the relation between individual feeding
dynamics and coarse-grained descriptions leading to effective functional responses. Future
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avenues of research include developing more robust methods to make inference from
experiments of consumer-resource systems based on stochastic dynamics [26,72,73] rather
than on simple ODE systems.

In sum, we demonstrated that the use of simple predator-prey models to analyze
both experiments and natural predator-prey interactions should be done with caution.
This includes food-web theory and applications. Models are simple representations of
reality. As such, it is not rare to find inconsistencies when we try different types of models
to analyze the same system. The art comes when theory is able to clearly establish the
range of situations in which a certain mathematical model matches reality, which allows
for both predictions and further experiments. However, a successful model of this kind
should never claim that the processes considered occur in exactly the same way as they
do in nature. Most of the time, process representation is a strong idealization. In this
sense, we believe that ecological theories, and probably theories in general, are always
effective theories.
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Appendix A. Van Kampen Expansion of the Master Equation

In the absence of triplets, the master Equation (18) reduces to:

∂P
∂t

= (E−1
R − I)(T+

R P) + (ER − I)(T−R P) + (E−1
A − I)(T+

A P)

+ (EA − I)(T−A P) + (EREAE−1
AR − I)(T+

ARP)

+ (E−2
A EAR − I)(T−ARP).

(A1)

In this Appendix, we denote n = (nR, nA, n[AR]). The expansion proceeds by decomposing
each abundance as a term associated with a macroscopic density plus a term associated
with noise,

nR = N fR + N1/2ξR,

nA = N fA + N1/2ξA,

n[AR] = N f[AR] + N1/2ξ[AR],

(A2)

where ξ = (ξR, ξA, ξ[AR]) stands for the vector of noise terms. The expansion is based on
the change of variables n→ ξ. In the new variables, we denote Π(ξ, t) = P(n, t). Here, we
use the shorthand X to denote each one of the labels in the set X := {R, A, [AR]}.

https://github.com/Gpalam/The_Stochastic_Nature_of_Functional_Responses
https://github.com/Gpalam/The_Stochastic_Nature_of_Functional_Responses
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Observe that EX changes nX into nX + 1 = N fX + N1/2ξX + N1/2N−1/2. There-
fore, after applying EX, the noise ξX changes into ξX + N−1/2. This yields the following
asymptotic expansions for the operators E±X in the limit of large N,

E±X = I± N−1/2 ∂

∂ξX
+

1
2

N−1 ∂2

∂ξ2
X
+ . . . (A3)

The time derivative in (A1) is taken at constant n. Therefore, taking time derivatives in (A2),
we obtain:

dξX
dt

= −N1/2 d fX
dt

. (A4)

Now, we apply the change of variables n→ ξ. The chain rule yields:

∂P
∂t

=
∂Π
∂t

+ ∑
X∈X

∂Π
∂ξX

dξX
dt

=
∂Π
∂t
− N1/2 ∑

X∈X

∂Π
∂ξX

d fX
dt

. (A5)

The l.h.s. of (A1) contains powers of N1/2 and N0. We expand the r.h.s. of (A1) up to
the leading and next-to-leading terms in N. We proceed term by term. The first term,
(E−1

R − I)(T+
R P), reduces to:

(E−1
R − I)(T+

R P) ≈
(
−N−1/2 ∂

∂ξR
+

1
2

N−1 ∂2

∂ξ2
R

)
(N(1− fR)− N1/2ξR)×(

λR +
β

N − 1
(N fR + N1/2ξR)

)
Π(ξ, t). (A6)

Up to order N0, this yields:

(E−1
R − I)(T+

R P) ≈ N1/2(−λR(1− fR)− β fR(1− fR))
∂Π
∂ξR

− ∂

∂ξR
(−λRξR − β fRξR + β(1− fR)ξR)Π

+
1
2
(λR(1− fR) + β fR(1− fR))

∂2Π
∂ξ2

R
+O(N−1/2).

Expanding up to order N0 the following terms of the master equation, we obtain:

(ER − I)(T−R P) ≈ N1/2(δR fR)
∂Π
∂ξR

+
∂

∂ξR
(δRξRΠ) +

1
2
(δR fR)

∂2Π
∂ξ2

R
+O(N−1/2),

(E−1
A − I)(T+

A P) ≈ N1/2λA
∂Π
∂ξA

+
1
2

λA
∂2Π
∂ξ2

A
+O(N−1/2),

(EA − I)(T−A P) ≈ N1/2δA fA
∂Π
∂ξA

+
∂

∂ξA
(δAξAΠ)

+
1
2

δA fA
∂2Π
∂ξ2

A
+O(N−1/2).
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The remaining terms are a bit convoluted,

(EREAE−1
AR − I)(T+

ARP) ≈ N1/2(α fR fA)

(
∂

∂ξR
+

∂

∂ξA
− ∂

∂ξ[AR]

)
Π

+

(
∂

∂ξR
+

∂

∂ξA
− ∂

∂ξ[AR]

)
(α fAξR + α fRξA)Π

+
1
2
(α fR fA)

(
∂2Π
∂ξ2

R
+

∂2Π
∂ξ2

A
+

∂2Π
∂ξ2

[AR]

)

+ (α fR fA)

(
∂2Π

∂ξR∂ξA
− ∂2Π

∂ξR∂ξ[AR]
− ∂2Π

∂ξA∂ξ[AR]

)
+O(N−1/2),

(E−2
A EAR − I)(T−ARP) ≈ N1/2(ν f[AR])

(
−2

∂

∂ξA
+

∂

∂ξ[AR]

)
Π

+

(
−2

∂

∂ξA
+

∂

∂ξ[AR]

)
(νξ[AR]Π)

+
1
2

ν f[AR]

(
4

∂2Π
∂ξ2

A
+

∂2Π
∂ξ2

[AR]
− 4

∂2Π
∂ξA∂ξ[AR]

)
+O(N−1/2).

Leading terms that multiply ∂Π
∂ξR

, ∂Π
∂ξA

and ∂Π
∂ξ[AR]

, respectively, yield a differential equation,

which together form the following macroscopic, mean field system of ODEs:

−d fR
dt

= −λR(1− fR)− β fR(1− fR) + δR fR + α fR fA,

−d fA
dt

= −λA + δA fA + α fR fA − 2ν f[AR],

−
d f[AR]

dt
= −α fR fA + ν f[AR],

(A7)

which coincides with (20)–(23) for χ = 0 = η and changing back to the original variables
nX = N fX (X ∈ {R, A, [AR]}) in the limit of large N (i.e., ignoring the noise).

Next-to-leading terms yield the Fokker–Plank equation for the noise distribution
Π(ξ, t),

∂Π
∂t

= − ∑
i∈X

∂

∂ξi
(µiΠ) +

1
2 ∑

i,j∈X

∂2

∂ξi∂ξ j
(Di,jΠ), (A8)

with a drift vector µ whose components are given by:

µR = −(λR + δR − β + α fA)ξR − α fRξA,

µA = −α fAξR − (δA + α fR)ξA + 2νξ[AR],

µ[AR] = α fAξR + α fRξA − νξ[AR],

(A9)
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and diffusion matrix D whose entries are defined as:

DR,R = λR(1− fR) + β fR(1− fR) + δR fR + α fR fA,

DA,A = λA + δA fA + α fR fA + 4ν f[AR],

D[AR],[AR] = α fR fA + ν f[AR],

DR,A = α fR fA,

DR,[AR] = −α fR fA,

DA,[AR] = −α fR fA − 2ν f[AR].

(A10)

Appendix B. The Method of Characteristics

Here, we give details about the derivation of probability generating function associated
with the Holling type II consumer-resource dynamics. We characterized the configuration
of the system by n, the number of accumulated feeding events, and the number of free
predators, nA, ready to attack resources, at any given time. We were interested in the
probability distribution of cumulative feeding events, n, realized by the total number of
consumers, n0

A, between Time 0 and t. We calculated this distribution under the assumption
that, initially, at t = 0, there were a total of n0

A free consumers and, by definition, no feeding
events yet. If we write this probability distribution as P(n, nA; t), the initial condition
should be specified as:

P(n, m, 0) =
{

1 if n = 0, m = n0
A,

0 Otherwise.
(A11)

According to the feeding process, the stochastic dynamics is governed by the following
total probability rates:

rn,m := T[(n + 1, m− 1)|(n, m)] = θ m, (A12)

gn,m := T[(n, m + 1)|(n, m)] = ν(m0 −m), (A13)

where, for simplicity, we defined m := nA, m0 := n0
A. Recall also that θ = αn0

R/N, as usual.
This leads to the master equation, which should be always seen as a system of coupled

ODEs, in our case, for m = 0, . . . , m0, and n, in principle, taking integer values from −∞
to ∞:

dP(n, m; t)
dt

= θ(m + 1)P(n− 1, m + 1; t) + ν(m0 −m + 1)P(n, m− 1; t)

− [(θ − ν)m + νm0]P(n, m; t). (A14)

By definition, the probability generating function is:

G(x, y; t) =
∞

∑
n=∞

m0

∑
m=0

P(n, m; t) xn ym. (A15)

Multiplying each equation in the ODE system (A14) by the corresponding factor xn ym and
summing over n and m, we obtained an equation in partial derivatives for the probability
generating function,

∂G(x, y; t)
∂t

= νm0(y− 1)G(x, y; t) + [θ(x− y)− νy(y− 1)]
∂G(x, y; t)

∂y
. (A16)

The initial condition can be written in terms of the probability generating function in a very
compact form, G(x, y, 0) = ym0 . Our objective was to find the function that fulfills both
Equation (A16) and this initial condition.
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We first note that x plays the role of a parameter. The relevant variables are y and t.
Therefore, we looked for an integral surface Ux(y, t) ≡ G(x, y, t) satisfying Equation (A16).
Notice that our solution z = Ux(t, y) can be regarded as a surface embedded in the 3D
space defined by the variables t, y, and z. This method emphasizes that any surface in a
3D space can be characterized by a family of curves. These would be curves that, as a real
constant changes, cover and define the whole surface. These curves are called characteristic
curves. An equivalent way of writing our integral solution would be Z(t, y, z) = 0 with the
function Z(t, y, z) := Ux(t, y)− z. Furthermore, we could write the initial PDE in a very
compact form, as the following dot product:

~v · ~n = 0, (A17)

where ~v is defined as:

~v := (1, θ[x− y]− νy[y− 1], νm0[y− 1] G(x, y; t)) (A18)

and~n is the gradient of Z(t, y, z), that is~n = (Zt, Zy, Zz), where:

Zt :=
∂Z
∂t

=
∂G(x, y; t)

∂t
, Zy :=

∂Z
∂y

=
∂G(x, y; t)

∂y
, Zz :=

∂Z
∂z

= −1. (A19)

Since ~n is the gradient of Z, it is normal to the integral surface at each and every point,
(t, y, z). Therefore, any curve on the surface should have a tangential direction, defined by
the vector ~v, that should be perpendicular to ~n at every point. Now, we write a curve in
parametric form:

t = t(s),

y = y(s),

z = z(s),

and its tangent vector,~a, is therefore written as:

at =
dt
ds

,

ay =
dy
ds

,

az =
dz
ds

.

As said, this curve is a characteristic curve of our integral solution only if its tangent vector
~a is parallel to ~v, as defined in Equation (A18). Therefore, a relation of proportionality
component a component should be fulfilled, i.e.,

dt
ds
1

=
dy
ds

θ[x− y]− νy[y− 1]
=

dz
ds

νm0[y− 1] G(x, y; t)
(A20)

which, for convenience, can be written as the following two ODEs to solve. Notice that
dz = dUx = dG:

dt
1

=
dy

θ[x− y]− νy[y− 1]
(A21)

dt
1

=
dG

νm0[y− 1] G
(A22)
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After some algebra, respectively, the solutions of the first and second ODE become:

e−∆(x) t y− y−0 (x)
y− y+0 (x)

= C1, (A23)

eνm0(y−1)t

G(x, y; t)
= C2, (A24)

where C1 and C2 are integration constants, and:

∆(x) =
√
(θ − ν)2 + 4θν x,

y+0 (x) =
1

2ν
[−(θ − ν) + ∆(x)],

y−0 (x) =
1

2ν
[−(θ − ν)− ∆(x)].

Recall that Equations (A23) and (A24) define a family of characteristic curves on our integral
surface. This means that these curves draw this surface as a real parameter continuously
changes, which implies that C1 and C2 cannot be freely chosen, but should depend on each
other. This dependence can be written in terms of an arbitrary function, C1 = Ψ(C2). In
fact, one can check that the function:

e−∆(x) t y− y−0 (x)
y− y+0 (x)

= Ψ

(
eνm0(y−1)t

G(x, y; t)

)
(A25)

is a general solution of the initial PDE given by Equation (A16) whatever the function
Ψ(w) is. It is the initial condition that fully determines this function. We require that
G(x, y; 0) = ym0 :

y− y−0 (x)
y− y+0 (x)

= Ψ
(

1
ym0

)
. (A26)

One can check that this function should be:

Ψ(w) =

(
1−

y−0 (x)
y+0 (x)

)
1

1− wm0 y+0 (x)
+

y−0 (x)
y+0 (x)

. (A27)

Plugging this expression into the general solution Equation (A25), we obtain:

e−∆(x) t y− y−0 (x)
y− y+0 (x)

=

(
1−

y−0 (x)
y+0 (x)

)
1

1−
(

eνm0(y−1)t

G(x,y;t)

)m0
y+0 (x)

+
y−0 (x)
y+0 (x)

. (A28)

After bringing G(x, y; t) to the left-hand side of the equation, we obtain:

G(x, y; t) = eνm0(y−1)t

y+0 (x)e−∆(x)t − y−0 (x) y−y+0 (x)
y−y−0 (x)

e−∆(x)t − y−y+0 (x)
y−y−0 (x)


m0

, (A29)

which is Equation (74) of the main text. One can check that this function is a particular solu-
tion of Equation (A16) satisfying the initial condition G(x, y; 0) = ym and the normalization
requirement G(1, 1, t) = 1 for all t.

Appendix C. Generalization to Spatial Dynamics

In this Appendix, we describe the dynamics of discrete individuals of a given species
X moving in a two-dimensional discrete spatial lattice. The number of individuals in each
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site of the lattice (x, y) at time t is given by n(x, y; t) with n ≥ 0, n ∈ N, x ∈ [1, · · · , L],
y ∈ [1, · · · , L], and t ∈ R, where the total number of nodes is M ≡ L× L.

The process is completely defined by the lattice edge L > 0, L ∈ N, the initial number
of individuals in each site n(x, y; 0), (x = 1, . . . , L, y = 1, . . . , L), the possible movements,
and the per capita movement rate of each individual into neighboring sites across the
lattice. Assuming the same rate µ for every movement, the total rate of the process at time
t is given by:

R(t) = µ
M

∑
i=1

n(xi, yi; t), (A30)

This rate defines the distribution of times between movement events. This Markovian
process, in the limit of continuum densities, can be described by the following coupled
ODE system:

dN(xi, yi; t)
dt

= −µ̂i N(xi, yi; t) + µ ∑
j∈N (xi ,yi)

N(xj, yj; t), (A31)

for i = 1, . . . , M, where, here, we define:

µ̂i = ∑
j∈N (xi ,yi)

µ,

N(xi, yi; t) =
n(xi, yi; t)

A
,

for i = 1, . . . , M, and A would be a physical area associated with every patch, which,
assuming von Neumann neighbors, can be simply written as:

dN(xi, yi; t)
dt

= 4 µ

1
4

 ∑
j∈N (xi ,yi)

N(xj, yj; t)

− N(xi, yi; t)

 (A32)

for i = 1, . . . , M. Moreover, the definition of µ as a per capita random movement rate
between patches ensures that the discrete model so defined also converges to the diffusion
equation in the continuum limit, in the limit of the lattice step tending to zero.

In addition, the model can also be regarded as a metapopulation model where popu-
lations are located at every node of a network. General network structures can be imple-
mented without much trouble. For instance, assume a network of patches at given physical
distances, dij, from each other. By using the Hanski convention, that is that migration
decays exponentially as between-patch Euclidean distance increases, then the per capita
movement rate between patch i and j is defined as:

µij = µ0 e−λ dij .

In this case, the total rate given by Equation (A30) is now written as:

R(t) =
M

∑
i=1

µ̂ (xi, yi)n(xi, yi; t), (A33)

where µ̂ (xi, yi) is defined, as in the case for µ̂i, analogously, as:

µ̂ (xi, yi) = ∑
j∈N (xi ,yi)

µij. (A34)

Throughout the main text, we described processes occurring in a single site, i.e.,
without spatially explicit dynamics. This is usually called the reaction part of the dynamics.
However, in this Appendix, we showed that the diffusion part can be easily added by
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prescribing a metapopulation network topology in which individuals move from node to
node at a certain per capita movement rate, where each node represents a local community.
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